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The class of resonators which allows building mechanically tunable waveguide bandpass filters with near constant bandwidth 
in overall a wide tuning frequency range has been investigated. The concept comprising in a successful combining inductive 
and capacitive discontinuities to obtain near constant quality factor of resonators in wide frequency variation range is imple-
mented. It is proved that the most technologically advanced solution can be obtained by using the waveguide connections con-
taining double ridged sections for compensation of phase shifts in resonators appearing because of frequency variation. Ade-
quate mathematical models of the resonators based on generalized scattering matrix approach are obtained. The diffraction 
problems for doubled discontinuities, such as doubled ridged sections in rectangular waveguide, have been solved by the inte-
gral equation method. The calculation of resonance frequencies and quality factors of resonators are carried out in wide dimen-
sion range variations. Due to near constant quality factors over wide tuning frequency range, the developed waveguide resona-
tors open new possibilities in realization of high efficient and cost effective frequency tunable filters of transmit tropospheric 
stations and various telecommunication systems for tropospheric communication. 
 
 

Introduction 
 

The growth of the complexity of problems to be 
solved by modern systems of information transmission 
has stimulated the development of tropospheric stations 
for organization of ultra long communication operating 
in centimeter range [1─2]. Functional principle of such 
stations is based on the phenomenon of electromagnetic 
energy reradiation in electrically inhomogeneous tropo-
sphere. Because of the low intensity of tropospheric 
irregularities, the average signal power at the tropo-
spheric communication is very low and rapidly decreas-
es with growth of distance. To medicate the influence 
of signal fading on the quality of tropospheric commu-
nication, several methods of improving the transmission 
are employed. For this purpose, the transmission and 
reception for the same message on multiple carrier fre-
quencies are widely used. Furthermore, the transmitters 
of sufficiently high power are applied in order to com-
pensate the signal losses due to fading phenomenon. 
Despite the great advances in the implementation of 
high quality ultra long communication, the problem of 
finding the ways for further improvement of tropo-
spheric station characteristics remains highly relevant. 
The necessity of ensuring the proper communication 
between objects, located at large distances from each 
other, nominates creating the tropospheric stations with 
frequency tuning in a number of urgent tasks. The cov-
erage of steady ultra long communication is achieved 
by employment of appropriate equipment also with tun-
ing the frequency. The feature of such tropospheric sta-
tion is the presence of bandpass filters, which pass band 

moves along the frequency range under tuning. In its 
transmitting block, the waveguide filters, intended on 
transfer of significant power levels, are applied. Wave-
guide filters turning mechanically by metal rods im-
posed into resonators through the side wall of wave-
guide are most widely used [3, 4]. Such a technical so-
lution of filter tuning problem provides a good linearity 
of resonator frequency dependencies as a function of 
the depth of metal rod plunge into the cavity. 

The main disadvantage of existing waveguide me-
chanically tunable filters, based on traditional disconti-
nuities in the form of inductive and capacitive elements 
designed in [4], is a significant change of their pass 
band width, when resonant frequencies of cavities are 
tuned. Filters with inductive discontinuities are charac-
terized by severe narrowing of pass band width under 
tuning in the range of lower operating frequencies with 
simultaneous increase of insertion loss on central fre-
quency. Filters with capacitive elements have an in-
verse dependence of pass band width changes on fre-
quency while its slope is less than for filters with induc-
tive discontinuities. The main disadvantage that pre-
vents the use of capacitive discontinuities in waveguide 
mechanically tunable filters is a low level of transferred 
power due to small gaps between edges of diaphragm or 
rods. 

To overcome the mentioned disadvantages of existing 
waveguide mechanically tunable filters, a new approach 
to resonators design consisting in combination of induc-
tive and capacitive discontinuities is proposed in [3]. A 
successful combination of conductivity values of these 
discontinuities allows significantly improving diapason 
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properties of waveguide mechanically tunable bandpass 
filter and achieving near constant pass band width in 
wide range of tuning without appreciable change of in-
sertion loss. The proposed approach is illustrated by the 
design example of narrow-band waveguide mechanically 
tunable bandpass filter with quarter-wave coupling be-
tween resonators. This filter is performed on the finite 
thickness plate symmetrically situated along rectangular 
waveguide parallel to its narrow walls. 

