
InformatIon technologIes

4 Технологічний аудиТ Та резерви виробницТва — № 6/2(38), 2017, ©   Zhuravska I., Borovlyova S., 
Kostyria M., Koretska O.

UDC 629.734:004.451.45
DOI: 10.15587/2312-8372.2017.117889

effICIenCy ImproVement of
UsIng Unmanned aerIal VehICles
By dIstrIBUtIon of tasKs BetWeen
the Cores of the CompUtIng
proCessor

Розглянуті алгоритми розпаралелювання завдань між ядрами 4-ядерних процесорів обчислю-
вальних систем безпілотних літальних апаратів (БПЛА). Показано, що вивільнення 1-го ядра
та розподіл завдання між 2–4-ми ядрами на 10,3 % зменшує енергоспоживання процесору. За-
стосування розробленого алгоритму у комплексі з запропонованим додатковим живленням від
енергії вимірювального сигналу датчиків підвищує ефективність використання БПЛА.

ключові слова: обчислювальні системи безпілотних літальних апаратів (БПЛА), 4-ядерний
процесор, імітаційне моделювання.

Zhuravska I.,
Borovlyova s.,
Kostyria m.,
Koretska o.

1. Introduction

The computing systems of most unmanned aerial ve-
hicles (UAVs) are based on single-chip 4-core 32-bit pro-
cessors ARM Cortex, Qualcomm Snapdragon, etc. [1, 2].
The number of computational flows in them is equal to
the number of physical cores, between which tasks can be
distributed (orientation in space, traffic control, receiving
and processing indicators from sensors, etc.).

For a computer system with limited resources (com-
puting or power supply), the following problem arises:
the operation of an automatic scheduler of operating sys-
tem (OS) flows leads to an unjustified processor load.
But for mobile computers on which UAV construction is
based, it is often more important to economize in power
consumption (in practice – battery life) than to attract all
available cores in a single-chip computing processor (CPU)
in the computational process.

Therefore, the actual task is to improve the efficiency
of using UAVs by developing better, than automatic, al-
gorithms for the operation of a multi-core processor, on
the basis of which a UAV computer system is built.

2. the object of research
and its technological audit

The object of research is UAV computer system. Most
modern UAVs are based on 2- or 4-core single-chip proces-
sors, between which the OS automated scheduler tries to
evenly distribute computational tasks. At the same time,
the first core can instantly become extremely congested in
the case of an urgent task from the UAV control system.
Therefore, the subject of research is the complex indica-
tors of the state of the processor cores under various
algorithms for the distribution of tasks between the cores
of a multi-core single-chip processor.

Despite the fact that direct in-situ simulation on UAV
can lead to critical application of the latter, it was decided
to simulate the dispatching of tasks on a stationary CS
with a 4-core single-board processor.

The test was conducted on a CS with an Intel Core
i7-4790 3.60GHz CPU with disabled Hyper-Threading
Technology support [3]. For the experiment, a test program
was created, which sorts an array of 10.000 elements at
each iterations.

Within the framework of this work, it is decided to
independently implement the load of the cores by given
threads when writing software in C#. It is also planned
to implement the process of reference comparison with
automatic dispatching in Windows. Otherwise, this process
can be defined as benchmarking the efficiency of using
the cores of a multi-core processor.

Such criteria are investigated: task timing, CPU power
consumption, temperature and percentage load of each core
and the entire processor during the execution of each of
the four test tasks. Timing is evaluated based on the results
of the work of the own written software. Temperature (or
heat dissipation – TDP parameter (Thermal Design Power),
power consumption and percentage usage of the processor
can be estimated using a pre-started monitoring utility.

One of the most problematic places is overload and
overheating to the processor of the UAV computer system.
This can lead to CS freezing, loss of control and crash of
the drones. In addition, in a critical situation, the proces-
sor is overloaded, it will not provide the urgently needed
calculations of the UAV rate change or the transition to
the autonomous flight mode.

3. the aim and objectives of research

The aim of research is the efficiency improvement of using
UAVs with the lengthening of the flight time of the lat-
ter by reducing the congestion and power consumption
of the computer system.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1. To analyze the possibility of dispatching tasks to
a UAV processor with multi-threaded organization of task
distribution between CPU cores and to develop appro-
priate algorithms.

InformatIon and Control SyStemS:
InformatIon teChnologIeS

5Technology audiT and producTion reserves — № 6/2(38), 2017

ISSN 2226-3780

2. To perform a simulation of the developed algorithms
for the 4-core CPU.

3. To study the technical parameters of the UAV CPU
state (the temperature in the section along the cores, the
power consumption and the CPU utilization, the number
of cooler rotations to provide the necessary heat dissi-
pation, etc.) in the implementation of various dispatch
algorithms.

4. To investigate the possibility of increasing the ef-
ficiency of using UAVs at the expense of sources of ad-
ditional energy consumption.

