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DEVELOPMENT OF GENERALIZED
TECHNIQUE FOR FORMATION OF
CHARACTERISTIC FUNCTIONS AND
BALYUBA-NAIDYSH COORDINATES IN THE
COMPOSITION METHOD OF GEOMETRICAL
MODELING
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nux cucmem. Haiibinvw 6ausvkum 00 14020 € KOMNOSUUIUHUL MeMOO zeomempuuinozo modenosanns (KMIM),
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€ BANCIUBUM OJLSL NPOBEOCHIA KOMN IOMEPHUX eKCNEPUMEHIE 3 Memot0 nidsuients adexeamnocmi nobyoosanoi
2eomempuunoi modeli.
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1. Introduction

The development of information technology requires
new methods of modeling situations and processes that
adequately reflect economic activity. That is, an automated
workplace that allows to simulate daily situations and
processes at the site must be directly close to the person
making a decision about the effective conduct of economic
activities. To do this, the method of geometric modeling,
the resulting model and software implementation should be
easy to use, easy to adjust to the activities of the business
entity and use computers of common capacities.

The circle of tasks that are daily solved by business
entities is quite large and diverse and, at the same time,
they are diverse, complex, multifactorial, multilayered, dy-
namic, have heterogeneous constituent elements and, as
a rule, are defined in multidimensional parameter spaces.
The solution of these problems requires a large number of
structurally and functionally different methods. However,
all these requirements for the model’s capabilities should
be based on one method of geometric modeling (MGM),
which will ensure the universality of models and their
ease of use in practice. At the moment, only the com-
posite method of geometric modeling (CMGM), based on
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the point-like numerous Balyuba-Naidysh (BN-calculus),
corresponds to the highest degree to the requirements
set forth above. One of the main stages of CMGM in
the construction of the model is the formation of cha-
racteristic functions and on their basis the determination
of BN-coordinates.

The creation of techniques for the formation of charac-
teristic functions and the determination of BN-coordinates
on their basis is an actual task of global interpolation,
because it eliminates the need to solve systems of linear
equations for determining interpolation coefficients. Due
to this, the solution of the problem is simplified and the
resource costs for solving it are reduced. The urgency of
applying B-curves is also determined by the fact that their
projection on the coordinate axis occurs without changing
the values of the BN-coordinates. This is important for
a deeper analysis using models built on B-curves that
occur in a system or facility. Thus, the development of
a generalized technique for the formation of characteristic
functions and BN-coordinates is topical.

2. The ohject of research
and its technological audit

The object of research is the technique of forming cha-
racteristic functions and the Balyuba-Naidysh coordinates
in the composite method of geometric modeling.

The modeling of economic, technological and any other
processes that occur on real objects is complex and mul-
tifactorial. Hence the existing methods and models are
quite complex, with significant limitations on the number
of incoming factors.

One of the most problematic places is the comple-
xity and narrow scope of each of the existing modeling
methods, restrains their distribution and practical imple-
mentation on real business entities. Hence there is a need
to develop a universal method for modeling multifactor
systems. The closest to this is the composite method of
geometric modeling, which universality is provided, first
of all, by using its own technique of forming characteristic
functions and BN-coordinates.

3. The aim and ohjectives of research

The aim of the research is development of a generalized
technique for the formation of characteristic functions
and the Balyuba-Naidysh coordinates (BN-coordinates)
in the composite geometric modeling method (CMGM).

To achieve this aim, it is necessary to perform the fol-
lowing tasks:

1. To form the principles of the formation of charac-
teristic functions in the CMGM.

2. To determine the form of the function, forms a BN-
coordinate.

3. To determine the nature and properties of BN-coor-
dinates of the B-curve.

4. Research of existing solutions
of the prohlem

In order to develop a universal method of geometric
modeling that would satisfy all the requirements for the
model, let’s consider the main directions and existing ap-
proaches to the geometric modeling of multifactor systems.

The most difficult in geometric modeling is the design
and reproduction of surfaces of complex shapes. Such surfa-
ces, as a rule, must satisfy many, predefined, conditions [1, 2].
Even more complex is the construction of curves and sur-
faces with predetermined integrative characteristics and
metric relations [3].

Scientific development [4, 5] plays an important role in
shaping the directions of scientific research in Ukraine to
restore surfaces with complex initial requirements. The most
known methods of global interpolation of one-dimensional
geometric figures of curves are the methods described in [6, 7].
Questions of local interpolation and the use of complex
curves are given attention in [8].