The key building blocks of filter structure, investi-
gated in [3], are waveguide mechanically tunable reso-
nators formed by cascade connections of inductive and 
capacitive discontinuities. The inductive discontinuity 
is realized as a partition separating the standard rectan-
gular waveguide on two identical bellow cutoff regions. 
The capacitive discontinuity is formed by a section of 
double ridge waveguide of finite length. By combining 
these key building blocks in various combinations dif-
fering only by dimensions as well as by adding the tun-
able element, one can obtain the separate variants of 
tunable filter constructions. 

As a tunable element, a round rod inserting into res-
onator cavity through the side wall of the rectangular 
waveguide is entirely applied. Such technical solution 
decreases the incline of calibration response of the res-
onator and increases its linearity. The equivalent repre-
sentation of mechanically tunable waveguide resonator 
with round rod as a tunable element is shown in Fig. 1. 
The presence of tunable element inevitably breaks the 
resonator symmetry with respect to vertical plane. Due 
to absence of resonator symmetry in vertical plane, the 
theoretical investigation of such combined structure 
becomes extremely complicated. Therefore, in [3] all 
elements of resonator were calculated separately with-
out the tunable element which characteristics were de-
termined by approximate analysis according to [4]. 

The mathematical model of mechanically tunable 
resonators in the form of generalized scattering matrix 
of key building block waveguide structure was devel-
oped for designing the filter. The generalized scattering 
matrix of composite connection was determined by 
combining of generalized scattering matrices of induc-
tive and capacitive discontinuities through the section 
of transmission line between them. An algorithm of the 
generalized scattering matrix calculation was built tak-
ing into account longitudinal symmetry planes. As a 
result, the estimated models of inductive and capacitive 
discontinuity structures were transformed to the forms 
shown in Fig 1. Taking into account the longitudinal 
symmetry planes allowed simplifying a task on a calcu-
lation stage of coupling coefficients of connected 
waveguide eigenmodes. 

The required relations for the calculation of general-
ized scattering matrices were obtained by integral equa-
tions method [5, 6] in assumption of ideal conductivity 
of metal walls of waveguides and discontinuities. A 
distinctive feature of this problem is tree-dimensional 
nature of discontinuities, which requires the use of nu-
merical methods for calculating of eigenmodes of dou-
ble ridged waveguide to be connected with rectangular 
waveguide. For this purpose, the method of partial re-
gions taking into account peculiarity of the electromag-
netic fields behavior on the rectangular edge [7, 8] was 
employed. 

 

 
(a) 

 

 
(b) 

 

Fig. 1. Schematic representation of front view without side wall 
(a) and top view without upper wall (b) of waveguide mechani-
cally tunable resonator: (1) the section of uniform rectangular 
waveguide; (2), (3) the upper and lower posts of double ridged 
capacitive discontinuity; (4) the finite thickness plate divided the 
uniform rectangular waveguide on two equal below cutoff rec-
tangular waveguides; (5) the round rod inserted into resonator 
cavity through the side wall changing the resonance frequency at 
its moving; (6) the plate with equivalent inductive conductivity 
the same as (4); (7), (8) the upper and lower posts of double 
ridged waveguide section the same as (2), (3). 
 

A characteristic feature of the solution obtain in [3] 
was using the single mode approximation of fields in 
gap region between ridges. As a result, characteristic 
parameters of certain resonators and filter a whole were 
found approximately. Experimental investigations of 
filters calculated on approximate technique show the 
distortion of frequency responses under tuning. This has 
resulted in the necessity to adjust the resonant frequen-
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cies of resonators. For this purpose, a special technique 
of the resonant frequencies adjustment of manufactured 
samples was developed. In such a way, if the approxi-
mate technique of calculation is used, to obtain required 
characteristics of tunable filters, the experimental com-
pletion of their produced samples is needed. The exper-
imental completion of produced mechanically tunable 
waveguide filters considerably complicates their indus-
trial production. Taking into account the importance of 
the task solution of such filters production that satisfy 
the modern requirements, considerable practical interest 
is refinement of resonator calculation technique as 
composite parts of tunable filter. 
 

