УДК 537.32; 538.93

Ромака В.А.^{1,2}, Рогль П.³, Ромака Л.П.⁴, Стадник Ю.В.⁴, Качаровський Д.⁵, Крайовський В.Я.², Лах О.І.⁶

¹Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України, вул. Наукова, 3-б, Львів, 79060, Україна; ²Національний університет "Львівська політехніка", вул. С. Бандери, 12, Львів, 79013, Україна; ³Віденський університет, вул. Верингерштрасе, 42, Відень, А-1090, Австрія; ⁴Львівський національний університет ім. І. Франка, вул. Кирила і Мефодія, 6,

Львів, 79005, Україна;

⁵Інститут низьких температур і структурних досліджень ім. В. Тшебетовського Польської Академії наук, вул. Окольна, 2, Вроцлав, 50-422, Польща; ⁶ПАТ НВО "Термоприлад", вул. Наукова, 3, Львів, 79060, Україна

ДОСЛІДЖЕННЯ СТРУКТУРНИХ, ЕНЕРГЕТИЧНИХ ТА КІНЕТИЧНИХ ХАРАКТЕРИСТИК ТЕРМОЕЛЕКТРИЧНОГО МАТЕРІАЛУ $Hf_{1-x}Y_xNiSn$

Досліджено кристалічну та електронну структури, температурні і концентраційні залежності питомого опору, коефіцієнта термо-ерс та магнітної сприйнятливості термоелектричного матеріалу $Hf_{1-x}Y_xNiSn \ y \ dianasoni: T = 80 \div 400 \ K \ K, \ x = 0.01 \div 0.30.$ Виявлено механізми генерування структурних дефектів акцепторної природи, які змінюють ступінь компенсації матеріалу і визначають механізми провідності. Ключові слова: електронна структура, електроопір, коефіцієнт термоЕРС.

The crystal and electronic structures, temperature and concentration dependencies of resistivity, the Seebeck coefficient and magnetic susceptibility of the $Hf_{I-x}Y_xNiSn$ thermoelectric material were studied in the ranges $T = 80 \div 400 \text{ K}$ K, $x = 0.01 \div 0.30$. The mechanism of simultaneous generation of defects of acceptor nature was established. They change the compensation ratio of material and determine the mechanism of conduction.

Keywords: electronic structure, resistivity, Seebeck coefficient.

Вступ

У процесі оптимізації характеристик термоелектричного матеріалу $Hf_{1-x}Lu_xNiSn$, отриманого шляхом легування інтерметалічного напівпровідника *n*-*HfNiSn* атомами рідкісноземельного металу *Lu* [1], що зумовлюэ високу ефективність перетворення теплової енергії в електричну [2], було виявлено невідтворюваність характеристик матеріалу за високих температур ($T \le 1000$ K). Було встановлено, що у кристалі в процесі легування прогнозовано генеруються структурні дефекти акцепторної природи при заміщенні атомів *Hf* ($5d^26s^2$) атомами *Lu* ($5d^16s^2$) (атом *Lu* володіє на один 5*d*-електрон менше, ніж *Hf*), а також неконтрольовано генеруються вакансії у позиції атомів *Sn* (4*b*). Саме неконтрольоване генерування структурних дефектів (вакансій) *Sn* окрім того, що перозподіляє електронну густину, є причиною невідтворюваності характеристик *Hf*_{1-x}*Lu_xNiSn*, оскільки за температур $T \le 1000$ K

вакансії є остовами локалізації неконтрольованих дефектів. Припускалося, що однією з причин генерування вакансій є деформація елементаної комірки $Hf_{1-x}Lu_xNiSn$, спричинена різницею атомних радіусів $Hf(r_{Hf} = 0.158 \text{ нм})$ та $Lu(r_{Lu} = 0.173 \text{ нм})$.

