УДК 621.315.592

Гайдар Г.П.

Гайдар Г.П., Баранський П.І.

¹Інститут ядерних досліджень НАН України просп. Науки, 47, Київ, 03680, Україна; ²Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, просп. Науки, 45, Київ, 03028, Україна

Баранський П.І.

КОНЦЕНТРАЦІЙНІ ЗАЛЕЖНОСТІ ПАРАМЕТРА АНІЗОТРОПІЇ РУХЛИВОСТІ $K = \mu_{\perp}/\mu_{\parallel}$ I ПАРАМЕТРА АНІЗОТРОПІЇ ТЕРМОЕРС ЗАХОПЛЕННЯ ЕЛЕКТРОНІВ ФОНОНАМИ $M = \alpha_{\parallel}^{\phi}/\alpha_{\perp}^{\phi}$ В *n-Ge* TA *n-Si*

У діапазоні $10^{12} \le n_e \le 2 \cdot 10^{15}$ см⁻³ за T = 83 К досліджено концентраційні залежності параметрів анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ і анізотропії термоЕРС захоплення електронів фононами $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ у монокристалах n-Ge та виявлено суттєві відмінності цих залежностей від спостережуваних (за аналогічних умов) у монокристалах n-Si. Встановлено, що монокристали n-Ge характеризуються значно вищими (за абсолютною величиною) значеннями параметрів анізотропії M і K порівняно з відповідними значеннями цих параметрів для n-Si. Показано, що параметр M в n-Ge (на відміну від n-Si) є малочутливим до наявності домішок у кристалах, однак параметр K монотонно знижується як в n-Ge, так і в n-Si зі зростанням концентрації носіїв заряду n_e.

Ключові слова: германій, кремній, параметр анізотропії рухливості, параметр анізотропії термоЕРС, концентрація носіїв заряду.

In the range of $10^{12} \le n_e \le 2 \cdot 10^{15} \text{ cm}^{-3}$ at T = 83 K the concentration dependences of the parameters of the mobility anisotropy $K = \mu_{\perp} / \mu_{\parallel}$ and the anisotropy of electron-phonon drag thermopower $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ in n-Ge single crystals were investigated and the significant distinctions in changes of these dependencies from the ones observed (in similar conditions) in n-Si single crystals were found. It was found that the n-Ge crystals are characterized by significantly higher (absolute) values of anisotropy parameters M and K in comparing with the corresponding values of these parameters for n-Si. It was shown that the parameter M in n-Ge (as distinct from n-Si) is insensitive to the presence of impurities in the crystals, but the parameter K monotonically decreases both in n-Ge and in n-Si with increasing the carrier concentration n_e .

Key words: germanium, silicon, the anisotropy parameter of mobility, the anisotropy parameter of thermopower, charge carrier concentration.

Вступ

Теорія кінетики електронних процесів у багатодолинних напівпровідниках [1] і загальна (в тому числі присвячена експерименту) література в цій області [2–6] широко використовують два особливо важливі параметри: параметр анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ (де $\mu_{\parallel}, \mu_{\perp} - \mu_{\perp}$)

рухливості носіїв заряду вздовж і поперек довгої осі ізоенергетичного еліпсоїда відповідно і параметр анізотропії термоЕРС захоплення електронів фононами $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ (де $\alpha_{\parallel}^{\phi}$, α_{\perp}^{ϕ} – фононні складові термоЕРС захоплення вздовж і поперек довгої осі ізоенергетичного еліпсоїда відповідно.

Температурна залежність параметра анізотропії K(T) для кристалів *n-Ge*, експериментально досліджена в роботі [7], була пояснена на основі уявлень, пов'язаних із анізотропним характером часу релаксації τ [8, 9]. У рамках припущення про анізотропний характер часу релаксації параметр анізотропії розсіяння K_{τ} (а, отже, і K) суттєво визначається внеском домішкового розсіювання, що (за заданої температури кристала) є еквівалентним залежності K від концентрації домішки в його об'ємі. Зниження як M, так і K у монокристалах *n-Si* з підвищенням температури від 77.4 К до 350 К виявлено в роботі [10].

