Решение краевых задач

В. М. Куляпин, И. С. Елисеев, И. М. Аслямов, Е. В. Бовтрикова*

ФГБОУ ВПО Уфимский государственный авиационный технический университет, РФ, e-mail: Kulyapin_vm@mail.ru *ООО "Энергопромышленные технологии", Москва, РФ

Предложены и реализованы алгоритмы аналитических решений краевых задач при движении фазовых границ с использованием нелинейного дифференциального уравнения Chini.

Ключевые слова: процессы фазовых превращений испарения, катодные процессы, электрический разряд.

Введение

Появление сложных краевых задач теплопроводности вызвало значительные трудности в получении аналитических решений и привело к розработке численных методов. Но у численных алгоритмов есть серьезный недостаток — получаемые ими решения не поддаются оценке их качества. Аналитические решения более надежны, их можно проверить на удовлетворение исходным уравнениям и оценить величину отклонения [1, 2]. В данной статье развит один из подходов, позволяющий получить аналитические решения и соответствующую качественную оценку исследуемых процессов движения границ фазовых переходов.

Выделение энергии в объеме

Одномерная задача нагрева поверхностным источником плотностью q_i и объемным источником плотностью q_v в зоне, ограниченной внешней подвижной границей разрушения X_0 и границей плавления X, представлена на рис. 1. Рассмотрим только процесс плавления и испарения материала мишени.

Уравнение Фурье с учетом условий на границах раздела фаз запишется в виде:

для расплавленной зоны $X_0(t) \le x \le X(t)$

$$\frac{\partial^2 \vartheta_1}{\partial x^2} - \frac{1}{a_1} \cdot \frac{\partial \vartheta_1}{\partial t} = -\frac{q_V}{\lambda_1}; \tag{1}$$

Рис. 1. Модель переходных процессов фазовых превращений: 0 — зона паров; 1 — зона расплава; 2 — твердая фаза; T_{δ} , T_0 , T_m — температуры горения, испарения и плавления соответственно; $\vartheta_0(x,t)$, $\vartheta_1(x,t)$, $\vartheta_2(x,t)$ — профили температур в газообразной, жидкой и твердой фазах. © В. М. Куляпин, И. С. Елисеев, И. М. Аслямов, Е. В. Бовтрикова, 2014 для твердой зоны $x \ge X(t)$

$$\frac{\partial^2 \vartheta_2}{\partial x^2} - \frac{1}{a_2} \cdot \frac{\partial \vartheta_2}{\partial t} = 0.$$
 (2)

Граничные условия:

$$\vartheta_1(X,t) = \vartheta_2(X,t); \tag{3}$$

$$\lambda_{1} \left(\frac{\partial \Theta_{1}}{\partial x} \right)_{x=X} = \lambda_{2} \left(\frac{\partial \Theta_{2}}{\partial x} \right)_{x=X} - L\rho \frac{dX}{dt};$$
(4)

$$q_{0} + \lambda_{1} \left(\frac{\partial \Theta_{1}}{\partial x} \right)_{x = x_{0}} = \left[L_{0} \rho + \rho c (T_{0} - T) \right] \frac{dX_{0}}{dt};$$
(5)

$$\vartheta_2(x,0) = T; \qquad \vartheta_2(\infty,t) = T,$$
(6)

где *а*, *L*, *L*₀ — температуропроводность, теплота плавления и испарения.

Границы фазовых превращений

Если задаться профилем температур как функцией ширины зоны между границами фазовых переходов, координаты абсцисс и подставить в интеграл теплового баланса, получим дифференциальное уравнение для зоны фазовых превращений с известными начальными условиями.

Профиль температур жидкой фазы при одновременном воздействии поверхностного и объемного источников энергии находим с использованием решения [3], при этом задаем профиль в виде пластины, охлаждаемой с двух сторон:

$$\vartheta_1(x,t) = T_0 + \frac{T_m - T_0}{X - X_0} (x - X_0) + \psi(t) [(X - X_0)(x - X_0) - (x - X_0)^2].$$
(7)

Для определения функции $\psi(t)$ из (7) находим $\frac{\partial^2 \Theta_1}{\partial x^2}$ и $\frac{\partial \Theta_1}{\partial t}\Big|_{x=x_0}$,

подставляем в (1):

$$\frac{\partial^2 \vartheta_1}{\partial x^2} = -2\psi(t); \quad \frac{\partial \vartheta_1}{\partial t}\Big|_{x=x_0} = \frac{dT_0}{dt};$$
$$\psi(t) = \frac{q_V}{2\lambda_1} - \frac{1}{2a_1} \cdot \frac{dT_0}{dt}.$$