З іншого боку, при дослідженні термоелектричного матеріалу $Zr_{1-x}Y_xNiSn$ [3], отриманого шляхом легування атомами Y інтерметалічного напівпровідника *n-ZrNiSn*, характеристики якого є близькими до *n-HfNiSn*, не виявлено механізму неконтрольованого генерування вакансій у позиції атомів Sn (4b). І це при тому, що різниця атомних радіусів Zr ($r_{Zr} = 0.1602$ нм) та Y ($r_Y = 0.180$ нм) є більшою, ніж у випадку атомів Hf та Lu, що спричиняє ще більшу деформацію кристалічної структури $Zr_{1-x}Y_xNiSn$. А це означає, що не деформація кристалічної структури $Hf_{1-x}Lu_xNiSn$ є причиною генерування вакансій. Дане питання вимагає додаткових досліджень.

Виходячи з результатів [3], виникла ідея отримати термоелектричний матеріал зі стабільними та відтворюваними характеристиками шляхом легування інтерметалічного напівпровідника *n*-*HfNiSn* атомами *Y*. Тобто, як і у випадку $Zr_{1-x}Y_xNiSn$ [3], можна очікувати, що у кристалі $Hf_{1-x}Y_xNiSn$ також будуть генеруватися лише структурні дефекти акцепторної природи при заміщенні атомів *Hf* атомами *Y* ($4d^{1}5s^{2}$) (атом *Y* володіє на один 5*d*-електрон менше, ніж атом *Hf*). *Метою* роботи є вивчення механізмів провідності *n*-*HfNiSn*, легованого *Y*, що зробить можливим прогнозувати поведінку кінетичних характеристик $Hf_{1-x}Y_xNiSn$ і дослідити умови отримання термостійкого матеріалу з високою ефективністю перетворення теплової енергії в електричну [1, 4].

Методики досліджень

Досліджувалася кристалічна структура, розподіл густини електронних станів (DOS), магнітні, електрокінетичні та енергетичні характеристики $Hf_{1-x}Y_xNiSn$. Зразки синтезовано у лабораторії Інституту фізичної хімії Віденського університету. Методом рентгеноструктурного аналізу (метод порошку) отримані масиви даних (дифрактометр Guinier-Huber image plate system, $CuKa_1$), а за допомогою програми Fullprof [5] розраховано структурні характеристики. Хімічний та фазовий склади зразків контролювалися за допомогою мікрозондового аналізатора (ЕРМА, energy-dispersive X-ray analyzer). Розрахунки електронної структури здійснювались методами Корінги-Кона-Ростокера (ККR) у наближенні когерентного потенціалу (СРА) і локальної густини (LDA) [6] з використанням обмінно-кореляційного потенціалу Moruzzi-Janak-Williams [7]. Точність розрахунку положення рівня Фермі ε_F становить ±8 меВ. Вимірювалися температурні і концентраційні залежності питомого електроопору (ρ), коефіцієнта термоЕРС (α) у відношенні до міді та магнітної сприйнятливості (χ) (метод Фарадея) зразків $Hf_{1-x}Y_xNiSn$ у діапазонах: T = 80÷400 K, $N_D^{\gamma} \approx 1.9 \cdot 10^{20}$ см⁻³ (x = 0.01) ÷ 5.7 · 10²¹ см⁻³ (x = 0.30) і напруженості магнітного поля $H \le 10$ кЕ.

Дослідження структурних особливостей *Hf*_{1-x}Y_xNiSn

Мікрозондовий аналіз концентрації атомів на поверхні зразків $Hf_{1-x}Y_xNiSn$ показав їх відповідність вихідним складам шихти, що є одним з експериментальних доказів прогнозованого заміщення атомів Hf на Y. У свою чергу, рентгенівські фазовий та структурний аналізи показали, що усі зразки $Hf_{1-x}Y_xNiSn$ включно до складу x = 0.30 не містять слідів інших фаз. Як і очікувалося, заміщення атомів меншого розміру Hf більшими атомами Y призводить до збільшення значень періоду елементарної a(x) комірки $Hf_{1-x}Y_xNiSn$ (рис. 1). Той факт, що значення a(x) в інтервалі концентрацій $Hf_{1-x}Y_xNiSn$, $x = 0 \div 0.30$ практично співпадають з розрахованими вказує на реалізацію твердого розчину заміщення. Відхилення значень періоду елементарної a(x) від лінійної залежності за x > 0.30 фіксує межу існування твердого розчину $Hf_{1-x}Y_xNiSn$. Зразки $Hf_{1-x}Y_xNiSn$ за x > 0.30 двофазні.

