УДК 66.083.2:66-971:614.849 DOI: 10.15587/2312-8372.2015.53477

Гарбуз С. В.

ПОВЫШЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРИНУДИТЕЛЬНОЙ ВЕНТИЛЯЦИИ РЕЗЕРВУАРОВ ХРАНЕНИЯ СВЕТЛЫХ НЕФТЕПРОДУКТОВ

На примере резервуара PBC-5000 показана экологическая опасность процесса его дегазации, произведен расчет концентрации вредных веществ (углеводородов) в атмосферном воздухе для действующего в Украине способа дегазации, на всех его стадиях. На примере международного опыта, показана необходимость внедрения установок улавливания паров углеводородов, для эффективной эксплуатации которых предложен новый, эжекторно-вихревой способ принудительной вентиляции резервуаров.

Ключевые слова: дегазация резервуаров, принудительная вентиляция, вредные вещества, экологическая опасность, способ дегазации.

1. Введение

Ежегодно Украина потребляет более 20 млн. т. нефти и продуктов ее переработки [1], что предполагает содержание достаточно большого резервуарного парка страны. Установлено, что на 1 тонну добываемой или перерабатываемой нефти необходимый объем хранения должен составлять $0.4-0.5~{\rm M}^2$ [2].

Для надежной и безопасной эксплуатации резервуаров хранения нефтепродуктов, согласно действующим в Украине правилами технической эксплуатации резервуаров хранения нефтепродуктов и руководством по их ремонту [3], резервуары выводятся их эксплуатации для проведения плановых, внеплановых и капитальных ремонтных работ, а также для проведения периодической очистки. Металлические резервуары подвергаются периодической зачистке в следующие сроки:

- не менее 2 раз в год для топлив реактивных двигателей, авиационных бензинов, авиационных масел и их компонентов, прямогонных бензинов;
- не менее 1 раза в год для присадок к смазочным маслам и масел с присадками;
- не менее 1 раза в два года для остальных масел, автомобильных бензинов, дизельных топлив, парафинов и других аналогичных им по физикохимическим свойствам нефтепродуктов;
- от 2 раз в год до 1 раза в два года (по условиям сохранения качества нефтепродукта) для мазутов, моторных топлив и других, аналогичных по свойствам нефтепродуктов.

Самой сложной и экологически опасной технологической операцией выполняемой при выводе резервуаров с остатками нефтепродуктов из эксплуатации, является их дегазация [4]. При дегазации резервуара в атмосферный воздух поступает значительное количество углеводородных паров, вызывая следующие негативные последствия:

- пары углеводородов высокотоксичны и оказывают отравляющее действие на организм человека и прилегающие экосистемы;
- пары углеводородов легковоспламеняемы, вытеснение из резервуара значительного количества

углеводородных паров повышает пожарную опасность процесса дегазации;

— прямой экономический ущерб, вследствие потерь нефтепродукта при рассеивании паров углеводородов в атмосфере. Для уменьшения экономических потерь, действующий в Украине ВБН В.2.2-58.1-94, рекомендует применение на резервуарах установок для улавливания паров нефтепродуктов.

Для повышения экологической безопасности населения в районах размещения резервуаров хранения нефтепродуктов, необходимо установить концентрацию вредных веществ (углеводородов) в атмосферном воздухе при существующем способе дегазации резервуаров и обосновать организационно-технические меры, направленные на снижение экологической опасности дегазации резервуаров.

Анализ последних достижений и публикаций

В Украине дегазация резервуаров хранения светлых нефтепродуктов в большинстве случаев осуществляется принудительной вентиляцией внутреннего газового пространства. Согласно действующим в Украине правилам проведения дегазации резервуаров [5], при выбросе газовоздушной смеси из резервуара, наибольшая концентрация вредных веществ в приземном слое атмосферы ($C_{\rm M}$) не должна превышать максимальной разовой предельно допустимой концентрации $C_{\rm M}$ ПДК, которая составляет 5 мг/м³. Для поддержания концентрации вредных веществ в приземном слое атмосферы в рамках ПДК, экологически опасный процесс дегазация «растягивают» от 2 до 4 суток, разделяя его на 6 стадий:

- 1-я стадия естественная вентиляция с открытым световым люком;
- 2-я стадия естественная вентиляция с 2 открытыми световыми люками;
- 3-я стадия принудительная вентиляция с подачей воздуха 3000 $\text{m}^3/\text{ч}$;
- 4-я стадия принудительная вентиляция с подачей воздуха 5000 $\text{m}^3/\text{ч}$;

- 5-я стадия принудительная вентиляция с подачей воздуха 10000 m^3/q ;
- 6-я стадия принудительная вентиляция с подачей воздуха 40000 м 3 /ч.