5. To determine the optimal algorithm for distribu-
tion of tasks between the cores of a multicore single-chip
processor.

4. research of existing solutions
of the problem

The problem of optimizing energy consumption, load
and preventing overheating of computer components of UAV
computer systems is widely considered in the resources
of the world scientific periodicals. The main direction of
its solution is multi-threaded dispatching tasks between
the cores of a multi-core processor.

However, existing algorithms for scheduling task dis-
tribution at the OS level [4, 5] can solve the problem of
preventing the maximum load of the processor and each
of its cores to almost 100 % [6]. In addition, it is pos-
sible that the tasks will be queued for the processor [7],
which is unacceptable for the tasks of optical navigation
and UAV control.

To reduce power consumption in battery-powered sys-
tems, the mechanism of switching off communication mo-
dules [8] is sometimes used for high-speed data decoding
or for compression of the received video [9, 10]. But, in
that case, there may be a so-called Dahl effect, when
part of the processor’s cores is idle, despite the fact that
the timeliness of some tasks is not ensured [11]. Such
scheduling of tasks is unacceptable for a UAV, because it,
for example, can’t receive control signals from the main
UAV or ground command center.

The loss of energy for a constant connection to the
battery supply of communication modules can be partially
compensated by the mechanisms described in [12]. To
select the type of physical impact on the primary con-
verter, the ten most common effects and effects they cause
are analyzed: the Seebeck effect, the pyroelectric effect,
etc. [13]. As a result of the analysis it was revealed that
the piezoelectric effect is the most energetically attrac-
tive for the solution of the task of constructing effective
information and measurement systems (IMS), to which
UAVs can also be assigned. That is, this means that piezo-
electric sensors are best suited for feeding the components
of such IT system from the energy of the measurement
signal. Piezoelectric transducers allow solving various tasks:
measuring mechanical parameters (pressure, acceleration,
mass, angular velocities, moments, deformations, etc.).

It is also important to choose a wireless technology
for transmitting measurement information from a wireless
information transfer device (WITD) to an information
collection system (ICS). As a result of the analysis, the
following promising network specifications for network
protocols were chosen, such as ZigBee and LoRa (depen-
ding on the type of task) [14].

An evaluation of the effectiveness of measures taken
to improve the efficiency of the use of CS components
can be carried out using a number of software products
for monitoring and changing the load regimes of proces-
sors [15]. However, it should be noted that for CS UAV
categorically can’t use the so-called «fry tests» (AIDA64,
LinX, IntelBurnTest, Prime95, OCCT Perestroika etc.).
The principle of their action is stress testing, when the
processor performs specialized intensive calculations that
simulate the scenario of operation under the most severe
conditions and lead to maximum heating of the core [16].
The use of such tests can lead to irreparable consequences
with the burnout of individual CS components. With the
introduction of limit values in the test modes of such
utilities, it is possible to derive the investigated CS.

Therefore, for benchmarking, it is advisable to use
software, which among other indicators of the hardware
state of the compressor displays the readings of the sensors
built into such a sensor (Core Temp, CPU-Z, HWMoni-
tor, SpeedFan, etc.).

The HWMonitor v.1.33.0 utilities have been selected
for benchmarking.

Thus, the results of the analysis lead to the conclu-
sion that the issue of improving the UAV efficiency use
requires additional research.

5. methods of research

So, it was decided to direct efforts to develop methods
and algorithms for dispatching tasks on various computer
components of the UAV. First, let’s take a closer look at
the problem of the optimal CPU load in the processor core.

Binding of the process with the specified cores does
not cause any difficulties, it is necessary to use the Pro-
cessorAffinity property of the Process class, which is regis-
tered in the System.Diagnostics namespace [17]. Depending
on the bitmask that is assigned to this property, it is
possible to obtain all combinations of cores on the selected
device. If there are 4 cores, the OS threads scheduler
automatically use them all, trying to get the maximum
benefit from the multi-core processor (hereinafter – the
CPU). In this case, ProcessorAffinity is 15 and is deter-
mined by the formula:

ProcessorAffinity = 2n–1, (1)

where n – the number of cores of the multi-core proces-
sor, in the test n = 4.

It should be noted that when developing applications,
it is recommended to avoid using the core on which the
operating system performs data transfer, memory clearing
and other system processes. Typically, all such processes
are limited to the first core of the processor. Thus, ex-
cluding the first core from a computational task can lead
to improved application performance.

Therefore, let’s select the cores from the 2nd to the
4th for the benchmarking and assign a new bitmask, ob-
taining the value 14 (Fig. 1).

Accordingly, for each of the four cores of the quad-core
processor, the value of ProcessorAffinity will be:

1) for the 1st core ProcessorAffinity = 1;
2) for the 2nd core ProcessorAffinity = 2;
3) for the 3rd core ProcessorAffinity = 4;
4) for the 4th core ProcessorAffinity = 8.