Подставляя полученное значение в (7), имеем

$$\vartheta_{1}(x,t) = T_{0} + \frac{T_{m} - T_{0}}{X - X_{0}} (x - X_{0}) + (\frac{q_{V}}{2\lambda_{1}} - \frac{1}{2a_{1}} \cdot \frac{dT_{0}}{dt}) \times \\ \times [(X - X_{0})(x - X_{0}) - (x - X_{0})^{2}].$$
(8)

Градиент температуры рассчитываем из уравнения

$$\frac{\partial \Theta_1}{\partial x} = \frac{T_m - T_0}{X - X_0} + \frac{q_V}{2\lambda_1} (X - X_0) - \frac{q_V}{\lambda_1} (x - X_0) - \frac{1}{2a_1} \frac{dT_0}{dt} (X - X_0) + \frac{1}{a_1} \frac{dT_0}{dt} (x - X_0).$$
(9)

Градиент температуры на границе плавления при *x* = *X* имеет вид

191

$$\frac{\partial \Theta_1}{\partial x}\Big|_{x=x} = \frac{T_m - T_0}{X - X_0} - \frac{q_V}{2\lambda_1} (X - X_0) + \frac{1}{2a_1} \cdot \frac{dT_0}{dt} (X - X_0);$$
(10)

на границе испарения при $x = X_0$ —

$$\frac{\partial \Theta_1}{\partial x}\Big|_{x=X_0} = \frac{T_m - T_0}{X - X_0} + \frac{q_V}{2\lambda_1} (X - X_0) - \frac{1}{2a_1} \cdot \frac{dT_0}{dt} (X - X_0).$$
(11)

Профиль температуры твердой фазы определяется выражением [4]

$$\Theta_{2}(x,t) = T_{m} - (T_{m} - T) \left\{ 1 - \exp\left[-\frac{1}{a_{2}} \cdot \frac{dX}{dt} (x - X) \right] \right\},$$
(12)

градиент температуры твердой фазы на границе плавления —

$$\frac{\partial \Theta_2}{\partial x}\Big|_{x=x} = -(T_m - T)\frac{1}{a_2} \cdot \frac{dX}{dt}.$$
(13)

Заданные профили температуры удовлетворяют уравнениям Фурье. Из условия на подвижной границе испарения (5) и условия (4) на границе плавления определяем скорость изменения расплавленной зоны $y = (X - X_0)$

$$y' = f(t)y^n + g(t)y + h(t),$$
 (14)

$$n = -1;$$

$$f(t) = \lambda_1 (T_0 - T_m) \left(\frac{1}{L_0 \rho + c\rho(T_0 - T)} + \frac{1}{L\rho + c\rho(T_m - T)} \right);$$

$$g(t) = \left(\frac{c\rho}{2} \cdot \frac{dT_0}{dt} - \frac{q_V}{2} \right) \left(\frac{1}{L_0 \rho + c\rho(T_0 - T)} - \frac{1}{L\rho + c\rho(T_m - T)} \right);$$

$$h(t) = -\frac{q_0(t)}{L_0 \rho + c\rho(T_0 - T)}.$$

Решение уравнения (14) имеет вид [5]

$$y = \left(\frac{h}{f}\right)^{\frac{1}{n}} U(t).$$
(15)

Функция U(t) определяется из соотношения

$$\int \frac{dU}{U^n - \overline{\gamma}U + 1} + C = \int \left(\frac{f}{h}\right)^{\frac{1}{n}} h dt, \qquad (16)$$

а значение $\overline{\gamma}$ — из соотношения

$$\left(\frac{h}{f}\right)^{\frac{1}{n}} = e^{\int gdt} \left[\beta + \overline{\gamma} \int h e^{-\int gdt} dt\right]$$
(17)

Вводим в формулу (15) значения коэффициентов, получаем выражение для ширины зоны фазовых превращений

$$X - X_0 = -\frac{\varepsilon}{q_0} U(t), \tag{18}$$

где $\varepsilon = \lambda_1 (T_0 - T_m) \left(1 + \frac{L_0 + c(T_0 - T)}{L + c(T_m - T)} \right).$

192

Постоянная плотность тепловыделения

Рассмотрим переходные процессы в зоне, ограниченной границами плавления и испарения, при $q_0 = \text{const}, q_V = \text{const}, T_0 = \text{const}.$