Дослідження також підтвердили результат [8] стосовно невпорядкованості кристалічної структури базового напівпровідника *n*-*HfNiSn*, суть якої полягає у частковому, до ~1%, зайнятті атомами Ni ($3d^84s^2$) кристалографічної позиції 4a атомів *Hf* (атом Ni володіє більшими числом *d*-електронів, ніж атом *Hf*), що власне і породжує структурні дефекти донорної природи («апріорне» легування донорами [4]), а електрони є основними носіями електрики.

Рис. 1. Зміна значень періоду елементарної комірки a(x) $Hf_{1-x}Y_xNiSn:$ 1 — розрахунок; 2 — експеримент.

Уточнення кристалічної структури $Hf_{1,x}Y_xNiSn$ методом порошку з одночасним уточненням ізотропних параметрів атомного заміщення та зайнятості кристалографічної позиції Hf(4a) показало, що найменше значення коефіцієнта невідповідності моделі кристалічної структури та масиву брегівських відбить ($R_{Br} = 2.8\%$) отримано для моделі, в якій зайнятість позиції атомів Hf(Y) становить 100% для $x \ge 0.01$. Іншими словами, уведені у структуру атоми Y упорядковують кристалічну структуру $Hf_{1,x}Y_xNiSn$ («заліковують» структурні дефекти) шляхом витіснення атомів Ni з позиції атомів Hf(4a). У свою чергу, упорядкування кристалічної структури $Hf_{1,x}Y_xNiSn$ робить її стійкою до температурних та часових змін, що створює передумови для отримання матеріалу зі стабільними та відтворюваними характеристиками.

Процес упорядкування кристалічної структури $Hf_{1-x}Y_xNiSn$, окрім структурних особливостей, вносить суттєвий вклад у перерозподіл густини електронних станів. Так, якщо у вихідній сполуці HfNiSn існують структурні дефекти донорної природи як результат витіснення до ~1% атомів Hf атомами Ni [8], то процес легування напівпровідника атомами Y та упорядкування кристалічної структури супроводжується, з одного боку, зменшенням числа донорів, оскільки атоми Ni покидають позицію атомів Hf. З іншого боку, оскільки атом Y володіє на один 5*d*-електрон менше, ніж атом Hf, то у кристалі генеруються структурні дефекти акцепторної природи.

Таким чином, у $Hf_{1-x}Y_xNiSn$ на ділянці концентрацій $x = 0\div 0.01$ одночасно відбувається зменшення числа донорів (атоми Ni покидають позицію 4a атомів Hf) та збільшенням числа акцепторів (атоми Y займають позицію атомів Hf). У такому разі легування напівпровідника n-HfNiSn електронного типу провідності найменшими концентраціями акцепторної домішки очікувано буде супроводжуватися збільшенням ступеня компенсації напівпровідника (співвідношення числа донорів та акцепторів) [4]. За конценрацій x > 0.01, коли атоми Ni покинуть позицюї 4*a* атомів *Hf*, у кристалі наростає концентрація акцепторів, зміниться тип основних носіїв струму і ступінь компенсації буде зменшуватися.

Дослідження електронної структури *Hf_{1-x}Y_xNiSn*

Для прогнозування поведінки рівня Фермі ε_F , ширини забороненої зони ε_g та кінетичних характеристик *n*-*HfNiSn*, легованого атомами *Y*, зроблено розрахунок густини електронних станів (DOS) *Hf*_{1-x}*Y_xNiSn*, $0 \le x \le 0.10$ (рис. 2*a*). Беручи до уваги результати структурних досліджень, що уведення у сполуку *HfNiSn* атомів *Y* упорядковує її кристалічну структуру, розрахунок DOS здійснено для випадку упорядкованого варіанту структури *Hf*_{1-x}*Y_xNiSn*. Як можемо бачити з рис. 2*a*, з уведенням в *n*-*HfNiSn* найменш досяжних в експерименті концентрацій акцепторної домішки *Y* рівень Фермі ε_F (пунктирна лінія на рис. 2*a*) починає дрейфувати від зони провідності ε_c , на відстані ~81.3 меВ від якої він розташовувався [8], до середини забороненої зони ε_g (заштрихована ділянка на рис. 2*a*), а далі і до валентної зони ε_F , яку перетне при певних концентраціях *Y*.

