УДК 532.556 DOI: 10.15587/2312-8372.2015.44398

# носко С. В. РЕОЛОГИЧЕСКИЕ СВОЙСТВА И ГИДРОДИНАМИКА НЕСТАБИЛИЗИРОВАНОГО ПОТОКА НЕНЬЮТОНОВСКИХ СРЕД В РАБОЧИХ КАНАЛАХ ФОРМОВОЧНОГО ОБОРУДОВАНИЯ

Рассмотрены вопросы, связанные с реологическим поведением степенных сред в каналах формовочного оборудования. В результате обработки данных реометрических исследований получены значения параметров реологического уравнения и установлена их зависимость от гидромеханических и температурных режимов перерабатываемых сред. Показано, что длина участка гидродинамической стабилизации потока зависит от реологических свойств среды и условий входа в рабочие каналы формовочного оборудования.

**Ключевые слова:** реологические свойства, нестабилизированное течение, каналы переменной геометрии.

### 1. Введение

Одним из наиболее эффективных способов повышения производства вискозных волокон является процесс высокоскоростного формования направленный на повышение производительности оборудования и расширения ассортимента выпускаемой продукции. Данное направление вызывает необходимость в разработке нового и усовершенствовании существующего оборудования [1, 2].

Несмотря на разнообразие конструкций формовочных машин их транспортные магистрали (расплавопроводы) представляют собой каналы с переменной геометрией и включают, необходимые для обеспечения технологического процесса, вспомогательное оборудование вызывающее дополнительные потери давления связанные с дестабилизацией потока.

В связи с этим, для обеспечения рациональных режимов технологического процесса, значительное внимание необходимо уделять реологии формовочной среды и гидродинамическим особенностям нестабилизированного потока в рабочих каналах формовочного оборудования.

# 2. Анализ литературных данных и постановка проблемы

Результаты исследований физико-химических, реологических и теплофизических свойств волокнообразующих материалов приведенные в работах [3, 4] показали, что вискозы начиная с концентрации целлюлозы 0,5–1 %, как и растворы других полимеров, не подчиняются реологическому закону Ньютона. Наличие структурной сетки в вискозах приводит к появлению у них как вязкостных, так и упругих свойств. Такая среда может быть отнесена к вязкоупругим или эластичным жидкостям и в первом приближении ее реологическое поведение обычно представляют моделью Максвелла.

Имеющиеся в литературе [3] данные свидетельствуют о том, что при больших вязкостях растворов вискоз

и высоких скоростях истечения через формующие фильеры проявляется эффект эластичной турбулентности и наблюдается образование спиралевидных скрученных струй на выходе. Данный эффект достаточно полно исследован для процессов экструзионной переработки расплавов полимеров и его необходимо учитывать и при выборе гидродинамических параметров формования вискозных волокон.

В ходе технологического процесса получения и формования вискоз происходит как деформация сдвига, имеющая место при гомогенизации, фильтрации и течении вискоз в рабочих каналах оборудования, так и продольная деформация, выражающаяся при фильерном вытягивании вискозных нитей.

В работах [2, 4, 5] показано, что с увеличением напряжения сдвига происходит разрушение структурной сетки растворов вискоз и их вязкость падает. Это характерно для вязко-пластичных жидкостных структур и в диапазоне скоростей сдвига, соответствующих геометрическим размерам рабочих каналов оборудования, данные среды, с достаточной для практических расчетов точностью могут быть описаны степенным реологическим законом Оствальда де Виля.

Из технологической практики [2, 3] известно, что стабильность формования и качество получаемого волокна во многом определяется не только реологическими свойствами формовочной среды, но и гидродинамическими характеристиками потока в рабочих каналах оборудования.

В связи с этим, необходимо провести краткий анализ современного состояния задачи связанной с построением математических моделей нестабилизированного течения вязких и аномально-вязких сред на гидродинамическом начальном участке каналов формовочных машин.

Теоретические исследования течения вязких и аномально-вязких жидкостей на начальном участке представлены авторами [6–8]. В данных работах получены решения уравнений движения при упрощенных допущениях и дополнительных ограничениях. В уравнениях Навье-Стокса пренебрегают членами, характеризующими силы инерции в потоке, а в качестве начальных условий принимают прямоугольную форму эпюры скоростей на входе в начальный участок. Полученные результаты, в данной постановке, справедливы для отдельных частных случаев течения, а при решении большинства практических задач приводят к существенным количественным расхождениям с экспериментальными данными.