Принудительная вентиляция резервуаров хранения нефтепродуктов путем подачи атмосферного воздуха применяется только после снижения концентрации паров нефтепродуктов в резервуаре ниже 0,5 нижнего предела воспламенения (НПВ), поэтому на 1 и 2 стадиях применяется естественная вентиляция.

Несмотря на отсутствие залпового выброса вредных веществ (углеводородов) в атмосферный воздух, опасность для здоровья человека и прилегающих экосистем обусловлена продолжительным временем воздействия относительно малых выбросов, учет которых обязателен при оценке экологической опасности дегазации, например, в Европейском союзе (ЕС), где согласно директиве 94/63/ЕС введены нормативы на улавливание паров углеводородов. К 2000 г. все АЗС, а к 2004 г. все резервуарные парки нефтебаз, терминалы загрузки светлых нефтепродуктов (в том числе и автоцистерны), эксплуатируемые в странах ЕС, были оснащены системами улавливания паров, обеспечивающих полноту улавливания от 98 % углеводородов [6].

В странах Европейского союза, США, Канаде и Японии законодательно ограничены выбросы паров углеводородов из резервуаров на уровне 98–99 %. Эксплуатируемые в данных странах резервуары оснащены различными типами установок для улавливания паров углеводородов. Наибольшее распространение, в данных странах, получили установки для улавливания паров, основанные на следующих принципах роботы [7–9]:

- 1. Захолаживание паровоздушной смеси в холодильниках с использованием жидкого азота до конденсации углеводородов в жидкую фазу.
- 2. Адсорбция углеводородов из смеси адсорбентом с последующей десорбцией.
- 3. Разделение паровоздушной смеси на алеофобных мембранах, обладающих определенной селективностью.

Также рассматриваются возможности, при проведении дегазации, подачи во внутреннее пространство резервуара инертных газов [10], применение различных схем подачи и отведения воздуха [11, 12].

3. Объект, цель и задачи исследования

 $\it Oбъект$ исследования — принудительная вентиляция резервуаров хранения светлых нефтепродуктов.

Цель исследования — оценка экологической опасности процесса дегазации резервуаров и разработка технических решений и рекомендаций, направленных на снижение уровня экологической опасности дегазации.

Для достижения поставленной цели необходимо выполнить такие задачи:

- 1. Исследовать принудительную вентиляцию резервуаров с остатками светлых нефтепродуктов.
- 2. Оценить экологическую опасность дегазации резервуаров, определив концентрации вредных веществ (углеводородов) в атмосферном воздухе при всех режимах дегазации.
- 3. Обосновать организационно-технические мероприятия, направленные на снижение экологической опасности дегазации.

4. Результаты исследования экологической опасности дегазации резервуаров хранения светлых нефтепродуктов

Оценку экологической опасности дегазации, проводимой путем принудительной вентиляции, произведем на примере резервуара PBC-5000 объемом 5000 м³ [13].

Необходимость определения скорости выхода газовоздушной среды и концентрации паров нефтепродуктов (углеводородов) до начала и после окончания процесса принудительной вентиляции, потребовала создания экспериментального стенда (ЭС), схема которого представлена на рис. 1. Исходные данные используемые в расчетах и данные проведенного эксперимента представлены в табл. 1.

ЭС изготовлен из органического стекла толщиной 3 мм в виде вертикального цилиндрического сосуда и конструктивно представляет собой сосуд, геометрически подобный РВС-5000. Масштаб ЭС равен 1:17 от промышленного резервуара РВС-5000.

Расчет продолжительности каждого этапа вентиляции произведем по формуле:

$$\tau = \frac{V}{q \cdot \eta} \cdot \ln \frac{C_1}{C_2},\tag{1}$$

где V — вместимость резервуара (5000 м³); q — производительность вентиляции, м³/ч; C_1 , C_2 — концентрация паров нефтепродуктов до и после вентиляции, г/м³; η — коэффициент, учитывающий условия выхода газовоздушной смеси.