У роботі [11] шляхом вимірів насичення поздовжнього магнітоопору $\rho_H^{\parallel} / \rho_0$ в *n*-*Ge* в сильних ($\frac{\mu H}{c} >> 1$) магнітних полях (до 250 кЕ) досліджено концентраційну залежність параметра анізотропії рухливості *K* в інтервалі $5 \cdot 10^{13} \le n_e \equiv N_{\rm Sb} \le 1.38 \cdot 10^{17}$ см⁻³ і при порівнянні дослідних даних із результатами теоретичних розрахунків залежності $K = f(n_e)$, проведених в рамках теорії анізотропного розсіювання, одержано їх кількісну відповідність.

Концентраційну залежність параметра анізотропії термоЕРС захоплення $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi} = f(n_e)$ для монокристалів *n-Si* було досліджено в роботі [12]. Різними авторами і навіть за допомогою різних методик було також знайдено значення параметра M і для *n-Ge*, але лише для умов переважно фононного розсіювання [13–15].

Однак, беручи до уваги, що в приладобудуванні використовується кремній і германій, легований домішками в широкому інтервалі концентрацій, при розрахунку різних ефектів у таких кристалах (особливо при розрахунку термоелектричних і термомагнітних явищ на основі теорії анізотропного розсіяння, узагальненій у роботі [16] на випадок електрон-фононного захоплення і пружної деформації) необхідно також знати значення параметрів K і M в області змішаного розсіювання.

Метою пропонованої роботи було вивчення змін параметрів анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ і анізотропії термоЕРС захоплення електронів фононами $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ з підвищенням концентрації $n_e \equiv N_d$ в *n*-*Ge* та в *n*-*Si* в інтервалі концентрацій носіїв заряду $10^{12} \le n_e \equiv N_d \le 3 \cdot 10^{16}$ см⁻³ за температури T = 83 К.

Результати і обговорення

Значення величини параметра *К* експериментально отримують, як відомо (див., наприклад, [17]), із даних по тензоопору з використанням співвідношення

$$K = \frac{3}{2} \frac{\rho_{\infty}^{\langle ijk \rangle}}{\rho_0} - \frac{1}{2}, \qquad (1)$$

де ρ_0 , $\rho_{\infty}^{\langle ijk \rangle}$ – питомий опір недеформованого $\rho(X=0) \equiv \rho_0$ і одновісно пружно деформованого $\rho(X \to \infty) \equiv \rho_{\infty}$ (ρ_{∞} відповідає області насичення функції $\rho = \rho(X)$) кристала в

кристалографічному напрямку $\langle i j k \rangle$ (тобто, за умов $\vec{X} // \vec{J} // \langle i j k \rangle$, де X – механічне навантаження, J – струм); а $\langle i j k \rangle \rightarrow \begin{cases} \langle 111 \rangle & - & \text{для } n - Ge \\ \langle 100 \rangle & - & \text{для } n - Si \end{cases}$.

Що стосується параметра M, то, подібно до того, як це зроблено для *n-Ge* в роботі [18], для *n-Si*, пружно деформованого в напрямку осі [001] // ∇T // \vec{X} , на основі загальних виразів, показаних у [16], запишемо

$$\alpha - \alpha^e = \alpha_{\perp}^{\phi} \frac{M + \gamma \frac{8K + M}{3}}{1 + \gamma \frac{8K + 1}{3}},$$
(2)

де γ – відношення концентрації носіїв заряду в мінімумах, які піднімаються, до концентрації носіїв заряду в мінімумах, що опускаються, α – експериментально вимірюване значення

термоЕРС в області фононного захоплення, $\alpha^e = \frac{k}{e} \left[2 + \ln \frac{2 \left(2 \pi m^* k T \right)^{3/2}}{n_0 h^3} \right]$ – електронна

(дифузійна) складова термоЕРС, що обчислюється за формулою Писаренка; n_0 – концентрація носіїв заряду; e – заряд електрона; k – стала Больцмана; T – температура; h – стала Планка; $m^* = N^{3/2} \sqrt[3]{m_{\parallel} m_{\perp}^2}$ – ефективна маса густини станів; N – число ізоенергетичних еліпсоїдів.