However, despite the considerable scientific potential in
the field of modeling multifactor systems, currently exist-
ing methods do not meet all the requirements of practical
application, in particular, simplicity and universality. The
compositional method of geometric modeling (CMGM),
based on the point-like Balyuba-Naidysh [9, 10], is closer
to fulfilling all the conditions formulated. The key mo-
ment that ensures the universality of this method is the
technique for the formation of characteristic functions and
BN-coordinates. Thus, the development of a generalized
technique for the formation of characteristic functions
and BN-coordinates is promising.

5. Methods of research

In the course of research, scientific methods are used:
— method of analysis when studying existing methods
of multifactor modeling;

— method of classification when identifying typical
problems of modeling processes on real objects as multi-
factor systems;

— methods of the Balyuba-Naidysh point calculation
are used as a basis for the developed technique for the
formation of characteristic functions and BN-coordinates;
— method of generalization in determining the universal
properties of the model obtained.

6. Research resulis

The composite method of geometric modeling (CMGM) of
multifactor systems is developed on the basis of the Balyuba-
Naidysh point calculation (BN-calculus). In CMGM, the key
to the construction of a multifactor model is the formation
of the characteristic functions and Balyuba-Naidysh coor-
dinates (BN-coordinates). The main advantage of CMGM
is its versatility. This is achieved, first of all, thanks to
the developed generalizing technique of algebraic forma-
tion of characteristic functions and BN-coordinates. The
essence of this technique can be discerned as follows. Let
it be necessary to interpolate three points A, C, B (Fig. 1).

A characteristic function for three points A, C, B will
be called functions p(t), q(t), r(t) taki such that:

For point A: p,(t4)=1 pa(tc)=0; pa(ts)=0;

For point C: qc(t4)=0; gc(tc)=1; gc(t)=0;

For point B: r3(t4)=0; 75(tc)=0; r(t5)=1.

The value of the parameter t for the initial points A,
C, B will be determined by the ratio of the corresponding
differences in the coordinates x; of these output points:

(1
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Fig. 1. The scheme for determining the #; parameter

Thus, the arc of the Balyuba curve (B-curve) [11]
interpolates the original points A, C, B, in accordance
with (1), in the range of the parameter 0<¢<1 values,
since at point A the parameter ¢, =0, and at point B the
parameter ¢z =1.

B-curve is the curve M, which has the equation:

palt)  ac(t)  m()

M=A +C +B ,
o o

0<t<t, (2)

where p,(t)/o; qc(t)/o; r5(t)/o is called BN-coordinates,
the sum of which is:

Pa (l) N qc (l) 4 s (l)

:17

where o= p,(¢)+qc(¢)+7(t).

Curve (2), for the fulfillment of these conditions, will
pass through the output points A, C, B.

Let’s show the technique for the formation of cha-
racteristic functions p,(¢); gc (¢); 75 (¢).

1. Define the characteristic function p(¢) for point A.

The characteristic functions will be formed as a product,
which multipliers are expressions, transform the product —
the characteristic function into zero or one, according to
the predetermined values of the parameter ¢.

Let’s consider a formation p,(¢;) that should be zero.
The parameter ¢, complemented by ¢ to 1 at point B is
equal to zero: ¢ =1-t;=0. So, let’s choose p,(t;)=t.

Thus, ¢ is the first factor of the desired characteristic
function p(¢), but its value at the point C will not be
zero, but will have values:

_ X,
Le=|1--2|.
Xpa

Then, to convert the expression:

(e
Xpa

to zero, it must be multiplied by the second factor, which
at t=t, would equal zero that is:

pe(t)=t-0, 3)

where a=0 — the artificially created multiplier equal to

Then, taking into account (4), the expression (3)
for the required characteristic function has the follo-
wing form:

pe(t)=1-(€ —kgt). 5)

Finally, let’s consider the formation of the expression
of the characteristic function for point A, in which, for
the value of the parameter t=t, =0, its expression value
Pa(t4)=1 must be equal to one. To do this, let’s calcu-
late the function (5) for the parameter ¢, =0 value, for
which ¢,=1-0=1:

Pa(ta)=04(Ts—keta)=1-(1-kg,-0)=1. (6)

Thus, with (6) it follows that (5) also satisfies the
requirement for the expression p,(¢)=1 at the point A
with respect to the value of the parameter ¢, =0.