В связи со сложностью построения математических моделей исследуемых течений, многие авторы, при решении данной задачи, обращаются к численному эксперименту, с помощью которого можно определить значения всех искомых переменных (скорость, давление, температура, степень турбулентности) во всей исследуемой области решения.

Работы [9–12] посвящены изучению динамики нестабилизированных течений в формующих каналах неньютоновских жидкостей с учетом неизотермичности и эффекта пристенного скольжения. Авторами разработаны математические модели, вычислительные алгоритмы и программы для расчета изометрических и неизометрических потоков вязкоупругих жидкостей с использованием реологических уравнений. Установлено значение объемного расхода, при котором происходит переход течения с прилипанием к течению с проскальзыванием на стенках канала (срыв потока) и образование застойных хон в угловых областях формующей головки экструдера.

В работе [13, 14] при численном моделировании течений во входном канале формующей головки установлено, что упругие свойства полимерной смеси существенно влияют на форму и размеры вихревых областей, образующихся в угловых зонах формующей головки. Показано, что срыв вихревых потоков в основное течение приводит к неоднородности механических свойств изделий химической технологии. Для устранения вихреобразований в работе [13] предлагается использовать профилирование входного участка формующей головки экструдера. Автор так же отмечает, что, несмотря на практическую важность данной задачи, количество теоретических и экспериментальных данных, позволяющих однозначно определить причины неустойчивости экструдера, до сих пор недостаточно.

Представленные выше работы в основном посвящены исследованию процессов экструзионной переработки полимерных расплавов и резинотехнических смесей. В данных технологических процессах движение вязкоупругих сред, в формующих каналах, происходит при медленном сдвиговом течении или в режиме ползущего течения и силы инерции в потоке не оказывают существенного влияния на гидродинамические характеристики.

## 3. Объект, цель и задачи исследования

Объект исследования — процессы нестабилизированого течения аномально-вязких сред в каналах с переменной геометрией.

*Цель исследования* — экспериментально исследовать влияние реологических свойств жидкости и гидродинамических условий входа в начальный участок канала на дестабилизацию потока.

Для достижения поставленной цели необходимо выполнить такие задачи:

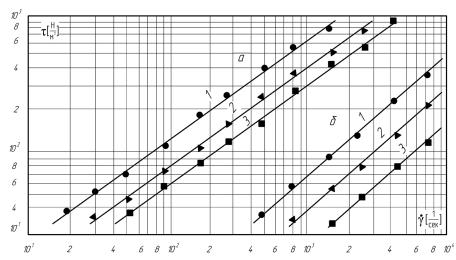
- 1. Исследовать реологические характеристики модельных жидкостей на ротационном вискозиметре в диапазоне скоростей сдвига перекрывающего значения, полученные на экспериментальном стенде.
- 2. Рассчитать параметры аппроксимирующих уравнений для реологических кривых растворов КМЦ различной концентрации. Установить функциональную зависимость эффективной вязкости и констант реологического уравнения от скорости сдвига и температуры.
- 3. Провести экспериментальные исследования течения аномально-вязких сред при различных гидродинамических условиях входа в начальный участок каналов с резко изменяющейся геометрией и сопоставить полученные опытные данные с результатами аналитических решений уравнений движения.

# 4. Результаты исследования реологических свойств и гидродинамики нестабилизированного потока неньютоновских сред в рабочих каналах оборудования

В связи с тем, что экспериментальные исследования на полномасштабной формовочной установке дороги и в большинстве случаев практически не возможны, то опыты по изучению структуры нестабилизированных потоков в каналах переменной геометрии, с использованием методов визуализации, проводились на лабораторном стенде [15].

В качестве модельных жидкостей использовались, водные растворы натриевой соли карбоксиметилцеллюлозы (КМЦ) различной концентрации.

Исследования реологических характеристик модельных жидкостей проводились на ротационном вискозиметре «Реотест-2» с измерительным узлом в виде коаксиальных цилиндров, которые были помещены в систему термостатирования, с внешним термостатом. Данный вискозиметр позволил получить достаточную реологическую информацию в диапазоне скоростей сдвига (от 9 до  $1312\,\mathrm{c}^{-1}$ ) перекрывающего значения, полученные в экспериментальной установке при температурах от  $+20\,\mathrm{go}+120\,\mathrm{°C}$ .