Находим в явном виде выражение для $\overline{\gamma}$ из соотношения (17)

$$\left(\frac{h}{f}\right)^{-1} = e^{\int gdt} \left[\beta + \overline{\gamma} \int h e^{-\int gdt} dt\right]$$

$$\left(\frac{h}{f}\right)^{\frac{1}{n}} = e^{\int gdt} \left[\beta + \overline{\gamma} \int h e^{-\int gdt} dt\right]$$

$$-\frac{\varepsilon}{q_0} = \left[\beta e^{kt} + \overline{\gamma} e^{kt} \int h e^{-kt} dt\right];$$

$$-\frac{\varepsilon}{q_0} = \beta e^{kt} - \frac{\overline{\gamma} h}{k},$$
(19)
$$rge \ k = -\frac{q_v}{2} \left(\frac{1}{L_0 \rho + c\rho(T_0 - T_m)} - \frac{1}{L\rho + c\rho(T_m - T)}\right).$$

При t = 0 коэффициент

$$\beta = \frac{\overline{\gamma} \cdot h}{k} - \frac{\varepsilon}{q_0} \,. \tag{20}$$

Подставляя значение для коэффициента β в уравнение (19), получаем

$$-\frac{\varepsilon}{q_0} = \left(\frac{\gamma h}{k} - \frac{\varepsilon}{q_0}\right) e^{kt} - \frac{\overline{\gamma} h}{k}; \qquad (21)$$

$$\overline{\gamma} = \frac{\varepsilon k}{q_0 \cdot h} = -\frac{\varepsilon [L_0 \rho + c(T_0 - T_m)]k}{q_0^2}; \qquad (22)$$

$$\overline{\gamma} = \frac{\varepsilon q_V}{2q_0^2} \left[1 - \frac{L_0 \rho + c(T_0 - T_m)}{L\rho + c(T_m - T)} \right].$$
(23)

Поскольку теплота испарения L_0 намного больше теплоты плавления, коэффициент $\overline{\gamma}$ отрицателен. Определяем функцию U(t):

$$\int \frac{UdU}{-\overline{\gamma}U^{2} + U + 1} = \int \left(\frac{f}{h}\right)^{-1} h dt = \frac{h^{2}t}{f} = \frac{q_{0}^{2}t}{\varepsilon[\rho L_{0} + c(T_{0} - T_{m})]}.$$
 (24)

Коэффициент $\overline{\gamma}$ отрицателен, тогда исходный интеграл равен

$$\int \frac{UdU}{-\overline{\gamma}U^2 + U + 1} = \int \frac{UdU}{\gamma U^2 + U + 1},$$

где $\gamma = -\overline{\gamma}, \ \gamma > 0$.

$$\int \frac{UdU}{\gamma U^{2} + U + 1} = \frac{1}{2\gamma} \int \frac{d(\gamma U^{2} + U + 1)}{\gamma U^{2} + U + 1} - \frac{1}{2\gamma} \int \frac{dU}{\gamma U^{2} + U + 1}.$$

Первый интеграл

193

$$\int \frac{UdU}{\gamma U^{2} + U + 1} = \frac{1}{2\gamma} \ln \left(\gamma U^{2} + U + 1 \right) - \frac{1}{2\gamma} \int \frac{dU}{\gamma U^{2} + U + 1}$$

Значение второго интеграла

$$\int \frac{dU}{\gamma U^{2} + U + 1} = \begin{cases} \frac{2}{\sqrt{4\gamma - 1}} \operatorname{arctg} \frac{2\gamma U + 1}{\sqrt{4\gamma - 1}} + C; \ \text{для} \ 1 - 4\gamma < 0; \gamma > 0, 25; \\ \frac{1}{\sqrt{1 - 4\gamma}} \ln \left| \frac{2\gamma U + 1 - \sqrt{1 - 4\gamma}}{2\gamma U + 1 + \sqrt{1 - 4\gamma}} \right| + C; \ \text{для} \ 1 - 4\gamma > 0; \gamma < 0, 25 \end{cases}$$

Исходя из этого, имеем для $\gamma < 0.25$

$$\int \frac{UdU}{\gamma U^2 + U + 1} = \frac{1}{2\gamma} \ln \left| \gamma U^2 + U + 1 \right| - \frac{1}{2\gamma \sqrt{1 - 4\gamma}} \ln \left| \frac{2\gamma U + 1 - \sqrt{1 - 4\gamma}}{2\gamma U + 1 + \sqrt{1 - 4\gamma}} \right| + C;$$

