В.И. ТИМОШЕНКО, В.П. ГАЛИНСКИЙ

ТОРМОЖЕНИЕ ЛАМИНАРНОГО СВЕРХЗВУКОВОГО ПОТОКА В ПЛОСКОМ КАНАЛЕ ПРИ НАЛИЧИИ ПРОТИВОДАВЛЕНИЯ

Цель работы состоит в выяснении особенностей торможения сверхзвукового потока в каналах разной длины при изменении числа Рейнольдса и относительного давления на выходе из канала. Используется метод установления по времени для решения полной двумерной системы уравнений Навье–Стокса. Получены новые данные по изменению давления и числа Маха вдоль каналов различной длины в зависимости от числа Рейнольдса и величины противодавления. Результаты имеют практическое значение для проектирования газодинамических трактов прямоточных воздушно-реактивных двигателей при полете на больших высотах.

Мета роботи полягає у з'ясуванні особливостей гальмування надзвукового потоку в каналах різної довжини при зміні числа Рейнольдса й відносного тиску на виході з каналу. Використовується метод встановлення за часом для вирішення повної двовимірної системи рівнянь Нав'є-Стокса. Отримано нові данні щодо розподілу тиску і числа Маху уздовж каналів різної довжини в залежності від числа Рейнольдса та величини протитиску. Результати мають практичне значення для проектування газодинамічних трактів прямоточних повітряно-реактивних двигунів при польоті на великих висотах.

The aim of this paper is to elucidate the effect of the Reynolds number and backpressure on the stagnation behavior of a laminar supersonic flow in plane channels of different lengths. The complete two-dimensional system of Navier–Stokes equations is solved by the time relaxation method. New Reynolds number and backpressure dependences of the stagnation behavior of a supersonic flow in channels of different lengths are calculated. The obtained results are of practical importance in the design of gas-dynamic systems of high-altitude ramjet engines.

При проектировании газодинамических трактов прямоточных воздушнореактивных двигателей представляет интерес исследование влияния высоты полета на параметры торможения сверхзвукового потока в воздухозаборниках. С увеличением высоты полета сильно уменьшаются плотность и давление в окружающей воздушной среде, тогда как давление в камере сгорания двигателя изменяется слабо. Это приводит к уменьшению числа Рейнольдса и к увеличению противодавления – относительного давления в выходном сечении воздухозаборника. С целью выяснения характерных особенностей влияния этих параметров на процесс торможения в настоящей работе приводятся результаты исследований течений в плоском канале.

Используется метод установления по времени для решения полной двумерной системы уравнений Навье–Стокса [1], позволяющий рассчитывать течения вязкого газа в плоском канале, как с развитыми областями отрыва потока, так и с учетом противодавления. Система уравнений Навье–Стокса решается по неявной конечно-разностной схеме Бима–Уорминга [2] с расщеплением векторов конвективных потоков по Стегеру [3] и использованием метода Роя [4] для приближенного решения задачи Римана.

Постановка задачи. Рассматривается торможение сверхзвукового потока вязкого газа с числом Маха M_{∞} в плоском канале с учетом формирования начального пограничного слоя на передних кромках стенок канала. Ширина канала выбрана в качестве характерного линейного размера, а безразмерная длина канала равна L. Расчетная область ограничена входным и выходным сечениями канала, нижняя граница расчетной области – нижняя стенка канала, верхняя граница расчетной области – плоскость симметрии канала, т. е. рассматривается течение в нижней половине канала. Вводится правая декартова система координат (x, y), начало которой совпадает с передней кромкой нижней стенки канала, ось x направлена в сторону выходного сечения канала

© В.И. Тимошенко, В.П. Галинский, 2013

Техн. механика. – 2013. – № 2.

вдоль его нижней стенки, а ось y направлена вовнутрь канала по нормали к его нижней стенке.

Рассматриваются течения торможения потока в канале, когда возмущения, возникающие в канале, не распространяются вверх по потоку перед каналом, т. е. течения с выбитым скачком не рассматриваются. Значения параметров набегающего сверхзвукового потока используются в качестве граничных значений во входном сечении канала x = 0.

В выходном сечении канала x = L в области дозвукового течения задается давление P_e , а в области сверхзвукового течения используется условие гладкого вытекания $\partial^2 U / \partial x^2 = 0$, где $U = (\rho, \rho u, \rho v, E)$ – газодинамические комплексы; ρ – плотность; u и v – продольная и поперечная компоненты вектора скорости, соответственно; E – полная энергия в единице объема. Это же условие используется в выходном сечении канала x = L и в области дозвукового течения (в пограничном слое) при расчете без противодавления.