З перетином рівнем Фермі ε_F середини забороненої зони ($x \approx 0.025$) і подальшому русі у напрямі валентної зони зміниться тип провідності напівпровідника, а основними носіями струму стають дірки. Зазначимо, що, окрім дрейфу рівня Фермі ε_F , викликаного зміною ступеня компенсації напівпровідника, також наявне і зменшення значень ширини забороненої зони ε_g від значень $\varepsilon_g(x=0) = 514.3$ меВ до $\varepsilon_g(x=0.10) = 426.3$ меВ.

Рис. 2. Розрахунок густини електронних станів DOS (а) та густини станів на рівні Фермі $g(\varepsilon_{\rm F})$ (крива 1) і зміна значень магнітної сприйнятливості χ (крива 2) (б) $Hf_{I-x}Y_xNiSn$.

Прогнозована поведінка рівня Фермі ε_F супроводжується цікавою поведінкою густини станів на рівні Фермі $g(\varepsilon_F)$ (рис. 26). Так, легування *n-HfNiSn* акцепторною домішкою *Y* очікувано призводить до зменшення густини станів на рівні Фермі, а мінімум залежності $g(\varepsilon_F)$ відповідає за ($x \approx 0.025$) перетину рівнем Фермі ε_F середини забороненої зони $\varepsilon_g Hf_{1-x}Y_xNiSn$. За концентрацій *Y*, коли рівень Фермі ε_F перетне середину забороненої зони і буде наближатися до валентної зони ε_V , густина станів на рівні Фермі почне прогнозовано наростати.

Наведені результати розрахунків зміни густини станів на рівні Фермі $g(\varepsilon_F)$ узгоджуються з результатами експериментальних вимірювань магнітної сприйнятливості $\chi Hf_{1-x}Y_xNiSn$ (рис. 26, крива 2). Дослідження показали, що зразки $Hf_{1-x}Y_xNiSn$, x > 0.01 є парамагнетиками Паулі, в яких магнітна сприйнятливість визначається винятково електронним газом і є пропорційною густині станів на рівні Фермі. Як можна бачити з рис. 26, залежність $\chi(x)$ за x > 0.03 стрімко змінює нахил і виходить на плато, ями пов'язуємо, як показують розрахунки, саме зі зміною густини станів на рівні Фермі $g(\varepsilon_F)$ за перетину рівнем Фермі валентної зони. Зазначимо, що напівпровідник *n*-*HfNiSn* не є парамагнетиком Паулі, а слабким діамагнетиком, про що свідчать від'ємні значення магнітної сприйнятливості: $\chi(x=0) = -0.082$ см³/г [4]. Тому ніби то ріст залежності $\chi(x)$ на ділянці концентрацій $x = 0 \div 0.01$ ми не можемо приписувати збільшенню густини станів на рівні Фермі.

Розрахунок електронної структури $Hf_{1-x}Y_xNiSn$ робить можливим прогнозувати його характеристики, зокрема коефіцієнта термоЕРС, питомого електроопору тощо. Для розрахунку коефіцієнта термоЕРС α як робочої формули використано співвідношення [9]

$$\alpha = \frac{2\pi^2}{3} \frac{k^2 T}{e} \left(\frac{d}{d\varepsilon} \ln g(\varepsilon_F) \right) ,$$

де $g(\varepsilon_F)$ – густина станів на рівні Фермі. На рис. 3, як приклад, показано зміну значень коефіцієнта термоЕРС a(x) $Hf_{1-x}Y_xNiSn$ за різних температур. Видно, що за різних концентрацій У можна отримати у термоелектричному матеріалі високі додатні і від'ємні значення коефіцієнта термоЕРС та провідності, що є однією із умов отримання високих значень термоелектричної добротності.