Із виразу (2) для граничних випадків X=0 (відсутність деформації) і $X \to \infty$ (що відповідає значенням X, які забезпечують повний перехід носіїв у мінімуми, що опустилися) одержимо систему рівнянь

$$\begin{array}{l} \alpha_{0}^{\phi} \equiv \alpha_{0} - \alpha^{e} = \alpha_{\perp}^{\phi} \frac{M + 2K}{1 + 2K} \\ \alpha_{\infty}^{\phi} \equiv \alpha_{\infty} - \alpha^{e} = \alpha_{\perp}^{\phi} \cdot M \equiv \alpha_{\parallel}^{\phi} \end{array} \right\},$$

$$(3)$$

де α_0 і α_{∞} – значення термоЕРС в недеформованих і деформованих зразках відповідно; α_0^{ϕ} і α_{∞}^{ϕ} – фононні складові термоЕРС, виміряні в недеформованому і пружно деформованому кристалі; $\alpha_{(0 \text{ abo } \infty)} = \alpha_{(0 \text{ abo } \infty)}^{\phi} + \alpha_{(0 \text{ abo } \infty)}^{e}$.

Виключаючи із системи рівнянь (3) α_{\perp}^{ϕ} , матимемо для кристалів *n-Si* (як і для *n-Ge*):

$$M = \frac{2K}{(2K+1)\frac{\alpha_0 - \alpha^e}{\alpha_\infty - \alpha^e} - 1} = \frac{2K}{(2K+1)\frac{\alpha_0^{\phi}}{\alpha_\infty^{\phi}} - 1} .$$
(4)

У табл. 1 наведено характеристики досліджуваних зразків та результати обробки дослідних і розрахункових даних для визначення параметра анізотропії термоЕРС захоплення M в *n*-*Ge* при $9.8 \cdot 10^{11} \le n_e \le 1.7 \cdot 10^{15}$ см⁻³. Значення параметра анізотропії K були одержані з даних по тензоопору із застосуванням виразу (1) для *n*-*Ge*.

<u>Таблиця I</u>

№ зразка	$n_e, {\rm CM}^{-3}$	α^{e} , мк B/K	$lpha_{\parallel}^{\phi}$, мк $\mathrm{B/K}$	${\alpha_{\!\!\perp}}^{\phi}$, мк ${ m B}/{ m K}$
1	$9.8\cdot 10^{11}$	1395	9205	751
2	$1.6 \cdot 10^{13}$	1159	7921	702
3	$1.6 \cdot 10^{13}$	1152	7348	617
4	$6.9 \cdot 10^{13}$	978	7282	632
5	$1.7\cdot 10^{15}$	757	5668	505

Характеристики	досліджувани	х зразків n-Ge з	ва температури	T = 83 K
.30	а умов \vec{X} // $ abla$	T // [111] ma X 2	≥0.6 ГПа	

Було показано, що за T = 83 К параметр анізотропії термоЕРС захоплення $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$, виміряний за тензотермоЕРС (тобто, за умови відсутності магнітного поля), практично не залежить від концентрації, як видно з рис. 1, хоча всі складові правої частини формули (4) (а саме: K, α_{0}^{ϕ} , α_{∞}^{ϕ} і навіть α^{e} , що безпосередньо в (4) і не входить, але було використане в системі рівнянь (3) при знаходженні фононних складових термоЕРС захоплення α_{0}^{ϕ} і α_{∞}^{ϕ}) суттєво залежать від $n_{e} = N_{d}$.

Рис. 1. Концентраційні залежності параметра анізотропії рухливості $K = f(n_e)$ (1) і параметра анізотропії термоЕРС захоплення електронів фононами $M = f(n_e)$ (2) в монокристалах n-Ge при T = 83 K.