На нижней теплоизолированной границе расчетной области при *y*=0 (нижняя стенка канала) задаются условия прилипания потока

$$u = 0; \quad y = 0; \quad \partial T / \partial y = 0,$$

где Т – температура.

На верхней границе расчетной области при y=0,5 (плоскость симметрии канала) задаются условия симметрии

$$v = 0; \quad \partial u / \partial y = 0; \quad \partial \rho / \partial y = 0; \quad \partial P / \partial y = 0.$$

Начальное распределение газодинамических параметров в поле потока задается следующим образом:

 – параметры в ламинарном пограничном слое в области, прилегающей к стенке канала;

 – параметры набегающего сверхзвукового потока в области между пограничным слоем и плоскостью симметрии канала.

Течение в канале с противодавлением будем идентифицировать с помощью коэффициента дросселирования

$$k_P = P_e / P_n \tag{1}$$

где P_e – давление в выходном сечении канала; P_n – давление в выходном сечении канала при условии гладкого вытекания (без противодавления).

Для заданного коэффициента дросселирования k_P давление P_e в выходном сечении канала находится из (1) по давлению P_n , которое зависит от длины канала L и числа Рейнольдса Re.

Торможение сверхзвукового потока газа в плоском канале. Рассмотрим торможение ламинарного сверхзвукового потока при $M_{\infty} = 2$ и числе Рейнольдса Re = 10³ в плоском канале длиной L = 5. Эти значения параметров M_{∞} , Re и L выбраны для сравнения результатов расчетов с [5].

Для проведения расчетов внутри канала вводится равномерная расчетная сетка вдоль осей x и y, содержащая по 100 ячеек в каждом направлении. При расчете течения без противодавления на выходе из канала устанавлива-

ется безразмерное давление $P_n = P_e/P_0 \approx 0,30$. Результаты расчетов торможения ламинарного сверхзвукового потока газа при Re=10³ и коэффициенте дросселирования $k_P = 1,43$ ($P_e/P_0 = 0,43$) приведены на рис. 1 в виде распределенных вдоль канала относительного статического давления (а) при y = 0,01 и 0,5 (линии 1 и 2) и числа Маха (б) при y = 0,11; 0,2 и 0,5 (линии 1, 2 и 3), которые сравниваются с результатами [5].

Сплошными линиями нанесены результаты настоящего расчета, а штрихпунктиром – результаты [5]. Полученные результаты расчетов хорошо согласуются как качественно, так и количественно с результатами работы [5].

Характерные особенности процесса торможения сверхзвукового потока в плоском канале при заданном числе Маха M_{∞} зависят от числа Рейнольдса Re, длины канала L и коэффициента дросселирования k_P .

Для числа Маха $M_{\infty} = 2$ и числа Рейнольдса $\text{Re} = 10^4$ были проведены расчеты течений в каналах длиной L = 5, 10 и 20 для значений коэффициента дросселирования $k_P = 1,0$ 1,2 и 1,4. При проведении расчетов внутри канала вводилась равномерная расчетная сетка вдоль оси x с шагом разбиения $\Delta x = 0,05$. Расчетная сетка по y сгущалась вблизи стенок канала, при этом размер расчетной сетки увеличивался от минимального значения $\Delta y = 0,001$ на стенке канала до максимального значения $\Delta y = 0,005$ вблизи плоскости симметрии с отношением шагов k = 1,05 для двух смежных ячеек. Вблизи стенки канала задавалось 10 ячеек, в которых шаг Δy не изменялся и принимальное значение.

В результате расчетов течений без противодавления ($k_P = 1$) в каналах были получены значения безразмерного давления P_n в выходном сечении канала для дозвуковой области вблизи стенки, которые приведены в табл. 1 для Re=10⁴ при различных длинах каналов и в табл. 2 для L = 5 при различных числах Рейнольдса.

Таблица

Давление	Давление <i>P_n</i> для длин канала <i>L</i>				
	5	10	20		
P_n	0,1695	0,1967	0,2386		

Таблица 2

Дав-	Давление <i>P_n</i> для чисел Рейнольдса Re								
ление	1000	2000	3000	4000	5000	6000	8000	10000	
P_n	0,3000	0,2904	0,2608	0,2195	0,2206	0,2186	0,2209	0,1695	

Очевидна немонотонная зависимость P_n от Re, что обусловлено волновой структурой течения в канале, т. к. в зависимости от значений Re, k_P и L в выходное сечение канала могут приходить как волны разрежения, так и волны сжатия.