Рис. 3. Розрахунок зміни значень коефіцієнта термоЕРС $Hf_{1-x}Y_xNiSn$ за температур: 1 - 80 K; 2 - 160 K; 3 - 250 K; 4 - 380 K.

Таким чином, результати розрахунку густини електронних станів $Hf_{1-x}Y_xNiSn$, виконані на основі результатів структурних досліджень, підтверджують прогнозовану акцепторну природу структурних дефектів. Результати експериментальних досліджень, наведені нижче, покажуть відповідність результатів розрахунків реальним процесам у термоелектричному матеріалі.

Дослідження електрокінетичних та енергетичних характеристик Hf_{1-x}Y_xNiSn

Температурні залежності питомого опору $\ln \rho(1/T)$ та коефіцієнта термоЕРС $\alpha(1/T)$ для $Hf_{1-x}Y_xNiSn$, $x = 0 \div 0.30$ є типовими для напівпровідників (рис. 4) і змінюються у відповідності до результатів розрахунків розподілу густини елктронних станів. Можемо бачити, що у зразках $Hf_{1-x}Y_xNiSn$, $x = 0 \div 0.10$ на залежностях $\ln \rho(1/T)$ наявні високотемпературні активаційні ділянки, що вказує на розташування рівня Фермі ε_F у забороненій зоні, з якого відбувається активація носіїв струму із зони неперервих енергій. Так, від'ємні значення коефіцієнта термоЕРС за x = 0 є зрозумілими і пов'язані з «апріорним легуванням» базового напівпровідника *n*-*Hf*NiSn донорами (позиція атомів *Hf* до ~1% зайнята атомами *Ni*) [8].

У свою чергу, від'ємні значення коефіцієнта термоЕРС для випадку x = 0.01 (рис. 4, 56) засвідчують, що концентрація генерованих дефектів акцепторної природи із заміщенням атомів *Hf* на атоми *Y* є меншою, ніж концентрація дефектів донорної природи, викликана неупорядкованістю структури сполуки *HfNiSn*, а значить рівень Фермі ε_F розташований на домішковій донорній зоні і знаходиться ближче до зони провідності.

Для випадків $Hf_{1-x}Y_xNiSn$, $x = 0.02 \div 0.10$ додатні значення коефіцієнта термоЕРС вказують, що концентрація дефектів акцепторної природи перевищила таку донорної природи, а рівень Фермі ε_F тепер фіксується на генерованій у кристалі домішковій акцепторній зоні у результаті заміщення атомів Hf на Y. Високотемпературна активаційна ділянка на залежностях $\ln \rho(1/T)$ відображає термічний закид дірок з акцепторної зони у валентну зону, що супроводжується збільшенням числа вільних дірок. Натомість металічний хід залежності $\ln \rho(1/T)$ та додатні значення коефіцієнта для $Hf_{1-x}Y_xNiSn$, x = 0.30 засвідчують, що рівень Фермі ε_F перетнув стелю валентної зони, як і прогнозувалося розрахунками електронної структури $Hf_{1-x}Y_xNiSn$: відбувся перехід провідності діелектрик-метал [9]. При цьому треба розуміти, що зразок $Hf_{1-x}Y_xNiSn$, x = 0.30, і надалі залишається напівпровідником, а механізм активаційної провідності у дослідженому діапазоні температур відсутній у силу входження рівня Фермі ε_F у валентну зону.

На перший погляд дещо суперечливою є поведінка залежності $\rho(x)$ на ділянці $x = 0 \div 0.10$ (рис. 5*a*). Так, уведення у сполуку *HfNiSn* найменшої в експерименті концентрації атомів *Y* супроводжується стрімким зменшенням значень питомого електроопору, наприклад, за 160 К, від значень $\rho(x = 0) = 487.2$ мкОм·м до $\rho(x = 0.01) = 121.1$ мкОм·м.