ІнформацІйно-керуючІ системи:
ІнформацІйнІ технологІї

6 Технологічний аудиТ Та резерви виробницТва — № 6/2(38), 2017

ISSN 2226-3780

It should be noted that it will be more useful to bind
not to the processor cores, but to use a binding to the
threads, but this path contains many difficulties. The
point is that Intel is trying to facilitate the work of the
programmer, taking the binding of threads to the cores
to itself [3]. Obviously, this makes sense, because most
large companies are developing products for a mass user,
for whom understanding and using their own paralleliza-
tion is not necessary.

For high mathematical productivity, it is possible to
use the pre-built components library for programming ap-
plications in C/C++ and Fortran – Intel Math Kernel
Library (MKL) [18]. For fast cycle operation, it is advis-
able to enable autoparallelization in the Intel compiler –
Intel C++ Compiler (ICC) [3]. To maximize the use of
the cache include support for Hyper-Threading technology.
Although the availability of such technology is a good
marketing solution, however, for those who still need to
determine the parallelization manually, puts on the way
certain obstacles. The programmer can set his own thread
binding to the cores, but the Intel library will bring them
to naught.

In the case under investigation, additional difficulties
arise because the .NET stream that is run by the Common
Language Runtime (CLR) does not correspond to the OS
thread, and only the threads of the operating system can
bind to the cores [19, 20]. To solve this problem, it is
possible to use the above methods of the class Thread:

Thread.BeginThreadAffinity();
…
Thread.EndThreadAffinity().

In this case, the code between these calls is performed
on a single OS thread, significantly weakening the ma-
nagement of the CLR threads.

Now it is possible to go to the binding itself. Obtain
the OS threads of a .NET application using Process.GetCur-
rentProcess().Threads – a collection of threading objects.
To obtain the OS thread that is currently running, it is
necessary to use the following code:

[DllImport(“kernel32.dll”)]
public static extern int GetCurrentThreadId().

Using the returned ID, it is possible to find the flow of
the executable task and use the property of ProcessThread.Pro-
cessorAffinity, which is very similar to the Process.Proces-
sorAffinity described above.

Next is the DistributedThread class, which allows to start
threads on selected cores. The bottom line is encapsulation
of the usual Thread-object, limiting its current operating
system and setting the desired binding to the core:

using System;
using System.Diagnostics;
using System.Linq;
using System.Runtime.InteropServices;
using System.Threading;
namespace DistributedWorkManager{
 public class DistributedThread{
 [DllImport(“kernel32.dll”)]
 public static extern int GetCurrentThreadId();
 [DllImport(“kernel32.dll”)]
 public static extern int GetCurrentProcessor-

Number();
 private ThreadStart threadStart;
 private Thread thread;
 public int ProcessorAffinity { get; set; }
 public Thread ManagedThread{
 get{
 return thread;
 }
 }
 private DistributedThread(){
 thread =

new Thread(DistributedThreadStart);
 }
 public DistributedThread(ThreadStart

threadStart) : this(){
 this.threadStart = threadStart;
 }
 public void Start(){
 if (this.threadStart == null) throw new

InvalidOperationException();
 thread.Start(null);
 }
 private void DistributedThreadStart(object

parameter){
 try{
 Thread.BeginThreadAffinity();
 if (ProcessorAffinity != 0){
 CurrentThread.ProcessorAffinity =

new IntPtr(ProcessorAffinity);
 }
 if (this.threadStart != null){
 this.threadStart();
 }

fig. 1. The value of the ProcessorAffinity property when using 4 cores and the 2–4th cores

InformatIon and Control SyStemS:
InformatIon teChnologIeS

7Technology audiT and producTion reserves — № 6/2(38), 2017

ISSN 2226-3780

 else{
 throw new InvalidOperationEx-

ception();
 }
 }
 finally{
 CurrentThread.ProcessorAffinity =

new IntPtr(0xFFFF);
 Thread.EndThreadAffinity();
 }
 }
 private ProcessThread CurrentThread{
 get{
 int id = GetCurrentThreadId();
 return (from ProcessThread th in

Process.GetCurrentProcess().Threads
 where th.Id == id select th).

Single();
 }
 }
 }
}

Now the developed class DistributedThread can be used
in the following projects.

To determine the optimal algorithm for distributing
tasks between the cores, four projects are developed, the
first of which (Project No. 1) simulates the work of the
Windows Explorer, which tries to evenly distribute the
tasks between the hardware 4 cores of one processor. This
Project No. 1 is benchmark for the relative evaluation
of other projects by timing criteria (s), power consump-
tion (W), temperature (°C) and percentage load to the
processor, taking into account the background tasks of
the operating system.