Statement of the problem 
 

The purpose of this paper is the advance of existing 
design technique of mechanically tunable waveguide 
resonators, which allows simplifying the experimental 
adjustments of produced samples as well as the calcula-
tion and theoretical research of adjustment characteris-
tics ensuring the near constant quality factors of resona-
tors in wide frequency range. 

To obtain more correct solution of mechanically 
tunable waveguide resonator problem then that obtained 
in [3], it is necessary to take into consideration the pres-
ence of tunable round rod. To simplify the numerical 
analysis of entire structure asymmetric with respect to 
vertical plane, we implement the approach proposed in 
[9]. The essence of this approach consisted in replace-
ment of complicated structure comprising a dielectric 
insert by the simple one with purely metallic disconti-
nuities. When applying to the structure shown in Fig. 1, 
this original idea can be implemented in order to re-
place asymmetric tunable element by its symmetric vir-
tual analog. Such virtual structure can be performed as 
finite length section of double ridged waveguide. Then, 
the equivalent structure to be investigated takes the con-
figuration shown in Fig. 2. A transition from asymmet-
ric tunable resonator structure to its symmetric virtual 
analog crucially simplifies the problem solution, reduc-
es the computer resources and increases the accuracy of 
computations. The designing tunable resonators in rig-
orous formulation assumes finding generalized scatter-
ing matrices of their waveguide components and taking 
into consideration the entire set of eigenmodes of dou-
ble ridged waveguide in gap region. 
 

Scattering matrices of double ridged waveguide section of 
finite length 

 

To create effective calculating algorithms of me-
chanically tunable waveguide resonator components, 
we take into account their mirror symmetry with respect 
to a plane going through the middle of the structure 

perpendicularly to its longitudinal axes. The advantage 
of this approach is evident in the case when calculating 
generalized scattering matrices of longitudinally com-
plicated waveguide structures with nearly placed dis-
continuities. 
 

 
(a) 

 

 
(b) 

 

Fig. 2. Schematic representation of front view without side 
wall (a) and top view without upper wall (b) of waveguide 
mechanically tunable resonator with virtual tuning element: 
(1) the section of uniform rectangular waveguide; (2, 3) the 
upper and lower posts of double ridged waveguide section 
with capacitive conductivity; (4) the finite thickness plate 
with equivalent inductive conductivity; (5, 6) the upper and 
lower posts of double ridged waveguide section with capaci-
tive conductivity equivalent to the round rod inserted into 
resonator cavity through the side wall; (7, 8, 9) the designa-
tions corresponding to the configuration denoted by marks 
(6), (7) and (8) of Fig. 1. 
 

Using integral equation method, we can utilize the 
following system for calculation of generalized scatter-
ing matrices of symmetrical resonator components [6] 
 

(1) (1) (11) (12) (22)[ ]k k k k k
k k

Y P U V P Pν ν ν ν ν
ν ν

+ − =∑∑ ∑∑Ψ  

 

(1) (1)
12 w pm pmY= δ Ψ ; 

(1) 
(12) (22) (3) (2) (23)[ ]k k k k k

k k

U V P P Y Pν ν ν ν ν
ν ν

− + =∑∑ ∑∑ Ψ  

 

(3) (3)
22 w qn qnY= δ Ψ ; 
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( ) ( ) ( )

i

il i l
k k

s

P dsν ν= ∫E Ψ ; (2) (2) / sinh kk kU Y tνν ν= γΨ ; 

cosh kV tν= γ , 
 

where 1,2,..., pm M= ; 1,2,..., qn N= ; ( )1,2,..., lk Kν= ; 
1,2,3l = ; ( )iE  is unknown tangential electric field in ith 