Whence, the final expression of the characteristic func-
tion p(¢) near the point A, in the point equation (2),
will have the form:

p(t)=1-(t —ket). @)

2. Let’s define the characteristic function ¢(¢), which
is a multiplier for the point C from the point equation (2).

At point A, the characteristic function ¢, (¢) must
equal zero by the value of the parameter ¢=t,. Since
there is a parameter ¢, =0 at point A, the expression that
will be the first factor for the characteristic function will
have the form:

qa(t)=t. ®)

Next, in the second step, let’s define for the characte-
ristic function an expression g (¢) for the point B at which
¢5(¢) must be zero and, at the same time, contain the
first factor (8). Since the value of the parameter ;=0 at
point B, the expression g(¢) for point B will look like:

qs(t)=t-t. 9)

Finally, in the third step, let’s define the expression
gc(t) for the point C, in which it must equal unity by
the value of the parameter ¢=t.. Let’s expand (9), sub-
stituting the parameters t. and 7,

—  Xea Xca
te)=to-to=—-|1—-———|#1.
qC(C) ¢ le Tar ( xBA]

(10)

The expression for the right-hand side of (10) is not
equal to 1. However, the requirement remains, at the point C
by the value of the parameter ¢=t¢, gc(tc)=1. To fulfill
this requirement, let’s introduce the coefficient k¢, in equa-
tion (10), then it is possible to write:

zero for t=t,. Keal_Fea e, =1, (11)

For example, let’s form the simplest possible, the se- Xpa Xpa
cond factor in the form:

SO
o=t — kcpt, (4) k 1 1
_ T v

where kg, =1¢/t; — a constant value determined for point C; Xea 1_@ lete
te =xcy/xps — the value of the parameter ¢ at point C. Xpa Xpa
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Then, taking (11) as the third factor, the final expres-

sion of the characteristic function ¢(¢) will have the form:
_

t)=ke, tt =—.

q( ) Cq tele

(12)

3. Let’s consider the sequence of formation of the cha-
racteristic function 7(¢), in the point equation (2) is a factor
for point B.

Let’s choose:

r(t)=¢, (13)
since at point A the parameter ¢=t,=0.

In the second step, it is necessary to form an expres-
sion 7 (¢) for the characteristic function, taking into ac-
count the already determined first factor 7, (¢)=¢ from (13).
However, the parameter ¢ at the point C is not zero:

Xca

tc £ 0;—) tC =,
XA

then

X
A _[1—“J
Xpa

The second factor must depend on the parameter and
simultaneously equal to zero, so let’s define it from the
following equation:

(ti—kc,-t)zoﬁkcr :ti

C

(14)

Then, the second factor of the expression 7 (t) for the
characteristic function r(¢) will be zero by the value of
the parameter ¢=t.. Taking into account what has been
said, let’s write:

1o (t)=t(C —kat).

Third step, let’s form the expression 7;(¢) of the charac-
teristic function 7(¢), which must be equal to 1 ry(¢)=1.
To begin with, in the equation (15) let’s substitute the
value of the parameter t=t:

(15)

1e(ty) =ty (ts —ketp)=1-(0— ke, 1) =

Taking into account that the last entry, let’s define the
last expression of the characteristic function 7, (t), which will
be equal to the characteristic function r(t) itself, that is:

1

O B e Y N

Let’s combine the results of the algebraic formation of
characteristic functions p(t); q(t); r(t) in Table 1.

The characteristic functions that ensure the conditions for
the passage of the B-curve (2) through the original points A,
C and B are written in the last row of Table 1. However,
these characteristic functions p(¢); g(¢); r(¢) is not consistent
and therefore does not represent BN-coordinates. In order
to function p(¢); ¢(¢); r(¢) become BN-coordinates, it is
necessary to fulfill one more sufficient condition:

p(t)+q(t)+r(t)=1. 17)
In most cases:
p(t)+q(e)+r(t)=1. (18)

In order that inequality (18) becomes equality we in-
troduce the matching factor o

1
= 19
PO el )
So
o p(t)+q()+r(r)]=1. (20)
Let’s open (20) and obtain:
(Tt} s Tt (F 1) = @1)

In equation (21), which consists of three terms:

F(f—kyt)o; =%

lele

o _
: —k—0~t(t—kc,.~t),

which are multipliers for the point equation (2). Let’s
write it taking into account (21):

o w
M= A-E(E =k t) 0+ C—-01= B—t(t—kc,,.t). (22)

= 1‘(—kc:- ‘1) =—ke. cle kcp
Tahle 1
Elements-factors of characteristic functions and characteristic functions
Parameters Characteristic functions
Ne Points —
t t p(t) q(t) r(i)
1 A 0 1 pa(t)=1(f - kgt) g (t)=t n(t)=t
_ _ 1t
2 I i L=1—t pe(t)=1-(f —kgt) 7 (f)= P n(t)=t-(f —kgt)
Cc'c
_ — 1
3 B 1 0 pe(t)=1 gs(t)=tt r(t)= I (f - kgt)
_ it 1
4 - - - p()=7-(F - kgt) 7(f)= = r(t)= ~7 (T = kqt)
c’c Lr
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This point equation of the current point M, which is
taken through three BN-coordinates on the plane, relative
to the basic (output) points A, C, B. These BN-coordinates
provide interpolation of points A, C, B.