С помощью ЭВМ были вычислены параметры аппроксимирующих уравнений для реологических кривых растворов КМЦ различной концентрации, которые описываются уравнением Оствальда де Виля:

$$\tau = k\dot{\gamma}^n,\tag{1}$$

где  $\tau$  — напряжение сдвига, н/м²;  $\dot{\gamma}$  — скорость сдвига, с $^{-1}$ ; k — константа консистентности; n — индекс течения.

На графиках рис. 1 изображены экспериментально полученные точки, а так же аппроксимирующие их реологические кривые для различных концентраций растворов КМЦ.

В логарифмических координатах зависимости между напряжением сдвига и его скоростью, для всех растворов КМЦ, линейные с коэффициентом корреляции от 0,95 до 0,99, что дает возможность с достаточной точностью определить значение коэффициентов k и n в уравнении (1).



**Рис. 1.** Зависимость напряжений сдвига  $(\tau)$  от скорости сдвига  $(\dot{\gamma})$  для растворов КМЦ в воде различных концентраций: a — концентрация 10 %; b — 3 %; 1 — при температуре 20 °C; 2 — 30 °C; 3 — 40 °C

Из представленных в табл. 1 опытных данных видно, что эффективная вязкость, определяемая в потоке неньютоновской жидкости как  $\mu_{\text{эф.}} = \tau/\dot{\gamma}$  уменьшается с увеличением скорости сдвига при постоянной температуре (что подтверждает их псевдопластичность, как и перерабатываемых сред вискоз).

 $\textbf{Таблица 1} \\ \mbox{Зависимость вязкости от скорости сдвига при 20 °C}$ 

| Концентрация<br>раствора КМЦ, % | Градиент ско-<br>рости, с <sup>-1</sup> | Коэффициент динамической вязкости, Н·с/м² |  |
|---------------------------------|-----------------------------------------|-------------------------------------------|--|
| 3 % водный рас-<br>твор КМЦ     | 5,4                                     | 0,1185                                    |  |
|                                 | 16,2                                    | 0,0789                                    |  |
|                                 | 48,6                                    | 0,0657                                    |  |
|                                 | 145,8                                   | 0,0613                                    |  |
| 10 % водный рас-<br>твор КМЦ    | 1,0                                     | 2,2449                                    |  |
|                                 | 3,0                                     | 1,8173                                    |  |
|                                 | 9,0                                     | 1,3184                                    |  |
|                                 | 48,6                                    | 0,8578                                    |  |
|                                 | 81,0                                    | 0,7443                                    |  |

В пределах исследованного температурного интервала показатель n, характеризующий степень неньютоновского поведения, показатель консистенции k и вязкость при градиентном течении является функцией температуры для определенной концентрации растворов КМЦ (табл. 2).

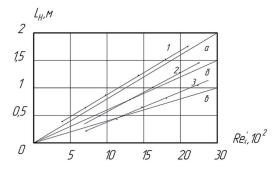
Таблица 2
Зависимость реологических параметров от температуры
при фиксированной скорости сдвига

| Концентрация       | Параметры       | Температура Т, °С |        |        |        |  |
|--------------------|-----------------|-------------------|--------|--------|--------|--|
| раствора<br>КМЦ, % |                 | 20                | 25     | 30     | 40     |  |
| З %-раствор        | μ, Н·с/м²       | 0,0657            | 0,0526 | 0,0479 | 0,0241 |  |
|                    | <i>k,</i> МПа∙с | 68,72             | 40,04  | 18,68  | 7,89   |  |
|                    | П               | 0,967             | 0,914  | 0,882  | 0,820  |  |
| 10 %-раствор       | μ, Н·с/м²       | 0,8578            | 0,6599 | 0,5411 | 0,3827 |  |
|                    | <i>k,</i> МПа∙с | 100,30            | 78,04  | 30,25  | 10,38  |  |
|                    | П               | 0,752             | 0,731  | 0,702  | 0,698  |  |

С учетом зависимости реологических констант от температуры степенное реологическое уравнение (1) в обобщенном виде можно представить в виде:

$$\tau = k(T) \cdot \dot{\gamma}^{n(T)}. \tag{2}$$

Для сопоставления результатов аналитического решения уравнений нестабилизированного течения [16], были проведены экспериментальные исследования течения вязких и аномально-вязких сред при различных условиях входа в гидродинамический начальный участок каналов сложной геометрической конфигурации.