Each of the projects is carried out with the fol lowing
conditions:

1. Support for Hyper-Threading Technology is disabled.
2. The HWMonitor utility is active.

3. Projects are run in turn with the same number of
background tasks.

To optimize the UAV’s power consumption, it is ne-
cessary to focus on the functional composition of UAV
components. Since UAV has a sufficiently large number
of sensors, the UAV can be classified as an information
and measuring system (IMS). Therefore, it is advisable
to consider the possibility of additional feeding of the
UAV components from the energy of the measuring signal.

The main stages in solving the problem of additional
power supply of the UAV are (Fig. 2):

– selection of the type of physical impact on the primary
converter, as well as the sensor (S), which operation
is based on this type of signal conversion;
– selection of the parameters of the primary converter
capable of satisfying both informational and energy
needs of the information and measuring device (IMD);
– selection of the energy storage element – informa-
tion processing device (IPD);
– selection of the standard for transmission of mea-
surement results from the WITD to the ICS.
To investigate the main processes while ensuring the

continuous operation of the IMS when feeding components
from the energy of the measuring signal, a model for the
interaction of the nodes of the circuit is constructed with
allowance for time relationships (Fig. 3).

The energy that the sensor receives from the energy
of the measuring signal (the first link) accumulates in
the energy storage element (second link). The function
of energy dependence on time (loss, accumulation, con-
sumption) has the form F1(t). Depending on the chosen
scheme for connecting the accumulation element, there are
losses in the transmission of energy with a transmission
factor d1. In the scheme of accumulation with time, energy
is also lost in accordance with the law F2(t). The load
is consumed according to the function F3(t) (third link).
In this case, the transmission coefficient d2 describes the
losses when the load is connected to the power storage
scheme.

Object of
monitoring

IMD

IPD WITD ISCS

fig. 2. Components of the information measuring system

Power source
(Sensor)

Energy storage Energy consumer

F1(t)
F2(t) F3(t)

δ1 δ2

t1 t2 t3

S

fig. 3. Model of interaction of the nodes of the information measuring system

ІнформацІйно-керуючІ системи:
ІнформацІйнІ технологІї

8 Технологічний аудиТ Та резерви виробницТва — № 6/2(38), 2017

ISSN 2226-3780

If the relationship between the described variables is
fulfilled:

F1(t)>d1F2(t)+d2F3(t), (2)

in this case, the continuous IMS operation will be en-
sured. That is, the addition of energy to the system will
be greater than it is consumed at all nodes of the circuit.

6. research results

The content of the projects and the results of their
implementation are shown in Fig. 4–7 and are summa-
rized in Table 1.

In Project No. 1, a simulation of the operation of the
OS automatic scheduler is performed: four parallel flows are
created for 150 iterations on the cores from the 1st to the
4th (Fig. 4, a), in spite of the fact that the automatic sche-
duler tries to evenly load each of the four cores (Fig. 4, b).

In Project No. 2, let’s create two parallel flows: 300
iterations on the 1st core and 300 iterations distributed
between the 2–4th cores (Fig. 5, a). The second thread is
distributed by the Windows automatic scheduler into three
cycles of Xi iterations in each such that: Х2+Х3+Х4 = 300.
The exact values of Xi are not defined, since it is un-
known how the OS automatic scheduler will divide the
flow between the three cores. But, with the monitoring
data in Fig. 4, b it can be seen that the OS automatic
scheduler tries to load the cores 2–4th evenly. Thus, the
algorithm implemented in Project No. 1 is confirmed to
simulate the actions of the OS automatic scheduler in the
distribution of tasks between the processor cores.

In Project No. 3, an algorithm has been implemented,
along which one serial thread of 600 iterations on the
1st core is created (Fig. 6). Analysis of the results of
this algorithm is important, as in the 4-core single-chip
processors on the basis of which UAV computing systems
are built (most often these are different models of ARM
Cortex processors), there is no support for Hyper-Threading,
as in Intel processors. Therefore, if do not separate the
tasks into threads, as suggested in this paper, for exam-
ple, for the ARM Cortex A9 processor it is possible in
Asymmetric Multiprocessing (AMP) mode to get all the
load on the 1st core (Fig. 6, a) [2]. Then the timing of
the task for Project No. 3 will increase almost threefold
compared to the benchmark of Project No. 1 (Table 1).

Project No. 4 implements an algorithm according
to which the 1st core is not involved, and to the 2–4th co-
res 3 parallel threads are made for 200 iterations each
(Fig. 7, a). But, according to the monitoring of resources
on the 1st core, activity is registered, it can be explained
by processing the background OS processes (Fig. 7, b).
That is why, the proposed algorithm for manual binding
of a test task to 2–4th cores can be considered optimal.
In this case, the 1st core is unloaded in a fast way will
be able to work out the tasks associated with the critical
application of the UAV. For example, adjusting the route
when a mechanical obstacle appears on the path of the
UAV, switching to optical navigation when it is impossible
to obtain GPS coordinates, and the like. As a test task
of the Project No. 4 in this case, one can consider the
compression of the received video stream, the preparation
of data for transmission using the communication module
with the UAV to the ground command center or to the
main drone.