Characteristic functions p(¢); g(¢); r(¢), shown in the
last row of Table 1, are the simplest, but are not the only
ones. There are many such characteristic functions. So, as
a consequence, with respect to the basis points A, C, B,
it is possible to define the set of BN-coordinates with the
help of which the geometric interpolation of the initial
points A, C, B will be performed. The presence of such
a possibility of variation in the modeling of B-curves will
make it possible to construct the most visible B- surface
modeling a system or object.

7. SWOT analysis of research results

Strengths. The model created in the CMGM is uni-
versal. This advantage has arisen due to the application
of the generalizing technique of algebraic formation of
characteristic functions. It is also important that the model
can take into account any desired finite number of fac-
tors simulated. The solution of the problem in pointwise
BN-calculus occurs on a spatial geometric figure, reflec-
ting the behavior of the system, and the result of the
decoupling can be projected on the axis or plane of the
projections for the purpose of analysis. The solution of
any problem of an n-dimensional space E" can always be
decomposed into n one-dimensional solutions for analysis.
The results of the analysis of one-dimensional solutions
are easily synthesized in the n-dimensional model of the
system. Since in a pointwise BN-multiple solution of the
problem occurs relative to the base points of the geo-
metric figure, the displacement of the geometric figure
does not require a conversion to the decoupling. That is,
the absence of position parameters relative to the global
coordinate system greatly simplifies the calculations, es-
pecially when the initial data is partially changed. Such
opportunity will significantly reduce the time and reduce
the cost of modeling complex multifactor systems. This
concerns multifactor modeling of real economic, technical
and any other systems, as well as the activity of design-
ing new systems. The model is quickly reconfigured when
the mode of operation of the model is changed. Computer
experiments will help to quickly analyze the activities in
many indicators, in particular, management objects, make
forecasts and make informed management decisions.

Weaknesses. The complexity of parametrization, the
unconventionality of the method, is a deterrent to the
use of CMGM. In particular, when implementing on real
business objects, establishing correct parametric links in
modeling is laborious, requires highly qualified specialists
who are fully aware of all the nuances of the enterprise’s
work in terms of economics, technology and technology,
energy consumption and the like.

Opportunities. Further development of CMGM and
creation of special software, it implements, opens new
opportunities in modeling of multifactor systems and pro-
cesses. The use of geometric modeling of B-curves with
BN-coordinates obtained through a generalized technique for
the formation of characteristic functions in the composite
method provides the universality of the CMGM. A one-,
two-, three-parameter B-curve can be considered in the
n-dimensional Euclidean space E". As a result, CMGM

can be used to solve problems in n-dimensional space,
and the result can be decomposed into n one-dimensional
projections, on which it is easy to analyze the decoupling.
This opens wide prospects for application, in particular,
in information systems supporting management decisions.

Threats. The limitation of the application of CMGM
is the complexity of parametrization of geometric figures
relative to the base points. Unusual approach, which is
irrespective of the coordinate method, requires special skills
of specialists, apply it in practice.

1. The principle of the formation of characteristic func-
tions is the operation of multiplying parameters and arti-
ficially designed coefficients. As a result of the definition,
the product at the node points becomes zero or one, and
in the intervals between the node points it changes from
zero to one. The number of factors of the characteristic
function is equal to the number of nodal points, the cha-
racteristic function interpolates.

2. It is shown that each of the BN-coordinates is a frac-
tional-rational function, taking values from zero to one.

3. It is determined that the BN-coordinates of one
B-curve form a system of interconnected fractional-rational
functions. A change in the value of one BN-coordinate
entails corresponding changes in the remaining BN-coor-
dinates, and the sum of all BN-coordinates, any value of
the parameter t from zero to one, will always be unity.

Thus, a generalizing technique for the algebraic forma-
tion of characteristic functions has been developed, the
transition from characteristic functions to BN-coordinates
has been determined for the interpolation of three points.
The technique used here can also be used for geometric
interpolation of four or more points. The possibility of
increasing the number of initial points of a geometric figure
for BN-interpolation extends the capabilities of models of
multifactorial processes, systems, etc.
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