для $\gamma > 0,25$ значение интеграла

$$\int \frac{UdU}{\gamma U^2 + U + 1} = \frac{1}{2\gamma} \ln \left| \gamma U^2 + U + 1 \right| - \frac{1}{\gamma \sqrt{4\gamma - 1}} \operatorname{arctg} \frac{2\gamma U + 1}{\sqrt{4\gamma - 1}} + C.$$

Постоянную интегрирования находим при условии, что в момент времени t = 0 функция U(t) = 0, тогда для $\gamma < 0,25$

$$C = \frac{1}{2\gamma\sqrt{1-4\gamma}} \ln \left| \frac{1-\sqrt{1-4\gamma}}{1+\sqrt{1-4\gamma}} \right|;$$

для $\gamma > 0,25$ постоянная интегрирования

$$C = \frac{1}{\gamma\sqrt{4\gamma - 1}} \operatorname{arctg} \frac{1}{\sqrt{4\gamma - 1}}$$

Безразмерный комплекс $\frac{q_0^2 t}{L_0 \rho \varepsilon} = \overline{t}$ представляет собой безразмерное

время.

$$\bar{t} = \frac{1}{2\gamma} \ln \left| \gamma U^2 + U + 1 \right| - \frac{1}{2\gamma \sqrt{1 - 4\gamma}} \left(\ln \left| \frac{2\gamma U + 1 - \sqrt{1 - 4\gamma}}{2\gamma U + 1 + \sqrt{1 - 4\gamma}} \right| - \ln \left| \frac{1 - \sqrt{1 - 4\gamma}}{1 + \sqrt{1 - 4\gamma}} \right| \right);$$
(25)

для $\gamma > 0,25$

Для ү < 0,25

$$\bar{t} = \frac{1}{2\gamma} \ln(\gamma U^2 + U + 1) - \frac{1}{\gamma \sqrt{4\gamma - 1}} \left(\operatorname{arctg} \frac{2\gamma U + 1}{\sqrt{4\gamma - 1}} - \operatorname{arctg} \frac{1}{\sqrt{4\gamma - 1}} \right); \quad (26)$$

при у = 0,25

$$\bar{t} = 4\ln\left|\frac{U}{2} + 1\right| + \frac{8}{U+2} - 4.$$

Расчетные зависимости $U(\bar{t})$ представлены на рис. 2. В зависимости от соотношения плотности объемного и поверхностного источников характер процессов изменяется. При малых значениях γ процессы устойчивые, ширина зоны фазовых превращений достигает установившегося значения. При $\gamma = 0,25$ процессы нейтрально устойчивые. Дальнейшее

повышение плотности объемного тепловыделения приводит к скачкообразности решения, его неоднозначности по отношению к малому изменению энергии объемного источника. Характер процесса резко изменяется и происходит неограниченное увеличение ширины зоны реакции (рис. 3).

Рис. 2. Зависимость относительной глубины испарения \overline{X}_0 , ширины расплавленной зоны $\overline{X} - \overline{X}_0$, глубины плавления \overline{X} и комплекса ζ от безразмерного времени.

Поглощение энергии в зоне реакции

Дополнительное поглощение энергии в зоне фазовых превращений при действии поверхностного источника высокой плотности учитывается в дифференциальном уравнении Фурье для жидкой фазы $X_0(t) \le x \le X(t)$:

$$\frac{\partial^2 \Theta_1}{\partial x^2} - \frac{1}{a_1} \cdot \frac{\partial \Theta_1}{\partial t} = \frac{q_V}{\lambda_1}.$$
(27)

Проводя аналогичные вычисления, получаем выражение

$$\gamma = \frac{\varepsilon q_V}{2q_0^2} \left[\frac{L_0 + c(T_0 - T_m)}{L + c(T_m - T)} - 1 \right].$$
 (28)

Коэффициент γ положителен и функция U(t) равна

$$\int \int \frac{UdU}{-\gamma U^{2} + U + 1} = -\frac{1}{2\gamma} \ln\left(-\gamma U^{2} + U + 1\right) + \frac{1}{2\gamma\sqrt{1 + 4\gamma}} \ln\frac{\sqrt{1 + 4\gamma} + 2\gamma U - 1}{\sqrt{1 + 4\gamma} - 2\gamma U + 1} + C.$$

Постоянная интегрирования

$$C = -\frac{1}{2\gamma\sqrt{1+4\gamma}}\ln\frac{\sqrt{1+4\gamma}-1}{\sqrt{1+4\gamma}+1}$$