( 1,2i = ) coupling window; ( )l
kνΨ  is orthonormalized 

vector eigenfunction of k th mode in l th partial region 
of transverse-electric ( 1ν = ) or transverse-magnetic 
( 2ν = ) types; ( )l

kYν  is corresponding to its admittance; 

kνγ  is propagation coefficient of k th mode of trans-
verse-electric ( 1ν = ) or transverse-magnetic ( 2ν = ) 
types in coupling waveguide; 1wδ , 2wδ  are Kronecker 
symbols; 1w = , if the diffraction problem is considered 
for the case of incidence pM  transverse-electric ( 1p = ) 
or transverse-magnetic ( 2p = ) electromagnetic waves 
from the left side; 2w = , if qN  electromagnetic waves 
of transverse-electric ( 1q = ) or transverse-magnetic 
( 2q = ) types are incident from the right side; ( )lKν  is 
the number of modes of transverse-electric (1ν = ) or 
transverse-magnetic ( 2ν = ) types which are taken into 
account in l th waveguide; is  is the area of i th cou-
pling window; t  is the symmetric resonator component 
length. 

In the considered case of the symmetrical structure, 
the tangential electric and magnetic fields on both sides 
of doubled discontinuity are identical. As a result, the 
system of integral equations (1) takes the form 
 

(1) (1) (11) (12) (22) (1) (1)[ ] 2 pm pmk k k k k
k k

Y P U VP P Yν ν ν ν ν
ν ν

+ − =∑∑ ∑∑Ψ Ψ ; 

(2) 
(12) (22) (3) (2) (23)[ ] 0k k k k k

k k

U VP P Y Pν ν ν ν ν
ν ν

− + =∑∑ ∑∑ Ψ . 

 

Taking into account the symmetry properties, the 
expressions (2) can be reduced to two independent sys-
tems of integral equations relative to sums and differ-
ences of tangential electric fields in coupling windows: 
 

(1) (1) (11) (2) (2) (12) (1) (1)2 pm pmk k k k k k
k k

Y P Q Y P Yξν ν ν ν ν ν
ν ν

+ =∑∑ ∑∑Ψ Ψ Ψ ; 

 

1

(11) (1)
1k k

s

P dsν ν= ∫FΨ ; 
1

(12) (2)
2k k

s

P dsν ν= ∫ F Ψ ;       (3) 

1 1 2= +F E E ; 2 1 2= −F E E ; 
 

1 tanh( / 2)kQ tν= γ ; 2 coth( / 2)kQ tν= γ ; 

1,2,..., pm M= ; 1,2,...,k Kν= ; 1,2p = ; 1,2ν = . 

Consider a segment of double ridge waveguide 
which one quarter part of its cross section is shown in 
Fig. 3. The considered doubled discontinuity represents 

two symmetrical posts in E-plane of rectangular wave-
guide placed symmetrically on top and bottom walls. 

 
 

Fig. 3. Double ridged waveguide cross-section and coordinate 
system for the entire resonator configuration. 

 

To solve (3) for the considered case at 1,2ξ = , we 
apply the Galerkin’s method as it has been done in [6]. 
Represent the summary ( 1ξ = ) and differential ( 2ξ = ) 
tangential electric fields for every mode incident on the 
double ridged waveguide discontinuity by the expan-
sion into series of orthonormalized vector eigenfunc-
tions of the coupling waveguide. Then, these approxi-
mating fields for symmetrical double ridged waveguide 
discontinuity of finite length in rectangular waveguide 
shown in Fig. 2 can be written as 
 

(1) (2)
h h

h

Cξ µ µ
µ

=∑∑F Φ ,                      (4) 

 

where (1)1,2,...,h Hµ= ; (2)
hµΦ  are orthonormalized vector 

coordinate functions of transverse-electric (1µ = ) or 
transverse-magnetic ( 2µ = ) types in coupling double 
ridged waveguide section; ( )i

hCµ  are unknown expansion 
coefficients; ( )iHµ  is the number of approximating func-
tions of transverse-electric ( 1µ = ) or transverse-
magnetic ( 2µ = ) types in coupling section. 