Так, параметр анізотропії рухливості K з підвищенням концентрації від $9.8 \cdot 10^{11}$ до $1.7 \cdot 10^{15}$ см⁻³ (тобто, приблизно у 2000 разів) постійно знижується від 16.2 до 11.4 (в 1.42 раза), тоді

як параметр анізотропії термоЕРС захоплення електронів фононами M знижується лише у ~ 1.088 раза (фактично, зміна M в *n*-Ge становить всього лише близько 9 %), що ілюструє рис. 1.

Можна вважати, що в межах точності проведених дослідів параметр М практично залишається незмінним і рівним $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi} \cong 11.7 \pm 0.3$ за температури T = 83 K, за якої виконувалося вимірювання. Таким чином, на відміну від параметра анізотропії рухливості *K*, який формується комбінацією механізмів розсіяння електронів на коливаннях кристалічної гратки і на домішкових центрах, фононна частина термоЕРС (точніше її анізотропія, тобто, відношення $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$) практично не залежить від концентрації $n_e \equiv N_d$ (у всякому випадку, в досліджених межах $9.8 \cdot 10^{11} \div 1.7 \cdot 10^{15}$ см⁻³) і повністю визначається коливаннями атомів у вузлах кристалічної гратки.

У слабко легованих кристалах, коли розсіяння на коливаннях кристалічної гратки є практично домінуючим, а відношення ρ_X / ρ_0 , у всякому випадку в межах концентрацій $10^{12} \le n_e \equiv N_d \le 10^{14}$ см⁻³, відчутного домішкового впливу ще не зазнає [10, 19], цікаво було зіставити значення *K*, одержані у разі деформування кристала в різних кристалографічних напрямках.

З цією метою для визначення параметра анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ було використано не тільки співвідношення (1) при значеннях $\langle i j k \rangle \rightarrow \langle 111 \rangle$, але також і співвідношення

$$K = 3 \cdot \frac{\rho_{\infty}^{\langle 111 \rangle}}{\rho_{\infty}^{\langle 110 \rangle}} - 2 , \qquad (5)$$

яке пов'язане з необхідністю вимірювання питомого опору ρ у двох кристалографічних напрямках зразків *n*-*Ge*. Причому $\rho_{\infty}^{(111)} = \lim_{X \to \infty} \rho(X)$ і $\rho_{\infty}^{(110)} = \lim_{X \to \infty} \rho(X)$ – значення питомого опору за одновісної пружної деформації *X*, яка забезпечує повне переселення носіїв струму в мінімуми енергії, розташовані в напрямку осі деформації (<111> чи <110>).

Для постановки експерименту було використано дві серії зразків *n*-Ge (по чотири зразки в кожній) з концентраціями носіїв заряду $1.5 \cdot 10^{13}$ і $9.5 \cdot 10^{13}$ см⁻³ відповідно. Два зразки з кожної серії вирізалися у кристалографічному напрямку [111], а інші два – в напрямку [110]. Зміни тензоопору кристалів *n*-Ge вимірювалися за температури 77.4 К. Результати проведених дослідів зведено в табл. 2.

<u>Таблиця 2</u>

Результати обробки дослідних даних по тензоопору, одержаних за $T = 77.4 \ K$ на зразках п-Ge різного рівня легування за умов $\vec{X} \parallel \vec{J} \parallel [111]$ та $\vec{X} \parallel \vec{J} \parallel [110]$

№ серії	$n_{e}, {\rm CM}^{-3}$	$ ho_{\scriptscriptstyle \infty}^{[111]}/ ho_{\scriptscriptstyle 0}$	$ ho_{_{\infty}}^{[111]}/ ho_{_{\infty}}^{[110]}$	$K = \mu_{\perp} / \mu_{\parallel},$ знайдене за формулою (1)	$K = \mu_{\perp} / \mu_{\parallel},$ знайдене за формулою (5)
1	$1.5 \cdot 10^{13}$	10.93	6.0	15.9	16.0
2	$9.5 \cdot 10^{13}$	10.26	5.66	14.98	15.0

Встановлено, що числові значення параметра анізотропії рухливості *K*, знайдені як шляхом використання співвідношення (1), так і при застосуванні формули (5), співпадають між собою. А це, в свою чергу, означає, що при деформуванні *n-Ge* в кристалографічних напрямках [111] та [110] ізоенергетичні еліпсоїди зазнають лише зміщень на шкалі енергій, залишаючись при цьому практично недеформованими (у вигляді еліпсоїдів обертання).