Коэффициент **η** для каждого этапа вентиляции произведем по формуле:

$$\eta = 0.54 \cdot \left(\frac{q}{v}\right) \cdot 0.132,\tag{2}$$

где q — производительность вентиляции; v — скорость выхода газовоздушной смеси.

Количество нефтепродуктов, удаляемых в атмосферу для каждого этапа вентиляции произведем по формуле:

$$M = \frac{V \cdot (C_1 - C_2)}{1000},\tag{3}$$

где V — вместимость резервуара (5000 м³); q — производительность вентиляции, м³/ч; C_1 , C_2 — концентрация паров нефтепродуктов до и после вентиляции, г/м³.

Выброс паров нефтепродуктов в секунду для каждого этапа вентиляции произведем по формуле:

$$m = \frac{M}{3600 \cdot \tau},\tag{4}$$

где M — количество нефтепродуктов, удаляемых в атмосферу на каждом этапе вентиляции; τ — продолжительности этапа вентиляции.

Результаты расчета значений формул (1)-(4) представлены в табл. 2.

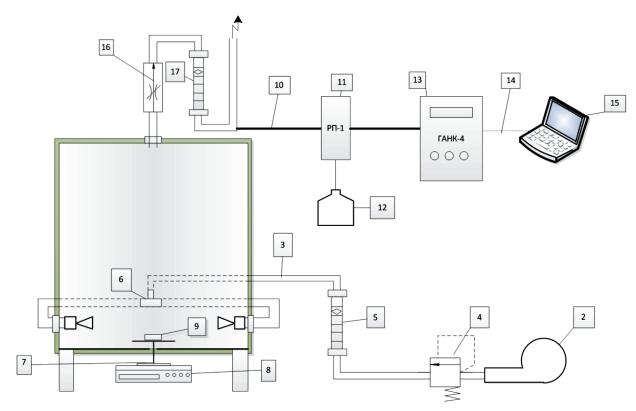


Рис. 1. Принципиальная схема экспериментальной установки: 1 — экспериментальный резервуар; 2 — воздуходувка (вентилятор); 3 — линии подачи воздуха; 4 — клапан сброса избыточного давления воздуха; 5 — ротаметр; 6 — тройник; 7 — штатив; 8 — электронные весы «AND EK-1200i»; 9 — емкость с нефтепродуктом; 10 — поливиниловые трубки для отбора проб на газовый анализ; 11 — разбавитель (РП-1); 12 — сорбционный фильтр (ФС-1); 13 — газоанализатор универсальный «ГАНК-4»; 14 — кабель для подключения к ПЗВМ; 15 — ПЗВП; 16 — регулируемая заслонка на линии удаления паров (имитация фильтра); 17 — ротаметр; 18 — воздушные эжекторы

Таблица 1 Исходные расчетные данные и результаты эксперимента в пересчете для резервуара РВС-5000

Параметр вентиляции и выбросов паров нефтепродуктов	Стадия 1	Стадия 2	Стадия З	Стадия 4	Стадия 5	Стадия 6	
Вместимость резервуара V	5000 м ³						
Концентрация паров нефтепродуктов до начала вентиляции \mathcal{C}_1 ($\mathcal{C}>0$,5 НПВ)	300 г/м ³	100 г/м ³	50 г/м ³	10 г/м ³	5 г/м ³	0,3 г/м ³	
Концентрация паров нефтепродуктов после вентиляции С ₂	100 г/м ³	50 г/м ³	10 г/м ³	5 г/м ³	0,3 г/м ³	0,1 г/м ³	
Количество газоотводных труб	1	1	1	1	1	2	
Диаметр устья трубы	0,16 м	0,25 м	0,25 м	0,25 м	0,25 м	0,25 м	
Высота трубы	14,9 + 2 = 16,9 м (14,9 м — высота резервуара; 2 м — высота газоотвода)						
Производительность вентиляции 🛭	500 м ³ /ч	1000 м ³ /ч	3000 м ³ /ч	5000 м ³ /ч	10000 м ³ /ч	40000 м ³ /ч	
	0,14 м ³ /ч	0,28 м ³ /ч	0,83 м ³ /ч	1,4 м ³ /ч	2,8 м ³ /ч	11,1 м ³ /ч	
Скорость выхода газовоздушной среды \emph{v}	5,6 м/с	5,6 м/с	16,8 м/с	28 м/с	50 м/с	50 м/с	

...