a

b

fig. 4. CPU use for Project No. 1:
a – block diagram; b – oscillogram

InformatIon and Control SyStemS:
InformatIon teChnologIeS

9Technology audiT and producTion reserves — № 6/2(38), 2017

ISSN 2226-3780

a

b

fig. 5. CPU use for Project No. 2: a – block diagram; b – oscillogram fig. 6. CPU use for Project No. 3: a – block diagram; b – oscillogram

a

b

ІнформацІйно-керуючІ системи:
ІнформацІйнІ технологІї

10 Технологічний аудиТ Та резерви виробницТва — № 6/2(38), 2017

ISSN 2226-3780

a

b

fig. 7. CPU use for Project No. 4: a – block diagram; b – oscillogram

table 1
Benchmarking results for four projects

Indicator
Project
No. 1

Project
No. 2

Project
No. 3

Project
No. 4

Used
software

Timing (Average
Time), s

12.7 24.6 47.2 16.5
Own deve-
lopment

Power Consumption
(Average Power), W

58.5 38.9 27.3 49.3
HWMonitor

v.1.33.0

Temperature, °С 75 62 62 80
HWMonitor

v.1.33.0

CPU utilization, % 100 56 31 77
HWMonitor

v.1.33.0

Fan’s number of
rotations, RPM

1900 1560 1505 1599
HWMonitor

v.1.33.0

When benchmarking, a discrepancy of the indicators is
possible, which is due to the fact that monitoring programs
read the readings of the sensors every 2, 3 or 5 seconds.
This may not coincide with the timings of test projects.

According to the monitoring of resources (Table 1),
obtained by the HWMonitor, it is possible to significantly
reduce the temperature at the 1st core by manually re-
distributing the problem between the processor cores for
Project No. 4 (Fig. 8). Almost 13 % compared to all other
projects. Due to this, when starting a new OS background
process, which can be associated with a critical applica-
tion of the UAV (loss of GPS coordinates, inclusion of
the optical navigation task, instant recalculation of the
course due to a gust, etc.), the use efficiency of the CS
is greatly improved.

30

40

50

60

70

80

90

1 2 3 4

Te
m

pe
ra

tu
re

, º
C

Core number

Project No. 1 Project No. 2 Project No. 3 Project No. 4

fig. 8. The temperature of a single-chip processor with cores details

In spite of the fact that the algorithm of Project No. 4
proved to be optimal for benchmarking, we will explain the
program code of the proposed algorithm in more detail.

First, let’s connect the namespace in which the Dis-
tributedThread class, developed by the authors, is declared:

using System;
using System.Threading;
using DistributedWorkManager;

namespace ConsoleApplication1{
 class Program{

InformatIon and Control SyStemS:
InformatIon teChnologIeS

11Technology audiT and producTion reserves — № 6/2(38), 2017

ISSN 2226-3780

The next step is to set the timers and size of the array:

 static Random rnd = new Random();
 static readonly int N=10000;
 static void Main(string[] args){
 DateTime t=DateTime.Now;

The CountdownEvent class, which is used in the fol-
lowing code, is necessary to synchronize and unblock
threads waiting in the queue.

In this case, the main code will not be executed
until it receives a certain number of signals (in our case,
three).

Then create an object of the DistributedThread class,
bind it to the 2nd core, and start it. To adhere to the
logic of actions, we call the variable thread2 (and not
thread1). Such notation provides clarity to which core
the binding is made to:

 using (CountdownEvent e =
new CountdownEvent(3)){

 DistributedThread thread2 =
new DistributedThread(delegate

 {
 for (int k = 0; k < 200; k++){
 int[] intArray = new int[N];
 for (int i = 0; i < N; i++)
 intArray[i] =

rnd.Next(100 + k, 1000 + k);
 int temp, j;
 for (int i = 1;

i < intArray.Length; i++){
 temp = intArray[i];
 j = i – 1;
 while (j >= 0 &&

intArray[j] > temp){
 intArray[j + 1] =

intArray[j];
 j--;
 }
 intArray[j + 1] =

temp;
 }
 }
 e.Signal();
 });
 thread2.ProcessorAffinity = 2;
 thread2.Start();

Creating and running threads thread3 and thread4
are similar to thread2, so the code is omitted. After the
completion of all three threads on the console, let’s dis-
play the timer value.

 e.Wait();
 }
 Console.WriteLine($”{DateTime.Now - t}”);
 }
 }
}

Below is a diagram that clearly demonstrates the in-
crease in power consumption depending on the number
of involved cores (Fig. 9).

0 20 40 60 80

Project No. 1: 4 threads

Project No. 2: 2 threads

Project No. 3: 1 thread (1 core)

Project No. 4: 1 thread (3 cores)

Energy consumption, W Timing, s

fig. 9. Power consumption in a single-chip computing processor
depending on the number of loaded threads

A 4-thread approach is most effective with timing,
however, it is also the least energy-efficient. Therefore,
the most effective use of UAV computing resources will
ensure distribution according to the algorithm of pro-
ject No. 4 of tasks not related to navigation and with
the control of drones.