Окрім цього, як видно з проведених дослідів, тотожність значень параметра анізотропії рухливості *К* зберігається не тільки за різних шляхів отримання (тобто, з використанням різних формул), але це твердження залишається в силі і з переходом від однієї до іншої (більш високої) концентрації носіїв заряду (див. табл. 2).

На монокристалах *n-Si* зроблено експериментальне дослідження параметрів анізотропії термоЕРС захоплення M і параметра анізотропії рухливості K за T = 83 K і $1.9 \cdot 10^{13} \le n_e \le 2.6 \cdot 10^{16}$ см⁻³ (характеристики зразків наведено в табл. 3.)

<u>Таблиця 3</u>

№ зразка	n_e , CM ⁻³	$\mu_{H_{77\mathrm{K}}}$, cm²/B·c	Р _{300К} , Ом∙см	α [°] , мкВ/К	$\alpha_{\parallel}^{\phi}$, мкВ/К	$lpha_{ot}^{\phi},$ мкВ/К
1	$1.9 \cdot 10^{13}$	19250	230	1227	30770	4650
2	$1.29\cdot 10^{14}$	18700	27.7	1063	27440	4530
3	$6.55 \cdot 10^{14}$	14550	4.16	923	20180	3500
4	$2 \cdot 10^{15}$	9290	0.9	827	17670	3350
5	$6.21 \cdot 10^{15}$	6370	0.245	729	15530	3530
6	$2.60 \cdot 10^{16}$	1790	0.054	606	7640	2350

Характеристики досліджуваних зразків n-Si за температури T = 83~K за умов $\vec{X} // \nabla T // [001]$ та $X \ge 0.6~\Gamma \Pi a$

Виконуючи виміри тензоопору $\rho_X = f(X)$ і тензотермоЕРС $\alpha_X = \phi(X)$ на кристалах *n-Si* в умовах $\vec{X} // \vec{J} // [001]$ і $\vec{X} // \nabla T // [001]$ (типовий вигляд цих даних представлено для одного із досліджуваних зразків кремнію на рис. 2), а також віднімаючи від α_0 і α_∞ дифузійну складову α^e (яка практично не залежить від X), із виразу (4) для кожного зі зразків знаходимо параметр M.

Значення параметра *К* одержимо із експериментальних даних по тензоопору та виразу (1) для *n-Si*.

Концентраційні залежності параметра анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ і параметра анізотропії термоЕРС захоплення електронів фононами $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ для монокристалів *n-Si* за T = 83 К наведено на рис. 3.

Зазначимо, що оскільки термоЕРС захоплення пропорційна довжині вільного пробігу довгохвильових фононів (l^{ϕ}) [20], то спостережуване в дослідах зниження $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ (пов'язане з більш ефективним зменшенням $\alpha_{\parallel}^{\phi}$, ніж α_{\perp}^{ϕ} зі зростанням $n_e \equiv N_d$) є наслідком "зарізання" l^{ϕ} зростаючою ефективністю розсіювання фононів на домішкових атомах.

Рис. 3. Концентраційні залежності параметра анізотропії рухливості $K = f(n_e)$ (1) і параметра анізотропії термоЕРС захоплення електронів фононами $M = f(n_e)$ (2) в монокристалах n-Si при T = 83 K.