Условия в конце участка гидродинамической стабилиза-

ции  $L_H$  (при  $x = L_H$ ) для неньютоновской жидкости, описывающее эпюру скоростей, характерную для полностью развитого, стабилизированного потока [16]:

$$U_x(C) = \frac{3}{2} U_{x \text{ cp.}} \left[ 1 - \left( \frac{y}{\Pi_{\text{mp.}}} \right)^2 \right],$$
 (3)

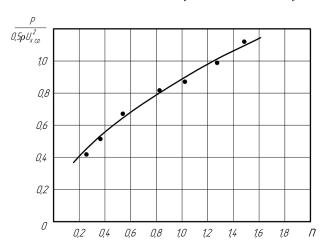
где  $U_x$  — составляющая скорости; x, y — продольная и поперечная координата канала соответственно;  $\mathcal{L}_{\text{пр.}}$  — приведенный диметр канала.

Использую условия (3) на рис. 2 представлено сопоставление аналитических решений [16] и полученных экспериментальных данных для длины гидродинамического начального участка при различных условиях входа.



**Рис. 2.** Зависимость длины гидродинамического начального участка от числа Рейнольдса: 1, 2, 3 — экспериментальные данные; данные [16]: a — m = 4; b — m = 3; b — m = 4

Для ламинарного течения псевдопластичных сред условие в конце участка гидродинамической стабилизации принимает следующий вид:


$$U_x(y) = \frac{n}{n+1} \left( \frac{1}{k \cdot l} \frac{\partial P}{\partial x} \right)^{\frac{1}{n}} \left[ \left( \frac{\mathcal{A}_{\text{iip.}}}{2} \right)^{\frac{n+1}{n}} - y^{\frac{n+1}{n}} \right], \tag{4}$$

где l — длина канала;  $\partial P/\partial x$  — перепад давления для стабилизированного течения.

Выражение для определения потерь на гидродинамическом начальном участке можно представить как потери давления, обусловленные поверхностным трением при стабилизированном течении и дополнительных потерь энергии, связанных со структурой потока, т. е. наличием сил инерции:

$$\left(\frac{\partial P}{\partial x}\right)_{\text{MH.}} = \left(\frac{\partial P}{\partial x}\right)_{\text{CT.}} + \left(\frac{\partial P}{\partial x}\right)_{\text{NOII.}}.$$
 (5)

На рис. З показана зависимость дополнительного параметра характеризующего проявление инерционных сил в потоке от индекса течения полученная опытным путем.



**Рис. 3.** Зависимость дополнительного параметра характеризующего проявление сил инерции в потоке на начальном участке канала после внезапного сужения (коэффициент сужения  $k_0=3$ ) от индекса течения

Представленные в работе результаты реологических исследований могут быть использованы для выбора оптимальных гидромеханических и температурных режимов работы оборудования для высокоскоростного формования вискозных изделий. Полученные опытные данные при течении жидкости в трубопроводах различной геометрической конфигурации позволяют учесть особенности дестабилизированного потока и повысить эффективность технологического процесса формования.

### 5. Обсуждение результатов реологических исследований

На основе результатов проведенных экспериментальных исследований выделены следующие основные отличия в особенностях нестабилизированного течения неньютоновских сред на гидродинамическом начальном участке:

- для сред подчиняющихся степенному реологическому закону, эффект влияния неньютоновского поведения на величину дополнительного параметра характеризующего проявление инерционных сил в потоке (определяемого из соотношения  $\Delta P/0,5$ р $U^2_{x\,\mathrm{cp.}}$ ) выражен довольно резко и может быть принято, с приемлемой для практических расчетов степенью точности, линейной функцией индекса течения в указанном интервале изменения n;
- на основании результатов экспериментальных исследований удалось установить зависимость дли-

ны участка нестабилизированного течения от кинематических характеристик потока в его начальном сечении:

— на основании проведенных экспериментальных исследований можно считать, ранее полученные аналитические зависимости по определению параметров дестабилизированных течений обоснованными и использованными при разработке методики гидродинамического расчета рабочих каналов оборудования химической технологии.