Substituting (4) into (3), taking into account the or-
thogonality of eigenfunctions in connected waveguides 
and performing transformation in accordance with Ga-
lerkin’s method, we obtain two systems of linear alge-
braic equations corresponding to even (1ξ = ) and odd 
( 2ξ = ) interpretations of doubled discontinuity excita-
tion. In this way, the desired two systems of linear al-
gebraic equations for determination of generalized scat-
tering matrix of the symmetrical double ridged wave-
guide discontinuity of finite length in rectangular wave-
guide can be presented in the form: 
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(1) (1) (11 ) (11 )[ u
h k vk hk

h k

C Y ν µν
µ ν

µ ν
η η +∑∑ ∑∑  

 

(2) (1) (11 )]=2 up
u vh pm vmhY Q Yξ µν+ δ δ η ,               (5) 

 

1=u , (1)
11,2,...,v H= ; 2=u , (1)

21,2,...,v H= ; 
 

1=p , 11,2,...,m M= ; 2p = , 21,2,...,m M= ; 
 

1

(21 ) (2) (1)
hk h k

s

dsµν
µ νη = ∫Φ Ψ .                     (6) 

The expression (6) represents the coupling coeffi-
cients of double ridged waveguide window coordinate 
functions and vector eigenfunctions of rectangular 
waveguide. It defines the accordance between mathe-
matical formulation of internal boundary problem and 
real double ridged waveguide to rectangular waveguide 
structure. 

The key moment in solution of considered boundary 
problem is the definition of vector eigenfunctions of 
joined waveguides. For the rectangular waveguide, they 
are known. According to coordinate system, shown in 
Fig. 3, the scalar eigenfunctions for transverse-electric 
and transverse-magnetic modes in the rectangular 
waveguide representing the upper part of the overall 
cross section of considered structure due its symmetry 
with respect to horizontal plane can be written as 
 

cos cosuv uv u vA x yϕ = α β ;                    (7) 
 

sin sinuv uv u vB x yφ = α β ,                    (8) 
 

where / (2 )u u aα = π ; /v v hβ = π ; 2a  denotes the 
width of partial rectangular waveguide; uvA , uvB  are 
expansion coefficients determined by normalization 
condition. 

The transverse components of electric fields in rec-
tangular waveguide can be defined in accordance with 
equalities 
 

grad / /x + y− × ϕ = − ∂ϕ ∂ ∂ϕ ∂z u y x ;            (9) 
 

grad / /x + yφ = ∂φ ∂ ∂φ ∂u x y ,               (10) 
 

where ϕ , φ  are the scalar eigenfunctions for trans-
verse-electric and transverse-magnetic modes, respec-
tively; u  is an unity vector; x , y , z  are the unity vec-

tors directed along x , y  and z  axes, respectively. 
Using expressions (7)─(10), the transverse compo-

nents of orthonormalized vector eigenfunctions of rec-
tangular waveguide can be written as 
 

(1)
1 cos sinuv v u vk A x y= − β α β +Ψ x  

 

sin cosuv u u vA x y+ α α βy ;                  (11) 
 

(1)
2 cos sinuv u u vk B x y= α α β +Ψ x  

 

sin cosuv v u vB x y+ β α βy ,                 (12) 
where the mode sequence number k  is defined with 
taking into account the indices u  and v . 
 

Solution of internal boundary problem 
for uniform double ridged waveguide 

 

To determine vector eigenfunctions of double ridged 
waveguide, it is necessary to apply numerical methods 
of internal boundary problem solution. As has been 
shown in [7, 8], the suitable approach for solving of this 
complicated problem is the partial region method with 
taking into account the edge field singularity. To sim-
plify the solution of this problem, it should be taken 
into account the symmetry of double ridged waveguide 
cross section relative to vertical and horizontal planes. 
In this case, it is convenient to consider one quarter part 
of cross section as shown in Fig. 3. Based on excitation 
conditions of double ridged waveguide section, it is ad-
visable to suppose that there are a magnetic wall in ver-
tical symmetry plane of the waveguide and an electric 
wall in horizontal symmetry plane. Whereas the tasks of 
the cutoff mode numbers and electromagnetic fields 
definition are solved in [7, 8], the solution sequence 
will be described bellow in abbreviated form according 
to designations shown in Fig 3.  