Зниження параметра анізотропії рухливості $K = \frac{\mu_{\perp}}{\mu_{\parallel}} = \frac{K_m}{K_r} = \frac{m_{\parallel}}{m_{\perp}} \frac{\langle \tau_{\perp} \rangle}{\langle \tau_{\parallel} \rangle}$ у багатодолинних

напівпровідниках зі зростанням внеску домішкового розсіювання пов'язано з підвищенням анізотропії розсіювання, оскільки домішкове розсіювання в таких напівпровідниках, як кремній і германій, досить анізотропне. Саме це і призводить до зниження значень тензоопору $\rho_{X\to\infty}^{[001]}$ (у випадку *n-Si* (рис. 3)) та значень $\rho_{X\to\infty}^{[111]}$ (у випадку *n-Ge* (рис. 1)) з підвищенням рівня легування кристалів кремнію і германію і до монотонного спаду (в обох випадках) параметра *K* зі зростанням концентрації носіїв заряду n_e . Слід зауважити, що умови розсіяння в кристалах визначаються кількома основними факторами: концентрацією розсіювачів, їх структурою та розміщенням у кристалічній гратці.

Зіставлення даних для зразків n-Ge та n-Si, показаних на рис. 1 і рис. 3, вказує на значно вищі (за абсолютною величиною) значення M і K, якими характеризуються монокристали n-Ge

у порівнянні з відповідними значеннями для *n-Si*. Це пов'язано, в першу чергу, з більш високою анізотропією ефективної маси носіїв заряду в *n-Ge*, ніж в *n-Si* ($\frac{m_{\parallel}}{m_{\perp}} = \frac{1.58}{0.082} \cong 19.3$ – в *n-Ge* і

 $\frac{0.91}{0.191} \cong 4.75 - в n-Si$), що спричиняє появу істотно різних умов розсіювання в кристалах n-Ge та

в *n-Si*, а також із суттєвою відмінністю розміщення ізоенергетичних еліпсоїдів по відношенню до осей кристала у германії та кремнії.

Висновки

- 1. Наведено формули (1), (4) і (5), зручні для обробки експериментальних даних, одержуваних при вимірюванні змін питомого опору і термоелектрорушійної сили в направлено пружно деформованих монокристалах *n*-*Ge* і *n*-*Si* відомої кристалографічної орієнтації.
- 2.У широкому інтервалі концентрацій носіїв заряду n_e ($10^{12} \div 3 \cdot 10^{16}$ см⁻³) у монокристалах *n-Ge* і *n-Si* досліджено за температури T = 83 К параметр анізотропії рухливості $K = \mu_{\perp} / \mu_{\parallel}$ і параметр анізотропії термоЕРС захоплення електронів фононами $M = \alpha_{\parallel}^{\phi} / \alpha_{\perp}^{\phi}$ на зразках відомої кристалографічної орієнтації. Одержано зміни досліджуваних параметрів K і M з підвищенням ступеня легування кристалів германію і кремнію домішкою донорного типу. Показано, що параметр M в *n-Ge* (на відміну від *n-Si*) є малочутливим до наявності домішок у кристалах, однак параметр K монотонно знижується як в *n-Ge*, так і в *n-Si* зі зростанням концентрації носіїв заряду n_e .
- 3. Встановлено, що монокристали *n-Ge* характеризуються значно вищими (за абсолютною величиною) значеннями параметрів анізотропії *M* і *K*, у порівнянні з відповідними значеннями для *n-Si*.