К недостаткам исследований, можно отнести расхождения, полученные при сопоставлении экспериментальных данных с результатами аналитического решения при определении длины гидродинамического начального участка. Данное расхождение 12 %, объяснятся отличием формы эпюр скоростей, на входе полученных в опытах, при помощи профильных вставок и аппроксимированных полиномом в теоретических расчетах.

Настоящая статья является частью работы по созданию методики гидродинамического расчета нестабилизированных течений аномально-вязких сред в каналах переменной геометрии.

Не исследованными полностью являются процессы нестабилизированного течения в формующих каналах реологически сложных жидкостей (вязкоупругих, бингамовских сред) и влияние времени их пребывания в каналах на стабильность свойств получаемых изделий.

### 6. Выводы

- 1. Получены значения параметров реологического уравнения и установлена их зависимость от значения скорости сдвига и температурных режимов перерабатываемой среды.
- 2. Показано, что выбор значения эффективной вязкости перерабатываемого материала и температуры его нагрева влияет на режимные показатели работы оборудования.
- 3. Установлено, что степень дестабилизации потока в каналах с изменяющейся геометрией, зависит от реологических свойств жидкости и гидродинамических условий входа в начальный участок.
- 4. Проведенные реологические исследования позволяют выбрать рабочие значения гидромеханических и температурных показателей перерабатываемой среды, обеспечить рациональные условия работы оборудования, и уменьшить общие энергозатраты при высокоскоростном формовании вискозных волокон.

### Литература

- 1. Янков, В. Процессы переработки волокнообразующих полимеров (методы расчета) [Текст] / В. Янков, В. П. Первадчук, В. И. Боярченко. М.: Химия, 1989.  $320\,$  с.
- **2.** Серков, А. Т. Вискозные волокна [Текст] / А. Т. Серков. М.: Химия, 1981. 296 с.
- Перепелкин, К. Е. Физико-химические основы процессов формования химических волокон [Текст] / К. Е. Перепелкин. — М.: Химия, 1978. — 180 с.
- 4. Зябицкий, А. В. Высокоскоростное формование волокон [Текст] / А. В. Зябицкий, Х. Ковач. М.: Химия, 1989. 480 с.
- Коховская, Т. Н. Исследование вязкости расплавов полимеров [Текст] / Т. Н. Коховская // Колоидная химия. 1996. № 2. С. 188–192.
- **6**. Тарг, С. М. Основные задачи теории ламинарных течений [Текст] / С. М. Тарг. М.: Наука, 1961. 370 с.

- Tachibana, M. Steady Laminar Flow in the Inlet Region of Rectangular Ducts [Text] / M. Tachibana, Y. Iemoto // Bulletin of JSME. — 1981. — Vol. 24, № 193. — P. 1151–1158. doi:10.1299/jsme1958.24.1151
- 8. Торнер, Р. Б. Основные процессы переработки полимеров [Текст] / Р. Б. Торнер. М.: Химия, 1972. 452 с.
- 9. Снигерев, Б. А. Неизотермическое ползущее течение вязкоупругой жидкости при формировании волокон [Текст] / Б. А. Снигерев, Ф. Х. Тазюков // Вестник Удмуртского университета. Серия математика, механика, информатика. — 2010. — Т. 2. — С. 101–108.
- 10. Mackley, M. R. Surface instabilities during the extrusion of linear low density polyethylene [Text] / M. R. Mackleya, R. P. G. Rutgersa, D. G. Gilbertb // Journal of Non-Newtonian Fluid Mechanics. 1998. Vol. 76, № 1-3. P. 281-297. doi:10.1016/s0377-0257(97)00122-5
- Гарифуллин, Ф. А. Математическое моделирование процесса прядения нити из расплава полимера в условиях неизотермичности [Текст] / Ф. А. Гарифуллин, Ф. Х. Тазюков // Вестник Казанского технологического университета. — 2002. — № 1–2. — С. 187–193.
- Снигерев, Б. А. Усиленное моделирование ламинарных течений разбавленных растворов полимеров [Текст] / Б. А. Снигерев, Ф. Х. Тазюков // Тепломассообменные процессы и аппараты химической технологии. Казань: КГТУ, 2005. С. 137–142.
- 13. Кутузов, А. Г. Выбор конфигурации входного участка формующей головки экструдера [Текст] / А. Г. Кутузов // Вестник Казанского государственного технического университета. 2007. № 2. —С. 49–51.
- 14. Boger, D. V. Further observations of elastic effects in tubular entry flows [Text] / D. V. Boger, D. U. Hur, R. J. Binnington // Journal of Non-Newtonian Fluid Mechanics. 1986. Vol. 20. P. 31–49. doi:10.1016/0377-0257(86)80014-3
- 15. Носко, С. В. Исследование кинематических характеристик потока в каналах литниковой системы, методами визуализации [Текст] / С. В. Носко, В. А. Мосийчук // Вестник Киевского политехнического института. Машиностроение. 2001. № 63. С. 79–82.