Характеристики процесса принудительной вентиляции

Параметр вентиляции и выбросов паров нефтепродуктов	Стадия 1	Стадия 2	Стадия З	Стадия 4	Стадия 5	Стадия 6
Продолжительность вентиляции	54 ч.	17,2 ч.	11,5 ч.	2,75 ч.	1,3 ч.	4,4 ч.
Коэффициент η	0,30	0,40	0,47	0,46	0,55	0,64
Количество нефтепродуктов, удалнемых в атмосферу	1000 кг	250 кг	200 kr	25 кг	23,5 кг	1,0 кг
Выброс паров нефтепродуктов в секунду	5 r/c	4 г/с	3,5 r/c	2,5 r/c	1,48 г/с	0,06 r/c

Таблица 2

Расчет максимального значения приземной концентрации вредного вещества при выбросе газовоздушной среды из резервуара произведем по формуле [14]:

$$C_{\rm M} = \frac{A \cdot M \cdot F \cdot m \cdot \eta}{H^2 \cdot \sqrt[3]{v_1 \cdot \Delta T}}, \quad \text{M}\Gamma/\text{M}^3, \tag{5}$$

где A- коэффициент, зависящий от температурной стратификации атмосферы (для Европы принимается равным 200); M — масса вредного вещества, выбрасываемого в атмосферу в единицу времени, Γ/C ; F — безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе (для газообразных вредных веществ принимается равным 1); m — коэффициент, учитывающий условия выхода газовоздушной смеси из устья источника выброса (для выбросов из резервуаров m = 1); H - высота источника выброса над уровнем земли, м; v_1 — расход газовоздушной смеси, м/с; ΔT — разность между температурой выбрасываемой газовоздушной смеси $T_{\rm r}$ и температурой окружающего атмосферного воздуха $T_{\rm B}$, °C ($\Delta T = 1$); η — безразмерный коэффициент, учитывающий влияние рельефа местности; в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, $\eta = 1$. Расход газовоздушной смеси определим по формуле:

$$v_1 = \frac{\pi \cdot D^2}{4} \cdot w_0, \tag{6}$$

где D- диаметр устья источника выброса, м; w_0- средняя скорость выхода газовоздушной смеси из устья источника выброса, м/с.

Результаты расчета максимальных значений приземных концентрации вредных веществ представлены в табл. 3.

Результаты проделанных расчетов показывают экологическую опасность существующего процесса дегазации резервуаров для здоровья человека и прилежащих экосистем. При принудительной вентиляции резервуара РВС-5000 в атмосферный воздух поступает 1,5 т. паров нефтепродуктов.

Использование установок улавливания паров углеводородов из резервуаров в сочетании с действующим в Украине технологическим регламентом проведения дегазации резервуара, путем принудительной вентиляции, не представляется возможным, ввиду наличия аэродинамического сопротивление (перепада давлений) в данных установках, которое составляет 250–450 Па [15]. Наличие аэродинамического сопротивления установки улавливания паров углеводородов, не позволяет организовать 1 и 2 стадии естественной вентиляции резервуара.

Учитывая необходимость применения фильтрационной системы для улавливания паров углеводородов из резервуаров и повышения общей эффективности принудительной вентиляции резервуаров, предложен принципиально новый, эжекторно-вихревой способ подачи приточного воздуха во внутреннее пространство резервуара, суть которого заключается в следующем:

1. Для интенсификации конвективного массообмена и степени перемешивания внутреннего и подаваемого воздуха с парами нефтепродукта, подача воздуха осуществляется с использованием воздушного эжектора, который устанавливается внутри резервуара, на внутреннем фланце люка-лаза (рис. 2).