Влияние числа Рейнольдса и противодавления на торможение потока в канале. Для канала длиной L = 5 было исследовано влияние Re и k_P на характер течения в канале. На рис. 2 приведены распределения числа Маха в плоскости симметрии канала и относительного давления на стенке и в плоскости симметрии канала, полученные для значений Re = 10^3 и 10^4 , $k_P = 1$ и 1,4.

Кривые 1 и 2 на рис. 2,а иллюстрируют распределения числа Маха при $Re = 10^3$ и $Re = 10^4$, сплошные и штрих-пунктир относятся к $k_p = 1$ и $k_p = 1,4$. На рис. 2,6 кривые 1 и 2 – распределения давления в плоскости симметрии канала и на его стенке (сплошные лини и штрих-пунктир) получены при $Re = 10^3$ и $Re = 10^4$, линии (а) и (б) соответствуют $k_p = 1$ и $k_p = 1,4$. Давление отнесено к давлению торможения набегающего потока.

При значениях параметров $\text{Re}=10^3$ и $k_p=1,4$ на участке канала 2,5 < $x \le 5$ в плоскости симметрии реализуется течение с числом Маха $M \approx 1$. Этот эффект хорошо иллюстрируется рис. 3, на котором приведены линии изомахов, полученные в расчетах для $\text{Re}=10^3$ при $k_p=1$ (a) и $k_p=1,4$ (б).

При $k_P = 1$ невозмущенный сверхзвуковой поток, втекающий в канал, тормозится в системе косых скачков, но при этом остается сверхзвуковым (сплошная линия 1 на рис. 2,а). При $k_P = 1,4$ сверхзвуковое ядро потока, находящееся вблизи плоскости симметрии течения, сначала тормозится в λ образном скачке и становится дозвуковым, затем ускоряется до сверхзвуковых скоростей за счет эжектирующего влияния сверхзвуковых струек тока, прошедших через систему косых скачков уплотнения, и уменьшения эффективной площади поперечного сечения канала, вызванного утолщением пограничного слоя (рис. 3,6). Ближе к выходному сечению течение в канале приближается к трансзвуковому течению (штрих пунктирная линия 1 на рис. 2,а).

Варьируя противодавление, можно поддерживать один и тот же характер течения при изменении числа Рейнольдса. Это иллюстрируется рис. 4, на котором представлены распределения давления в центре и на стенке канала (линии 1 и 2) и числа Маха в центре. Сплошные линии относятся к Re = 1000, $k_P = 1,2$, пунктир – Re = 4000, $k_P = 1,7$. При этих сочетаниях значений числа Рейнольдса и противодавления давления на выходе из канала близки. Близки и распределения сравниваемых параметров.

Из рис. 2 и 4 видно, что давление в выходном сечении практически равно заданному противодавлению не только на стенке канала, где течение дозвуковое, но и его центральной части, в которой течение сверхзвуковое. Такое «выравнивание» давления является следствием того, что возмущения, вызванные повышением давления на выходе из канала, распространяясь вверх по потоку через пристеночную часть пограничного слоя, в которой течение дозвуковое, через механизм вязко-невязкого взаимодействия приводят к изменению давления и в сверхзвуковой части течения.

На рис. 5 приведены распределения давления на стенке канала, полученные при различных значениях k_P и Re для канала длиной L=5.

Рис. 5

Рис. 5, а иллюстрирует влияние противодавления на распределения давления на стенке канала, полученные при различных значениях k_p для Re= 10^4 . Линия 1 (k_p = 1) соответствует течению без противодавления, линии 2 (k_p = 1,2), 3 (k_p = 1,4), 4 (k_p = 1,5) иллюстрируют влияние дросселирования, когда увеличение давления в выходном сечении приводит к повышению давления в канале вплоть до его входного сечения. Полученные распределения давления на стенке канала качественно согласуются с экспериментальными данными [6] для канала прямоугольной формы.

На рис. 5, б приведены распределения давления на стенке канала, полученные для $k_P = 1$ при Re = 1000, 2000, 4000 и 8000 (линии 1, 2, 3, 4, соответственно). С ростом числа Рейнольдса давление на стенке в окрестности входного сечения канала уменьшается, что обусловлено уменьшением толщины пограничного слоя и увеличением сверхзвукового ядра потока. Стабилизация по числу Рейнольдса распределения давления на стенке канала при длине происходит при Re \geq 4000.