7. sWot analysis of research results

Strengths. When using a UAV, everyone is faced with
the need to have a stable system, especially when the UAV
can be used critically. Therefore, it is extremely important
that the UAV computer system immediately learns the
necessary course changes when obstacles appear, when
communications with the operator fail, with a sudden drop
in the battery charge, etc. In this case, the algorithms for
unloading the 1st core, on which all the system processes
are normally performed, from calculation of monitoring
and functional tasks can bring undoubted benefits. In ad-
dition, the additional power supply of the UAV CS from
the energy of the measuring signal is suggested, so as not
to disconnect, for example, the communication modules,
as provided by the UAV control systems to save battery
power. The proposed approach in the complex signifi-
cantly improves the efficiency of using UAVs based on
a multi-core calculator and improves the conditions for
its interaction with the ground command center.

Weaknesses. The weak side of the research is the lack
of analysis of energy costs when performing various tasks
in quality with the use of the proposed dispatch algorithm
in comparison with the automatic scheduler of several
CPU models. Full automation of the on-board dispat-
ching is complicated by the fact that each algorithm runs
autonomously, that is, there is no choice between modes
or better timing, or the lowest power consumption.

Opportunities. In the long term, it is expedient to carry
out a study of the effect of the distribution of compu-
tations between CPU cores for UAVs based on various
models of single-chip processors. In addition, it would be
very useful to numerically determine the fate of the power
consumption, which can be compensated by the additional
supply of the CS from the energy of the measuring signal
for various sets of sensors on board the UAV.

Threats. In the field of creating new UAV models, each
manufacturer creates its own proprietary software for con-
trolling the cursor and computing processes in the UAV CS.
Therefore, the algorithmic and software development has

ІнформацІйно-керуючІ системи:
ІнформацІйнІ технологІї

12 Технологічний аудиТ Та резерви виробницТва — № 6/2(38), 2017

ISSN 2226-3780

very few chances to enter the world market. Its niche is
the use in individual enterprises, which are not related to
the economic areas of UAV applications, but to critical
situations (monitoring emissions of toxic substances into
the atmosphere, search for injured people or man-made
threats, etc.). It is now difficult to predict the negative
risks of the developed approach. But it is possible to say
that additional costs are not needed to use the proposed
approach in specific production situations.

8. Conclusions

1. Ten most common physical effects on the primary
power converters of the measuring signal from UAV sensors
are analyzed. It is established that piezoelectric sensors are
the most energetically attractive for providing additional
power to the UAV modules.

2. The model of interaction of UAV units as an infor-
mation-measuring system is constructed. It is determined
that the continuous IMS operation will be provided that
the addition of energy to the system will be greater than
it is spent on all nodes of the circuit.

3. As a result of the analysis of the mechanism of
automatic schedulers of OS tasks it is established that
under these conditions the processes are distributed among
all four CPU cores. But, in that case, the 1st core has no
reserves in comparison with other cores by loading (loaded
by 100 %) and temperature (there is a level with the
other involved cores). The number of revolutions of the
cooler and the power consumption of the processor in
the automatic scheduler mode is the highest. Therefore,
in the case of a critical situation, when it is required
that there may be a significant increase in computations
on the 1st core for UAV control system tasks, such tasks
can queue on previously started tasks. From the point of
view of life support of the UAV, this is unacceptable.

4. Studies have shown that parallelizing tasks that can
be performed as multithreaded (video stream compression,
data transmission over various communication channels,
etc.), improves the efficiency of UAV usage. Binding pro-
cesses to three cores instead of four by 23 % increases
the total time of the task in comparison with the time
of executing a similar task on one core.

5. The obtained results of the studies of the deve-
loped scheduling algorithms for tasks on a 4-core processor
makes it possible to define as the optimal algorithm for
reserving the resources of the first core of a multi-core
single-chip CPU for calculations of primary importance.
The use of such algorithm of calculation contributes to
the improvement in the efficiency of the use of UAVs.
So, for example, for DJI Phantom 4, the distribution of
tasks only for the 2–4th cores reduces power consumption
by 10.3 % and provides an increase in the flight time by
3.1 minutes. Even with a non-maximal flight speed of
this UAV model at 50 km/h (P mode) [21], this will
increase the range of professional aerial photography by
1.3 km, taking into account the return to the base.

acknowledgements

The work is supported by the Ministry of Education
and Science of Ukraine within the state budget research
project of the Petro Mohyla Black Sea National Univer-
sity on the topics «Development of Polymetric Sensors

with Powerupply from Measuring Signal Energy for In-
formation and Measurement Systems» (State Registration
No. 0115U000316, 2015–2016) and «Development of Wire-
less Non-volatile Information and Measuring Networks of
Critical Applications of Military and Civil Use» (State
Registration No. 0117U000447, 2017–2018).