Таблица 3 Приземные концентрации вредных веществ при дегазации резервуара

Параметр вентиляции и выбросов паров нефтепродуктов	Стадия 1	Стадия 2	Стадия З	Стадия 4	Стадия 5	Стадия 6	
Максимальное значение приземной концентрации вредного вещества при выбросе газовоздушной среды из резервуара	0,67 мг/м ³	0,43 мг/м ³	0,26 мг/м ³	0,15 мг/м ³	0,07 мг/м ³	0,014 мг/м ³	
Масса вредного вещества М	5,0	4,0	3,5	2,5	1,48	0,06	
Расход газовоздушной смеси, \emph{v}_1	5,6 м/с	5,6 м/с	16,8 м/с	28 м/с	50 м/с	50 м/с	
Максимальное значение приземной концентрации паров бензина, мг/м ³							
1-й этап $\mathcal{L}_{\scriptscriptstyle M} = \frac{200 \cdot 5 \cdot 1 \cdot 1 \cdot 1}{16,9^2 \sqrt[3]{280}}$	0,67	_	_	_	_	_	
2-й этап $C_{\text{м}} = \frac{200 \cdot 4 \cdot 1 \cdot 1 \cdot 1}{16,9^2 \sqrt[3]{280}}$	_	0,43	_	_	_	_	
3-й этап $\mathcal{L}_{\scriptscriptstyle M}=rac{200\cdot 3,5\cdot 1\cdot 1\cdot 1}{16,9^2\sqrt[3]{830}}$	_	_	0,26	_	_	_	
4-й этап $\mathcal{L}_{\scriptscriptstyle M} = \frac{200 \cdot 2, 5 \cdot 1 \cdot 1 \cdot 1}{16,9^2 \sqrt[3]{1400}}$	_	_	_	0,15	_	_	
5-й этап $C_{\scriptscriptstyle M}=rac{200\cdot 1,48\cdot 1\cdot 1\cdot 1}{16,9^2\sqrt[3]{2800}}$	_	_	_	_	0,07	_	
6-й этап $\mathcal{L}_{M} = \frac{200 \cdot 0,06 \cdot 1 \cdot 1 \cdot 1}{16,9^2 \sqrt[3]{11400}}$	_	_	_	_	_	0,014	

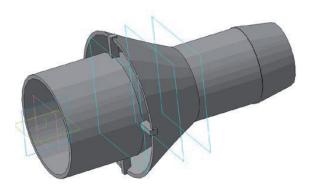


Рис. 2. Воздушный эжектор

2. Для создания постоянной подвижности воздуха во внутреннем пространстве резервуара, путем закручивания подаваемого и имеющегося в резервуаре воздуха вдоль его стенок, предложено при проведении принудительной вентиляции резервуара подачу воздуха осуществлять с двух осисимметричных (противоположных) сторон резервуара (рис. 3).

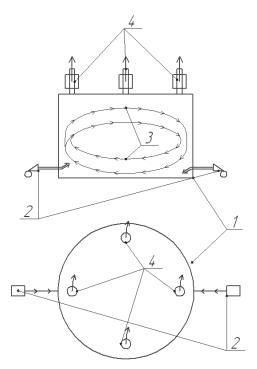


Рис. 3. Принципиальная схема эжекторно-вихревого способа подачи приточного воздуха во внутреннее пространство резервуара:
1 — резервуар; 2 — ветродуйный агрегат; 3 — тип воздушных потоков внутри резервуара; 4 — система фильтрации исходящего воздуха

При этом для создания кругового движения воздуха, воздушные эжекторы размещены под углом к внутренней стенке резервуара.

5. Обсуждение результатов исследования экологической опасности дегазации резервуаров хранения светлых нефтепродуктов

При совершенствовании действующих в Украине правил и регламентов технической эксплуатации резервуаров

хранения нефтепродуктов в соответствии с общеевропейскими и мировыми стандартами необходимо учитывать экологическую и пожарную опасности процесса дегазации, а также технико-экономическую эффективность дегазации.

Применение предложенного эжекторно-вихревого способа подачи приточного воздуха во внутреннее пространство резервуара позволит применить систему улавливания паров углеводородов, что позволит исключить негативное экологическое воздействие паров углеводородов, а также уменьшить уровень взрывопожароопасности принудительной вентиляции.

Дальнейшие экспериментальные исследования предложенного эжекторно-вихревого способа подачи приточного воздуха во внутреннее пространство резервуара способа позволят установить:

- 1. Зависимость потери массы одно и многокомпонентных жидкостей при существующей и предложенной схеме подачи приточного воздуха.
- 2. Интенсивность испарения одно и многокомпонентных жидкостей в зависимости от подвижности воздуха над поверхностью испарения.
- 3. Концентрацию углеводородов во внутреннем пространстве резервуара при существующей и предложенной схеме подачи приточного воздуха.
- 4. Время необходимое для проведения дегазации, определив экономическую эффективность процесса.