Для числа Re=1000 при k_P =1,4 реализуется трансзвуковое течение в основном ядре потока, в результате чего гасятся колебания параметров потока вдоль канала. В то же время для числа Re=10000 основное ядро потока остается сверхзвуковым и с увеличением противодавления растут амплитуды колебаний параметров потока вдоль канала. С увеличением k_P также растет частота колебаний параметров потока вдоль канала. Рост амплитуд колебаний параметров потока происходит до тех пор, пока при некотором k_P сверхзвуковое течение в основном ядре потока не становится трансзвуковым. В силу того, что сверхзвуковое ядро потока растет с увеличением Re, переход на трансзвуковой режим течения в основном ядре потока с ростом числа Re осуществляется при больших противодавлениях k_P .

Влияние длины канала на торможение потока. Для числа Рейнольдса $\text{Re} = 10^4$ было исследовано влияние длины канала L и коэффициента k_P на характер течения в канале. На рис. 6 приведены распределения числа Маха в плоскости симметрии канала и безразмерного давления на стенке и в плоскости симметрии канала, полученные для L = 5 и 10 при $k_P = 1$ (линии 1 и 2) и $k_P = 1,4$ (линии 3 и 4). Штрих-пунктирные линии относятся к распределения м давления вдоль стенки канала.

Видно, что результаты расчетов для каналов длиной L = 5 и L = 10 практически совпадают при $k_P = 1$ (кривые 1 и 2). Небольшие отличия на участке $4,5 \le x \le 5$ связаны с условием гладкого вытекания в выходном сечении кана-

 $4,5 \le x \le 5$ связаны с условием гладкого вытекания в выходном сечении канала длины L = 5. С увеличением противодавления в канале ($k_P = 1,4$) растет амплитуда колебаний давления в сверхзвуковом ядре потока (кривые 3 и 4), расположенном вблизи плоскости симметрии, причем амплитуда этих колебаний не уменьшается вдоль канала.

На рис. 7 приведены поля изомахов в каналах длиной L = 5 и L = 10 для $k_P = 1,4$. При увеличении длины канала реализуется волнообразная структура распределения числа Маха вдоль канала с постепенным торможением потока.

Выводы. Из результатов проведенных исследований следует, что уменьшение числа Рейнольдса и увеличение противодавления на выходе из канала может приводить к качественной перестройке течения в плоском канале относительно небольшой длины. Возможны режимы течения с практически звуковой скоростью в его центральной части. Такие режимы течения могут иметь место как при уменьшении числа Рейнольдса, так и при увеличении противодавления. Управляя противодавлением на выходе из канала, можно сохранять характер течения в канале при изменении числа Рейнольдса.

Работа выполнена в рамках проекта № 06-01-12(У)/12-01090416(Р) НАН Украины и РФФИ.

- 1. Андерсон Д. Вычислительная гидромеханика и теплообмен : В 2-х т. Т. 2 / Д. Андерсон, Дж. Таннехилл, Р. Плетчер. – М. : Мир, 1990. – 392 с.
- Бим Р. М. Неявная факторизованная разностная схема для уравнений Навье–Стокса сжимаемого газа / Р. М. Бим, Р. Ф. Уорминг // Ракетная техн. и космон. – 1978. – Т. 16, № 4. – С. 145 – 156.
- Steger J. L. Flux Vector Splitting of the Inviscid Gas-dynamic Equations with Application to Finite Difference Methods / J. L. Steger, R. F. Warming // Journal of Computational Physics. – 1981. – V. 40, № 2. – P. 263 – 294.
- Roe P. L. Approximate Riemann Schemes / P. L. Roe // Journal of Computational Physics. 1981. V. 43, № 3. – P. 357 – 372.
- 5. Гильманов А. Н. Торможение ламинарного сверхзвукового потока газа в псевдоскачке / А. Н. Гильманов, А. М. Панова // МЖГ. – 1999. – № 3. – С. 164 – 171.
- 6. Гурылева Н. В. Исследование особенностей течений в каналах при взаимодействии возмущений с псевдоскачком / Н. В. Гурылева, М. А. Иванькин, Д. А. Лапинский, В. И. Тимошенко // Ученые записки ЦАГИ. 2012. Т. XLIII, № 6. С. 40 54.

Институт технической механики НАН Украины и ГКА Украины, Днепропетровск Получено 22.06.13, в окончательном варианте 27.06.13