references

1. Tencent and ZEROTECH Unveil Commercial Drone Based
on Qualcomm Snapdragon Flight Platform [Electronic re-
source] // Qualcomm Technologies, Inc. – 2016, January 5. –
Available at: \www/URL: https://www.qualcomm.com/news/
releases/2016/01/05/tencent-and-zerotech-unveil-commercial-
drone-based-qualcomm-snapdragon

2. Cortex™-A9. Revision: r4p1. Technical Reference Manual [Elec-
tronic resource]. – ARM, 2012. – Available at: \www/URL:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/
DDI0388I_cortex_a9_r4p1_trm.pdf

3. Development of multi-threaded applications using optimization
method for platforms [Electronic resource] // Intel Software
Developer Zone. – 2011, February 3. – Available at: \www/
URL: https://software.intel.com/ru-ru/articles/61695

4. Task Scheduler How To... [Electronic resource] // Microsoft Tech-
Net. – Available at: \www/URL: https://technet.microsoft.com/
en-gb/library/cc766428(v=ws.11).aspx

5. Prostaia model’ planirovshchika OS [Electronic resource] //
Habrahabr. – 2012, October 12. – Available at: \www/URL:
https://habrahabr.ru/post/154609/

6. Troubleshooting Task Scheduler [Electronic resource] // Mi-
crosoft TechNet. – Available at: \www/URL: https://technet.
microsoft.com/en-gb/library/cc721846(v=ws.11).aspx

7. Tanenbaum, A. S. Modern Operating Systems [Text] / A. S. Ta-
nenbaum, H. Bos. – Ed. 4. – Amsterdam, The Netherlands:
Pearson Prentice-Hall, 2015. – 1072 p.

8. Arhitektura: gibkaia, effektivnaia [Text] // CHIP. – 2013. –
No. 9. – P. 52–53.

9. Krainyk, Y. Hardware-oriented turbo-product codes decoder
architecture [Text] / Y. Krainyk, V. Perov, M. Musiyenko,
Y. Davydenko // Proceedings of the 2017 IEEE 9th Inter national
Conference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications (IDAACS’2017),
Bucharest, Romania, September 21–23, 2017. – Vol. 1. –
P. 151–154. doi:10.1109/idaacs.2017.8095067

10. Burlachenko, I. Devising a method for the active coordination
of video cameras in optical navigation based on multi-agent
approach [Text] / I. Burlachenko, I. Zhuravska, M. Musiyen-
ko // Eastern-European Journal of Enterprise Technologies. –
2017. – Vol. 1, No. 9 (85). – P. 17–25. doi:10.15587/1729-
4061.2017.90863

11. Nikiforov, V. V. Basic Requirements to the SPIIRAS Transac-
tions Paper Format Feasibility of Real-Time Applications on
Multicore Processors [Text] / V. V. Nikiforov // SPIIRAS
Proceedings. – 2009. – Vol. 8. – P. 255–284. doi:10.15622/sp.8.12

12. Zhuravska, I. M. Self-powered information measuring wireless
networks using the distribution of tasks within multicore proces-
sors [Text] / I. M. Zhuravska, O. O. Koretska, M. P. Musiyenko,
W. Surtel, A. Assembay, V. Kovalev, A. Tleshova // Photonics
Applications in Astronomy, Communications, Industry, and
High Energy Physics Experiments, Wilga, Poland. – 2017,
August 7. – P. 1–13. doi:10.1117/12.2280965

13. Sharapov, V. The electromechanical feed-back in piezoceramic
sensors and transducers [Text] / V. Sharapov, I. Sarwar, I. Chu-
daeva, M. Musienko // Proceedings of the IEEE Ultrasonics
Symposium, Sendai, Japan, October 5–8, 1998. – Vol. 1. –
P. 543–544. doi:10.1109/ultsym.1998.762208

14. Trasvina-Moreno, C. Unmanned Aerial Vehicle Based Wireless
Sensor Network for Marine-Coastal Environment Monitoring
[Text] / C. Trasvina-Moreno, R. Blasco, A. Marco, R. Casas,
A. Trasvina-Castro // Sensors. – 2017. – Vol. 17, No. 3. –
P. 460. doi:10.3390/s17030460

15. CPU Stability Test [Electronic resource] // BenchmarkHQ. –
2017. – Available at: \www/URL: http://www.benchmarkhq.ru/
russian.html?/b.html

16. Chakos, B. Here’s how [Text] / B. Chakos // PCWorld. –
2013. – P. 89.

InformatIon and Control SyStemS:
InformatIon teChnologIeS

13Technology audiT and producTion reserves — № 6/2(38), 2017, ©  Raskin L., Sira O., Parfeniuk Y.