According to [7] the solution of Helmholz’s equa-
tion for transverse-electric modes in partial regions 1 
and 2 can be written as follows 

 

1 sin ( )cosm m m
m

A a x p yψ = α −∑ ;              (13) 

 

2 cos cosm m m
m

B x q yψ = β∑ ,                  (14) 

 

where 2 2( )m mp ϕ
µα = κ − ; 2 2( )m mq ϕ

µβ = κ − ; /mp m c= π ; 
/mq m h= π ; µκ  is the cutoff wavenumber for µ th 

mode; 1ψ , 2ψ  are components of scalar eigenfunction 
of double ridged waveguide; mA  and mB  are the un-
known coefficients; 10,1,2,..., 1m M= −  for region 1; 

1M  is the number of terms in series (13); 

20,1,2,..., 1m M= −  for region 2; 2M  is number of 
terms in series (14); 1 / 2ϕ = . 

The unknown coefficients in (13) and (14) can be 
found through the electric field value yE  on the com-
mon boundary of partial regions: 
 

0

2 / ( cos ) cos
c

m m m m y mA c b E p ydy= ε α α ∫ ;      (15) 

 

0

2 / ( sin ) cos
c

m m m m y mB h g E q ydy= ε β β ∫ ,         (16) 
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where b a g= − ; 1/ 2mε =  if 0m =  otherwise 1mε = . 
To define the unknown tangential electric field in 

coupling window, the following homogeneous system 
of linear algebraic equations has been obtained [8]: 
 

[ 2 / tani i j m m m
i m

X U U bε α α −∑ ∑  

2 / / cot ] 0i j m m m
m

VV c h g− ε β β =∑ ;            (17) 

2( 1) (2 2 ) ( ) / [(2 )! ( )(2 ) ]i
i iU i J m i m λ

+λ= − πΓ + λ π Γ λ π ; 
 

2( 1) (2 2 ) ( ) / [(2 )! ( )(2 ) ]i
i i m mV i J q c i q c λ

+λ= − πΓ + λ Γ λ . 
 

Here 1 / 6λ = ; (2 2 )iΓ + λ , ( )Γ λ  are the gamma 
functions; 2 ( )iJ m+λ π , 2 ( )i mJ q c+λ  are the Bessel’s 
functions of the first kind; iX  are the unknown expan-
sion coefficients of the electric field in coupling win-
dow; 0,1,..., 1i I= − ; 0,1,..., 1j I= − ; I is the number of 
expansion terms; jU , jV  quantities are obtained from 

iU , iV  by replacement of indexes so that we obtain 
 

2( 1) (2 2 ) ( ) / [(2 )! ( )(2 ) ]j
j jU j J m j m λ

+λ= − πΓ + λ π Γ λ π ; 
 

2( 1) (2 2 ) ( ) / [(2 )! ( )(2 ) ]j
j j m mV j J q c j q c λ

+λ= − πΓ + λ Γ λ . 
 

A condition of nontrivial solution of (17) is equality 
to zero of its determinant. This equality represents the 
characteristic equation for computing the cutoff mode 
numbers of transverse-electric modes of double-ridged 
waveguide. To find the determinant zeros, we utilize 
the dichotomy method using procedure, which allows 
avoiding the appearance in solution of spurious roots. 
This procedure is based on excluding from the consid-
eration the values of characteristic equation approach-
ing the infinity. These values are defined by the follow-
ing equations: 
 

cos 0mbα = ; sin 0mgβ = .                (18) 
 

The computed results indicate that the zeros and 
breaks of the determinant of linear algebraic system 
(17) can be situated very close. Hence at the computer 
realization of the dichotomy method, the bypass of 
breaks points through using expressions (18) yet not 
ensure an absence of spurious roots of dispersive equa-
tion. It should be noted that the appearance in solution 
of spurious roots would inevitably lead to knowingly 
erroneous definition of scattering matrix of double 
ridged to rectangular waveguides junction when solving 
the general problem. Therefore, the searching ways of 
errorless solution of internal boundary eigenvalue prob-
lem is a key and substantial task in the theory of double 
ridged waveguide junctions. 