6. Выводы

В результате проведенных исследований установлено:

- 1. Для повышения экологической безопасности дегазации резервуаров обоснована необходимость применения фильтрующих систем при дегазации резервуаров.
- 2. Разработан экспериментальный стенд, геометрически подобный промышленному резервуару РВС-5000, который позволил оценить экологическую опасность процесса принудительной вентиляции, а также изучить закономерности процесса вентиляции резервуаров с остатками нефтепродуктов.
- 3. Разработан и предложен новый эжекторный способ подачи воздуха во внутреннее пространство резервуаров, на основании которого создана новая технология принудительной вентиляции резервуаров.

Литература

- Статистический ежегодник «Украина в цифрах» [Текст] / Государственный комитет статистики Украины. — Изд. офиц. — К., 2014. — 600 с.
- Ларионов, В. И. Оценка и обеспечение безопасности объектов хранения и транспортировки углеводородного сырья [Текст] / В. И. Ларионов. — СПБ.: ООО Недра», 2004. — 190 с.
- Временная инструкция по дегазации резервуаров от паров нефтепродуктов методом принудительной вентиляции [Текст]. Утв. Госкомнефтепродуктом РСФСР 08.09.1981 г. Изд. офиц. М.: Стройиздат, 1982. 32 с.
- 4. Бесчастнов, М. В. Промышленные взрывы. Оценка и предупреждение [Текст] / М. В. Бесчастнов. М.: Химия, 1991. 430 с.
- Инструкция по зачистке резервуаров от остатков нефтепродуктов [Текст]. – Утв. Госкомнефтепродуктом СССР 10.11.89. – Изд. офиц. – М.: Стройиздат, 1990. – 41 с.
- 6. European Parliament and Council Directive 94/63/EC of 20 December 1994 on the control of volatile organic compound (VOC) emissions resulting from the storage of petrol and its distribution from terminals to service stations [Electronic resource] // Official Journal. 31.12.1994. L 365. P. 0024–0033. Available at: \www/URL: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31994L0063

- Integrated Pollution Prevention and Control. Reference Document on. Best Available Techniques on. Emissions from Storage [Electronic resource] / European Commission. July 2006. Available at: \www/URL: http://eippcb.jrc.ec.europa.eu/reference/BREF/esb_bref_0706.pdf
- 8. Measures to Reduce Emissions of VOCs during Loading and Unloading of Ships in the EU [Electronic resource]: B4-3040/99/116755/MAR/D3 / European Commission Directorate General Environment // Report No AEAT/ENV/R/0469. Issue 2. Abingdon: AEA Technology, 2001. Available at: \www/URL: http://webcache.googleusercontent.com/search?q=cache:exedoerNnCEJ:ec.europa.eu/environment/air/pdf/vocloading.pdf+&cd=1&hl=ru&ct=clnk&gl=ua
- 9. Environmental Code of Practice for Vapour Recovery in Gasoline Distribution Networks [Electronic resource] / National Task Force on Vapour Recovery in Gasoline Distribution Networks. Canadian Council of Ministers of the Environment, March 1991. Available at: \www/URL: http://www.ccme.ca/files/Resources/air/emissions/pn_1057_e.pdf
- Li, Y. Experimental Study on Inert Replacement Ventilation of Oil Vapor in Oil Tank [Text] / Y. Li, Y. Du, P. Zhang // Procedia Engineering. — 2012. — Vol. 45. — P. 546–551. doi:10.1016/j.proeng.2012.08.201
- 11. Robinson, M. Recommendations for the design of push-pull ventilation systems for open surface tanks M. Robinson [Text] / M. Robinson // The Annals of Occupational Hygiene. 1996. Vol. 40, № 6. P. 693—704. doi:10.1016/s0003-4878(96)00011-7
- 12. Fardell, P. J. The evaluation of an improved method of gasfreeing an aviation fuel storage tank [Text] / P. J. Fardell, B. W. Houghton // Journal of Hazardous Materials. — 1975. — Vol. 1, № 3. — P. 237–251. doi:10.1016/0304-3894(75)80016-1
- 13. Бронштейн, И. С. Выбор технических средств для сокращения потерь нефтепродуктов от испарения из резервуаров и транспортных емкостей [Текст]: методическое пособие / И. С. Бронштейн, В. Ф. Вохмин, В. Е. Губин, П. Р. Ривкин. М.: ЦНИИТЭнефтехим, 1969. 182 с.