ISSN 2226-3780

17. Property Process.ProcessorAffinity [Electronic resource] //
Microsoft Developer Network. – 2016, October. – Available
at: \www/URL: https://msdn.microsoft.com/ru-ru/library/sys-
tem.diagnostics.process.processoraffinity(v=vs.110).aspx

18. Intel® Math Kernel Library – Documentation [Electronic
resource] // Intel Software Developer Zone. – 2017, Septem-
ber 13. – Available at: \www/URL: https://software.intel.com/
en-us/articles/intel-math-kernel-library-documentation

19. Grama, А. Introduction to Parallel Computing [Text] / A. Grama,
G. Karypis, V. Kumar, A. Gupta. – Ed. 2. – Boston, MA, US:
Addison-Wesley, 2003. – 656 p.

20. Richter, J. CLR via C# [Text] / J. Richter. – Ed. 4. – Red-
mond, WA, US: Microsoft prePress, 2012. – 813 p.

21. Phantom 4 Pro: specifications [Electronic resource] // DJI. –
2017. – Available at: \www/URL: https://www.dji.com/ru/
phantom-4-pro/info

повыШение эффективности испольЗования
Беспилотных летательных аппаратов За счет
распределения Задач меЖду ядрами вычислительного
процессора

Рассмотрены алгоритмы распараллеливания задач между
ядрами 4-ядерных процессоров вычислительных систем бес-
пилотных летательных аппаратов (БПЛА). Показано, что вы-
свобождение 1-го ядра и распределение задачи между 2–4-м
ядрами на 10,3 % уменьшает энергопотребление процессора.

Применение разработанного алгоритма в комплексе с предложен-
ным дополнительным питанием от энергии измерительного сиг-
нала датчиков повышает эффективность использования БПЛА.

ключевые слова: вычислительные системы беспилотных
летательных аппаратов (БПЛА), 4-ядерный процессор, ими-
тационное моделирование.

Zhuravska Iryna, PhD, Associate Professor, Department of Com-
puter Engineering, Petro Mohyla Black Sea National University,
Mykolaiv, Ukraine, e-mаil: irina.zhuravska@chmnu.edu.ua, ORCID:
http://orcid.org/0000-0002-8102-9854

Borovlyova Svitlana, Senior Lecturer, Department of Software
Engineering, Petro Mohyla Black Sea National University, Mykolaiv,
Ukraine, e-mаil: svetlana.borovlyova@chmnu.edu.ua, ORCID: http://
orcid.org/0000-0003-1994-0556

Kostyria Mykhailo, Department of Intelligent Information Systems,
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine,
e-mаil: assassin19741@gmail.com, ORCID: http://orcid.org/0000-
0001-9537-6374

Koretska Oleksandra, Postgraduate Student, Department of Com-
puter Engineering, Petro Mohyla Black Sea National University,
Mykolaiv, Ukraine, e-mаil: alex.koretska@chmnu.edu.ua, ORCID:
http://orcid.org/0000-0002-1240-1472

UDC 519.853.33
DOI: 10.15587/2312-8372.2017.118338

analysIs and deVelopment
of CompromIse solUtIons
In mUltICrIterIa transport tasKs

Розглянуто метод розв’язання багатокритеріальних транспортних завдань. Запропонована
ітераційна процедура, в якій початковий план завдання є оптимальним за основним з крите-
ріїв. На наступних ітераціях реалізується уступка за основним з критеріїв з метою поліпшен-
ня значення додаткових. Процедура триває до отримання компромісного рішення. Розглянуто
приклади розв’язання задачі.

ключові слова: багатокритеріальна транспортна задача, ітераційне рішення, формування
Парето-безлічі рішень.

raskin l.,
sira o.,
parfeniuk y.

1. Introduction

In the practice of planning and organization of trans-
portation of goods, two different mathematical models are
traditionally used:

– the transport task by the cost criterion (at the same
time the average total cost of transportation is mi-
nimized);
– the transport task by the time criterion (the maxi-
mum of the traffic durations is minimized).
These tasks are alternative in the sense that their op-

timal plans, as a rule, do not coincide (the shortest route
is not necessarily the cheapest one). The technologies for
solving these problems have been well worked out [1–3]
and constructively take into account the different speci-
fics and features of the productions of each of them. For
this reason, they are fundamentally different and their

integration into a single computational procedure is very
problematic. At the same time, when solving the practical
problems of transport logistics, there is a need to solve
compromise problems, for example, such:

a) to find a transportation plan that minimizes the
average total cost of transport, provided that the longest
of them does not exceed the prescribed one;

b) to find a transportation plan that minimizes the
maximum of the transportation duration, provided that
their average total cost does not exceed the specified value.

It should be noted that when solving practical tasks
of transportation planning, it is expedient to take into
account one more criterion – the probability of successful
implementation of the transportation plan for the aggregate
of routes from suppliers to consumers, which are determined
by the selected plan. The development of a method for
solving this problem is of theoretical and practical interest.