Річ у тім, що концентрація акцепторів, які генеруються у $Hf_{1-x}Y_xNiSn$ за уведення найменшої концентрацій Y (x = 0.01) є занадто великою і ми перестрибуємо проміжок концентрацій, за яких рівень Фермі ε_F рухався би від краю зони провідності до середини забороненої зони, що супроводжувалося би ростом значень електроопору через зменшення густини станів на рівні Фермі $g(\varepsilon_F)$ у напівпровіднику електронного типу провідності при його легуванні акцепторами. Так, за найменшої концентрації акцепторної домішки Y (x = 0.01) значення коефіцієнта термоЕРС стають додатними. Значення коефіцієнта термоЕРС, наприклад, за 160 К, змінюються від $\alpha(x = 0) = -252.5$ мкВК⁻¹ до $\alpha(x = 0.01) = 3.4$ мкВК⁻¹, що

вказує на зростання концентрації дірок за наближенням рівня Фермі ε_F до валентної зони. Тобто, у $Hf_{1-x}Y_xNiSn$, x = 0.01, концентрація акцепторів є достатньою, щоб змінити тип провідності напівпровідника.

Рис. 4. Температурні залежності питомого електроопору та коефіцієнта термоЕРС Hf_{1-x}Y_xNiSn.

У цьому контексті цікаво прослідкувати за характером зміни енергетичних характеристик $Hf_{1,x}Y_xNiSn$, отриманих з експериментальних досліджень (рис. 6), з яких також можна зробити висновок, що уведення домішкових атомів Y у структуру сполуки HfNiSn супроводжується генеруванням структурних дефектів акцепторної природи. Із активаційних ділянок залежностей $\ln \rho(1/T)$ (рис. 4) обчислено значення енергій активації з рівня Фермі ε_F на рівень протікання зони

провідності $\varepsilon_1^{\rho}(x)$, а з активаційних ділянок залежностей $\alpha(1/T)$ (рис. 4) – значення енергій активації $\varepsilon_1^{\alpha}(x)$, що дають значення амплітуди модуляції зон неперервних енергій [4].

Рис. 5. Зміна значень питомого електроопору $\rho(x)$ (a) та коефіцієнта термоЕРС a(x)(б) $Hf_{1-x}Y_xNiSn$ за температур: 1 - 80; 2 - 160; 3 - 250; 4 - 380 K.

Рис. 6. Зміна значень енергій активації $\varepsilon_1^{\rho}(x)$ (1) і $\varepsilon_1^{\alpha}(x)$ (2) $Hf_{l-x}Y_xNiSn$.

Так, з рис. 6 видно, що легування напівпровідника призводить до зменшення значень енергії активації $\varepsilon_1^{\rho}(x)$. Важливо пояснити, що значення енергії $\varepsilon_1^{\rho}(x)$ для *n*-*HfNiSn* відображає енергетичну щілину між положенням рівня Фермі ε_F та краєм зони провідності. У той же час значення енергії активації $\varepsilon_1^{\rho}(x)$ для найменшої концентрації атомів *Y* і усіх подальших відображають енергетичну щілину між положенням ε_F та краєм валентної зони. Із практично лінійного характеру поведінки $\varepsilon_1^{\rho}(x)$ на ділянці концентрацій $x = 0.01 \div 0.10$ можна оцінити швидкість руху рівня Фермі ε_F до краю валентної зони: $\Delta \varepsilon_F / \Delta x \approx 0.9$ меВ/%*Y*.Такий результат є цілком логічним, оскільки ми збільшуємо концентрацію домішки *Y* за лінійним законом, що за таким же законом генерує у кристалі *Hf*_{1-x}*Y_xNiSn* структурні дефекти акцепторної природи.