Література

- Баранский П. И. Теория термоэлектрических и термомагнитных явлений в анизотропных полупроводниках. – / П.И. Баранський, И.С. Буда, И.В. Даховский // Киев: Наук. думка, 1987. – 272 с.
- 2. Проблеми діагностики реальних напівпровідникових кристалів. П.І. Баранський, О.Є. Бєляєв, Г.П. Гайдар [і.інш.] // Київ: Наук. думка, 2014. 462 с.
- 3. Gaidar G. P., Baranskii P. I. Thermoelectric properties of transmutation doped silicon crystals // Physica B: Condensed Matter. 2014. V. 441. P. 80–88.
- 4. Баранський П. І. Деякі термоелектричні особливості звичайних і трансмутаційно легованих кристалів кремнію / П.І. Баранський, Г.П. Гайдар // Термоелектрика. 2012. № 1. С. 5–12.
- 5. Баранський П. І. Неоднорідності напівпровідників і актуальні задачі міждефектної взаємодії в радіаційній фізиці і нанотехнології. / П.І. Баранський, А.В. Федосов, Г.П. Гайдар // Київ-Луцьк, Ред. видав. відділ ЛДТУ, 2007. – 316 с.
- 6. Электрические и гальваномагнитные явления в анизотропных полупроводниках. / П.И. Баранский, И.С. Буда, И.В. Даховский [и др.] // К.: Наук. думка, 1977. 270 с.
- 7. Laff R. A., Fan H. Y. Magnetoresistance in *n*-Type Germanium at Low Temperatures // Phys. Rev. 1958. V. 112, No 2. P. 317–321.

- 8.Herring C., Vogt E. Transport and Deformation-Potential Theory for Many Valley Semiconductors with Anisotropic Scattering // Phys. Rev. 1956. V. 101, No 3. P. 944–961.
- 9. Даховский И. В. Анизотропное рассеяние электронов в германии и кремнии / И.В. Даховский ФТТ. 1963. Т. 5, № 8. С. 2332–2338.
- Баранский П. И. Температурная зависимость анизотропии термоЭДС увлечения в одноосно деформированном *n-Si* / П.И. Баранский, В.В. Савяк, Ю.В., Симоненко // ФТП. – 1984. – Т. 18, № 6. – С. 1059–1063.
- 11. Бабич В. М. Концентрационная зависимость параметра анизотропии *К* в *n*-германии / В.М. Бабич, П.И. Баранский // ФТП. 1967. Т. 1, № 7. С. 1029–1032.
- Баранский П. И. Концентрационная зависимость параметра анизотропии термоЭДС увлечения в *n-Si* / П.И. Баранский, С.Л. Королюк, П.Г. Остафийчук // ФТП. 1984. Т. 18, № 11. С. 2053–2056.
- Herring C., Geballe T. H., Kunzler J. E. Analysis of Phonon-Drag Thermomagnetic Effects in *n*-Type Germanium // Bell System Tech. J. – 1959. – V. 38, No 3. – P. 657–747.
- 14. Исследование анизотропии эффекта увлечения электронов фононами в *n-Ge* / П.И. Баранский, И.С. Буда, В.В. Коломоец [и. др.] // ФТП. 1974. Т. 8, № 11. С. 2159–2163.
- Определение параметра анизотропии термо ЭДС увлечения в *n-Ge* / И.С. Буда,
 В.В. Коломоец, Б.А. Сусь [и. др.] // УФЖ. 1977. Т. 22, № 8. С. 1375–1378.
- 16. Самойлович А. Г. Влияние упругих деформаций на термо ЭДС в *n-Ge* в области эффекта увлечения /А.Г. Самойлович, И.С. Буда // ФТП. 1969. Т. 3, № 3. С. 400–408.
- Баранський П. І. Фізичні властивості кристалів кремнію та германію в полях ефективного зовнішнього впливу. / П.І. Баранський, А.В. Федосов, Г.П. Гайдар // Луцьк: Надстир'я, 2000. – 279 с.
- 18. Баранський П. І. Анізотропія термоЕРС захоплення електронів фононами в *n-Ge* / П.І. Баранський, Г.П. Гайдар // Термоелектрика. 2012. № 2. С. 29–38.
- 19. Пьезосопротивление *n*-*Ge* в направлении [111] в условиях смешанного рассеяния / П.И Баранский, И.С. Буда, И.В. Даховский [и. др.] // ФТП. 1974. Т. 8, № 5. С. 984–986.
- 20. Стильбанс Л. С. Физика полупроводников./ Л.С. Стильбанс // М.: Советское радио, 1967. 452 с.

Надійшла до редакції 22.11.2014