To obtain the correct solution for double ridged sec-
tion in the form of two posts symmetrically placed in 

rectangular waveguide we employ the computer algo-
rithm based on a functional for cutoff numbers which in 
considered case takes the form [8]: 

22 2(grad ) /
s s

ds dsµ µ µκ = ψ ψ∫ ∫ ,                 (19) 

where µψ  is the µ th mode scalar eigenfunction of the 
double ridged waveguide; s  denotes the square of its 
cross section. 

The equality (19) is fulfilled if and only if κ  will be 
the cutoff mode number, that is µκ = κ . To apply the 
expression (19) for calculation of the cutoff mode num-
bers of double ridged waveguide, the transversal com-
ponents of the overall fields are defined in accordance 
with differential operator: 
 

grad / /x + y− × ψ = − ∂ψ ∂ ∂ψ ∂z u y x ,              (20) 
 

where u  is an unity vector; x , y , z  are the unity vec-
tors directed along x , y  and z  axes, respectively. 

To perform the computations in accordance with 
(20), it is necessary to solve the homogeneous system 
of linear algebraic equations. As a result, the unknown 
coefficients iX  and the distributions of tangential com-
ponents of electrical fields in coupling window for var-
ious transverse-electric modes are obtained. At the 
computation of the coefficients under unknowns, the 
estimation algorithm of Bessel’s functions of fractional 
indexes based on recursive procedure operating in di-
rection from high indexes to small ones are applied. 
This algorithm allows achieving a high accuracy of the 
Bessel’s function computation which is defined entirely 
by capability of computer used. 

As the unknown coefficients iX  and the distribu-
tions of tangential components of electrical fields in 
coupling window on the common boundary of partial 
regions for various transverse-electric modes have been 
obtained the amplitude coefficients in (15) and (16) ac-
quire the following form: 
 

2 / ( cos )m m m m mA b= ε δ α α ;                (21) 
 

2 / ( sin )m m m m mB c h g= ε σ β β ;               (22) 
 

m i i
i

X Uδ =∑ ; m i i
i

X Vσ =∑ . 

 

When the coefficients mA  and mB  in (21), (22) are 
evaluated, the denominator in (19) is defined by the 
expression 
 

2 2 2 2 2(sin ) (cos )m m m m
m ms s s

ds A b ds B x dsµψ = α + β =∑ ∑∫ ∫ ∫  

2 22 /m m m
m

bc= ε δ α ×∑  



P. STEPANENKO: RESONATORS OF MECHANICALLY TUNABLE WAVEGUIDE FILTERS FOR TROPOSPHERIC COMMUNICATION 45 

2[1 / (cos ) (tan ) / ( )]m m mb b b× α − α α +  
 

2 2 22 / ( )m m m
m

gc h+ ε σ β ×∑  

2[1 / (sin ) (cot ) / ( )]m m mg g g× β + β β .         (23) 
 

To determine the numerator in (19), the components 
of (20) in partial regions of double ridged waveguide 
section are defined as 
 

1grad cos ( )cosm m m m
m

A a x p y− × ψ = α α − −∑z u y  

sin ( )sinm m m m
m

A p a x p y− α −∑x ;           (24) 

2grad sin cosm m m m
m

B x q y− × ψ = β β −∑z u y  

cos sinm m m m
m

B q x q y− β∑x .               (25) 

 

Using relations (24) and (25), the numerator in (19) 
is calculated as follows: 
 

2 2 2(grad ) 2 /m m m
ms

ds bcµψ = ε δ α ×∑∫  

2 2 2 2[( ) / (cos ) (m m m mp b× α + α + α −  
 

2 )(tan ) / ( )]m m mp b b− α α +  
 

2 2 2 2 2 22 / ( )[( ) / (sin )m m m m m m
m

gc h q g+ ε σ β + β β +∑  

2 2( )(cot ) / ( )]m m m mq g g+ − β β β .                (26) 
 

If 2 2 0mpµκ − <  or 2 2 0mqµκ − < , the corresponding 
trigonometric functions in expressions (23) and (26) are 
replaced by hyperbolic ones. Despite the presence of 
imaginary components in (23) and (26), their overall 
values are always real. 