- 14. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий [Текст]. Утв. Гос. комитетом СССР по гидрометеорологии и контролю природной среды 04.08.86. Изд. офиц. СПБ.: ГИДРОМЕТЕОИЗДАТ, 1986. 79 с.
- Кулагин, А. В. Прогнозирование и сокращение потерь бензинов от испарения из горизонтальных подземных резервуаров АЗС [Текст] / А. В. Кулагин. — Уфа: Спектр, 2003. — 154 с.

ПІДВИЩЕННЯ ЕКОЛОГІЧНОЇ БЕЗПЕКИ ПРИМУСОВОЇ ВЕНТИЛЯЦІЇ РЕЗЕРВУАРІВ ЗБЕРІГАННЯ СВІТЛИХ НАФТОПРОДУКТІВ

На прикладі резервуара РВС-5000 показана екологічна небезпека процесу його дегазації, проведений розрахунок концентрації шкідливих речовин (вуглеводнів) в атмосферному повітрі для діючого в Україні способу дегазації, на всіх його стадіях. На прикладі міжнародного досвіду, показана необхідність впровадження установок уловлювання парів вуглеводнів, для ефективної експлуатації яких запропоновано новий, ежекторний-вихровий спосіб примусової вентиляції резервуарів.

Ключові слова: дегазація резервуарів, примусова вентиляція, шкідливі речовини, екологічна небезпека, спосіб дегазації.

Гарбуз Сергей Викторович, адъюнкт, кафедра пожарной и техногенной безопасности объектов и технологий, Национальный университет гражданской защиты Украины, Харьков, Украина, e-mail: garbuz_88@inbox.ru.

Гарбуз Сергій Вікторович, ад'юнкт, кафедра пожежної та техногенної безпеки об'єктів і технологій, Національний університет цивільного захисту України, Харків, Україна.

Garbuz Sergei, National University of Civil Protection of Ukraine, Kharkiv, Ukraine, e-mail: garbuz_88@inbox.ru

> УДК 66.01.011 DOI: 10.15587/2312-8372.2015.56295

Моісеєв В. Ф., Манойло Є. В., Грубнік А. О.

ІНТЕНСИФІКАЦІЯ ПРОМИВАЧА ГАЗУ КОЛОН У ВИРОБНИЦТВІ КАЛЬЦИНОВАНОЇ СОДИ

Висвітлено головні задачі та проблеми роботи апаратів для очистки газових викидів у технології виробництва кальцинованої соди. Визначено основні джерела викидів аміаку у виробництві кальцинованої соди та недоліки існуючих промислових апаратів. Показано необхідність створення принципово нових компактних та високоефективних вихрових абсорберів, що забезпечують інтенсифікацію процесів абсорбції газів та вирішення екологічних проблем.

Ключові слова: кальцинована сода, абсорбція, вихровий абсорбер, барботажний принцип, масообмінний апарат, газові викиди.

1. Вступ

У виробництві кальцинованої соди утворюється значна кількість відходів, що викидаються у навколишнє середовище [1–3]. Головними джерелами газових викидів виробництва кальцинованої соди є процеси енергозабезпечення та процеси випалу вапняку. Після карбонізації амонізованого розсолу не досягаються санітарні норми очистки газових викидів від аміаку. Через один промивач газів колон-2 витрата газів досягає 10000 м³/год. При ПДВ = 50 мг/м³ концентрація аміаку в газовому викиді знаходиться в межах 0,1–0,2 г/м³.

Екологічні проблеми регіонів, де розташовані виробництва кальцинованої соди — це, насамперед, забруднення ораних земель, річок, повітря та ін. В той же час майже в усіх країнах світу проблема відходів розглядається як пріоритетна з відповідною державною підтримкою. Потенційні руйнівні ефекти відходів, що прогнозуються на майбутнє, примусили останнє десятиріччя сконцентрувати зусилля вчених та урядів Європейського співтовариства для того, щоб взяти проблему відходів під контроль. Виходячи з цього науково-дослідні роботи і дослідження по напрямках, які дозволяють зменшувати кількість відходів і розробку методів їх