Цікавою виглядає зміна значень енергії активації $\varepsilon_1^{\alpha}(x)$, яка пропорційна амплітуді модуляції зон неперервних енергій $Hf_{1-x}Y_xNiSn$. З рис. 6 можемо бачити, що у випадку нелегованого напівпровідника *n*-*HfNiSn* амплітуда модуляції становить $\varepsilon_1^{\alpha}(x=0) = 50.9$ меВ, а уведення у напівпровідник електронного типу провідності найменшої в експерименті концентрації домішки *Y* практично не змінює ступінь компенсації напівпровідника, на що вказує значення

амплітуди модуляції $\varepsilon_1^{\alpha}(x=0.01) = 50.6$ меВ. Цей результат був би суперечливим у випадку, коли б не відбулося зміни типу основних носіїв струму. Однак, як показано вище, концентрації $Yx = 0.01 \in$ достатньо, щоб перекомпенсувати напівпровідник, а тому близькість значень $\varepsilon_1^{\alpha}(x=0) = 50.9$ меВ та $\varepsilon_1^{\alpha}(x=0.01) = 50.6$ меВ має випадковий характер.

Додавання у напівпровідник тепер діркового типу провідності $Hf_{1-x}Y_xNiSn$, x = 0.01, акцепторної домішки Y природно зменшує ступінь компенсації, тобто різниця числа іонізованих акцепторів та донорів зросте. Цей ефект має своє відображення зменшенням значень амплітуди модуляції до значень $\varepsilon_1^{\alpha}(x = 0.02) = 25.4$ меВ. Зрозуміло, що подальше легування напівпровідника *p*-типу акцепторною домішкою буде лише зменшувати ступінь компенсації, а значення амплітуди модуляції зон неперервних енергій $\varepsilon_1^{\alpha}(x)$ також будуть зменшуватися (рис. 6).

Висновки

Таким чином, у результаті комплексного дослідження кристалічної та електронної структур, кінетичних та магнітних характеристик інтерметалічного напівпровідника *n*-*HfNiSn*, легованого *Y*, встановлено механізми генерування лише структурних дефектів акцепторної природи, які змінюють ступінь компенсації і визначають механізми електропровідності. Досліджений твердий розчин $Hf_{1-x}Y_xNiSn$ – перспективний термоелектричний матеріал, а упорядкованість кристалічної структурної структури є запорукою стабільності та відтворюваності характеристик.

Робота виконана у рамках грантів НАН і МОН України, № 0113U007687 і № 0114U005464.

Література

- 1. Romaka V.A., Rogl P., Romaka V.V., Kaczorowski D., Stadnyk Yu.V., Korh R.O., Krajovskii V.Ya. and Kovbasyuk T.M. Features of the Band Structure and Conduction Mechanisms of *n*-HfNiSn Semiconductor Heavily Lu-Doped // Semiconductors, Vol. 49, № 3, 2014, P. 290 297.
- 2. Анатычук Л.И. Термоэлементы и термоэлектрические устройства // К.: Наукова думка, 1979, 768 с.
- 3. Ромака В.В., Hlil Е.К., Бовгира О.В., Ромака Л.П., Давидов В.М., Крайовський Р.В. Механізм дефектоутворення у сильнолегованому атомами У *n*-ZrNiSn. І. Дослідження кристалічної та електронної структури // УФЖ, Т. 54, № 11, 2009, С. 1120 1125.
- 4. Ромака В.А., Ромака В.В., Стадник Ю.В. Інтерметалічні напівпровідники: властивості та застосування // Львів, вид.-во Львівської політехніки, 2011, 488 с.
- 5. Roisnel T., Rodriguez-Carvajal J. WinPLOTR: a Windows tool for powder diffraction patterns analysis // Mater. Sci. Forum, Proc. EPDIC7, Vol. 378-381, 2001, P. 118 123.
- 6. Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys // Phys. Rev. B, Vol. 52, 1995, P. 188 – 209.
- 7. Moruzzi V.L., Janak J.F., Williams A.R. Calculated electronic properties of metals // NY, Pergamon Press, 1978, 348 c.
- Romaka V.V., Rogl P., Romaka L., Stadnyk Yu., Grytsiv A., Lakh O., Krayovsky V. Peculiarites of Structural disorder in *Zr*- and *Hf*- Containing Heusler and Half-heusler Stannides // Intermetallics, Vol. 35, 2013, P. 45 – 52.
- 9. Мотт Н., Дэвис Т. Электронные процессы в некристаллических веществах // М.: Мир. 1982, 368 с.

Надійшла до редакції 25.08.2015