16. Носко, С. В. Исследования гидродинамических условий входа в каналах технологического оборудования [Текст] / С. В. Носко // Восточно-Европейский журнал передовых технологий. — 2014. — № 3/7(69). — С. 49–54. doi:10.15587/1729-4061.2014.24876

### РЕОЛОГІЧНІ ВЛАСТИВОСТІ ТА ГІДРОДИНАМІКА НЕСТАБІЛІЗОВАНОЇ ТЕЧІЇ НЕНЬЮТОНІВСЬКИХ СЕРЕДОВИЩ В РОБОЧИХ КАНАЛАХ ФОРМУЮЧОГО ОБЛАДНАННЯ

Розглянуті питання, пов'язані з реологічною поведінкою степеневих середовищ в каналах формуючого обладнання. В результаті обробки даних реометричних досліджень отримано значення параметрів реологічного рівняння та встановлено їх залежність від гідромеханічних і температурних режимів перероблюємих середовищ. Показано, що довжина ділянки гідродинамічної стабілізації потоку залежить від реологічних властивостей середовищ і умов входу в робочі канали формуючого обладнання.

**Ключові слова**: реологічні властивості, нестабілізована течія, канали змінної геометрії.

Носко Сергей Викторович, кандидат технических наук, доцент, кафедра прикладной гидроаэромеханики и механотроники, Национальный технический университет Украины «Киевский политехнический институт», Украина, e-mail: noskosv@ukr.net.

**Носко Сергій Вікторович,** кандидат технічних наук, доцент, кафедра прикладної гідроаеромеханіки та механотроніки, Національний технічний університет України «Київський політехнічний інститут», Україна.

Nosko Sergey, National Technical University of Ukraine «Kyiv Polytechnic Institute», Ukraine, e-mail: noskosv@ukr.net

> УДК 621.9.15 DOI: 10.15587/2312-8372.2015.44396

Васильєв А. В., Попов С. В., Даценко В. Д.

# РОЗРОБКА КОНСТРУКЦІЇ ВІДРІЗНОГО РІЗЦЯ З ДИСКОВОЇ ПИЛИ

Запропонована конструкція відрізного різця з дискової пили, яка вийшла з ладу та не придатна для подальшої експлуатації. Наведена конструкція є найбільш економічно доцільною у якості відрізного різця з швидкорізальної сталі Р6М5. Розглянуто вплив ступеня загострення різальної кромки на стійкість відрізного різця и запропоновано спосіб заокруглення різальної кромки, який забезпечує необхідну стійкість різця.

Ключові слова: відрізання заготовок, відрізний різець, дисковий різець, дискова пила.

### 1. Вступ

Продуктивність технологічних процесів виготовлення деталей машин в одиничному і дрібносерійному виробництві в значній мірі залежить від стійкості різальних інструментів. При великій кількості номенклатури деталей, які встановлюються в токарний верстат, збільшується імовірність виконання відрізних операцій, і, відповідно, збільшується імовірність руйнування відрізних різців з твердого сплаву через динамічні поштовхи

або велике радіальне биття ексцентрично встановлених деталей. Використання у якості матеріалу різальної часті швидкорізальної сталі суттєво зменшує риск крихкого руйнування, тим більш, велика кількість переточувань дозволяє створити передумови здешевлення собівартості виготовлення деталей машин.

Технологічний процес відрізання заготовок є поширеною операцією як в заготовчому виробництві, так і в технологічних процесах виготовлення деталей машин [1]. Відрізні інструменти працюють в особливо