и интеграл с учетом постоянной интегрирования

$$\bar{t} = -\frac{1}{2\gamma} \ln\left(U + 1 - \gamma U^2\right) + \frac{1}{2\gamma\sqrt{1+4\gamma}} \left(\ln\left|\frac{\sqrt{1+4\gamma} + 2\gamma U - 1}{\sqrt{1+4\gamma} - 2\gamma U + 1}\right| - \ln\left|\frac{\sqrt{1+4\gamma} - 1}{\sqrt{1+4\gamma} + 1}\right| \right).$$
(29)

Расчетные зависимости представлены на рис. 3. Как видно на графиках, поглощение энергии приводит к уменьшению ширины зоны, процессы всегда стабилизируются.

Анализ устойчивости процессов

На основе интегрального метода можно проводить анализ и синтез многими методами без интегрирования дифференциальных уравнений и непосредственного исследования их решений. Анализируя дифференциальное уравнение распространения тепла при воздействии энергии электрического разряда и экзотермических реакций в зоне (уравнение (16)), делаем выводы:

система неустойчива, если существует отрицательный вещественный корень $\gamma > 0,25$;

система нейтрально устойчива при $\gamma = 0,25$; система устойчива при $0 < \gamma < 0,25$.

Заключение

Для описания переходных процессов в области взаимодействия плазмы электрического разряда и топлива использованы интегральный метод и математическая модель нелинейной задачи нестационарной теплопроводности с фазовыми превращениями плавления и испарения при действии поверхностных и объемных источников высокой плотности. Модель состоит из уравнений с частными производными и краевых условий и сводится к модели, включающей дифференциальное уравнение и начальные условия. Решение удовлетворяет осредненному уравнению теплового баланса.

Показано, что исходные уравнения баланса энергии имеют непрерывные решения, но при выделении асимптотик возникает скачкообразность решений, их критичность к малому изменению параметров и характер решений резко изменяется.

Предложенная модель задачи нестационарной теплопроводности с фазовыми превращениями испарения, плавления и кристаллизации с подводом теплоты фазового перехода, измеряемой скачком энтальпии в условиях постоянства температуры и давления, позволяет исследовать источники ионов — катодные процессы электрических разрядов и ионноплазменные нанотехнологии в производстве энергетических и авиационных систем.

Исследован интегральный метод для решения плоских и осесимметричных задач стационарной теплопроводности и фазовых превращений с различным профилем температур, линейным выделением в объеме, поглощением в объеме, который может конкурировать с пакетами на основе численных методов.

Предложены и реализованы новые алгоритмы оптимизации решений, позволяющих существенно улучшить качество аналитических решений.

- 1. *Куляпин В. М.* Некоторые задачи теплопроводности с фазовыми превращениями // Инж.-техн. журн. 1971. **20**, № 3. С. 497—504.
- Гладкий С. Л. Аналитическая система решения краевых задач математической физики / С. Л. Гладкий, Л. Н. Ясницкий // Аэрокосмическая техника и высокие технологии: Материалы Всерос. науч.-техн. конф. / Под. ред. Ю. В. Соколкина и А. А. Чекалкина. — Пермь : ПГТУ, 2002. — С. 81.
- Фаворский О. Н. Основы теории космических электрореактивных двигательных установок: Учеб. пособие для втузов / О. Н. Фаворский, В. В. Фишгойт, Е. Н. Янтовский. М. : Высшая школа, 1978. 387 с.
- 4. Шарма О. Задачи переноса тепла при наличии фазовых превращений и переменной температуре поверхности / О. Шарма, М. Ротенберг, С. Пеннер // Ракетная техника и космонавтика. 1967. 5, № 4. С. 84—89.
- Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1971. — 576 с.

Рішення крайових задач

В. М. Куляпін, І. С. Елісєєв, І. М. Аслямов, О. В. Бовтрикова

Запропоновано та реалізовано алгоритми аналітичних рішень крайових задач при русі фазових границь з використанням рішення нелінійного диференціального рівняння Chini.

Ключові слова: процеси фазових перетворень випаровування, катодні процеси, електричний розряд.

Solving boundary value problems

V. M. Kulyapin, I. S. Eliseev, I. M. Aslyamov, E. V. Bovtrikova

Proposed and implemented algorithms analytical solutions of boundary value problems for the motion of the phase boundaries using the solutions of the nonlinear differential equation Chini.

Keywords: processes of phase trasformations, evaporation, cathodic processes, electric discharge.