Consider briefly the computational algorithm for 
finding cutoff mode numbers of transverse-magnetic 
modes based on technique [7, 8]. According to [7] sca-
lar eigenfunctions of partial regions can be written as 
follows 

1 cos ( )sinn n n
n

A a x p yξ = α −∑ ;             (27) 

2 sin sinn n n
n

B x q yξ = β∑ .                  (28) 

 

where 2 2( )n np ϕ
να = ς − ; 2 2( )n nq ϕ

νβ = ς − ; /np n c= π ; 
/nq n h= π ; νς  is the cutoff mode number for ν th 

mode; nA  and nB  are the unknown coefficients; 

11,2,...,n N=  for region 1; 1N  is the number of terms in 
series (27); 21,2,...,n N=  for region 2; 2N  is number of 
terms in series (28). 

Similar to the previous case, the homogeneous sys-
tem of linear algebraic equations relatively to unknown 

expansion coefficients of tangential electric field on the 
boundary of partial regions of double ridged waveguide 
is defined as 
 

[ 2 tani i j n n
i n

X U U bα α −∑ ∑  

2 / cot ] 0i j n n
n

VV c h g− β β =∑ ;             (29) 

( 1) [ ( ) ( )] / [(2 1)! ( )(2 ) ]i
iU J n i n ϑ

ζ= − π Γ τ π + Γ ϑ π ; 
 

( 1) [ ( ) ( )] / [(2 1)! ( )(2 ) ]i
i n nV J q c i q c ϑ

ζ= − π Γ τ + Γ ϑ . 
 

Here 2 2 1iτ = + ϑ + ; 2 1iζ = + ϑ + ; 7 / 6ϑ = ; ( )Γ τ , 
( )Γ ϑ  denote the gamma functions; ( )J nζ π , ( )nJ q cζ  

are the Bessel’s functions of the first kind; iX  are the 
expansion coefficients of the electric field in coupling 
window; 0,1,..., 1i I= − ; 0,1,..., 1j I= − ; I is the num-
ber of expansion terms; jU , jV  quantities are obtained 
from iU , iV  by replacement of indexes so that 
 

( 1) [ ( ) ( )] / [(2 1)! ( )(2 ) ]j
jU J n j n ϑ

ζ= − π Γ τ π + Γ ϑ π ; 
 

( 1) [ ( ) ( )] / [(2 1)! ( )(2 ) ]j
j n nV J q c j q c ϑ

ζ= − π Γ τ + Γ ϑ . 
 

The resolution algorithm of system (29) is the same 
as (17). The points on the mode number axis in which 
there are breaks of determinant of (29) and which 
should be excluded from the calculation are define by 
solving of the following equations: 
 

cos 0nbα = ; sin 0ngβ = . 
 

As the unknown coefficients iX  have been found 
from solution (29) and the distribution of tangential 
components of electrical fields in coupling window on 
the common boundary of partial regions for various 
transverse-magnetic modes have been obtained, the 
amplitude coefficients in (27) and (28) get the form: 
 

2 / cosn n nA b= δ α ;                      (30) 
 

2 / ( sin )n n nB c h g= σ β ;                   (31) 
 

n i i
i

X Uδ =∑ ; n i i
i

X Vσ =∑ , 

 

where the values iU  and iV  are determined by expres-
sions (29). 

Consider briefly a sequence of calculation associated 
with the use of the functional for cutoff mode numbers 
which in the case of transverse-magnetic modes takes 
the form [8] 

 

22 2(grad ) /
s s

ds dsν ν νς = ξ ξ∫ ∫ ,                 (32) 

where νξ  represents the ν th mode scalar eigenfunction 
of the double ridged waveguide; s  is the square of 
waveguide cross section. 
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As in the previous case, for application of the expres-
sion (32) to calculation algorithm of the cutoff mode num-
bers of double ridged waveguide, we must define the 
transverse components of the overall fields in accordance 
with differential operator: 

grad / /x + yξ = ∂ξ ∂ ∂ξ ∂u x y ,              (33) 
 

where u , x , y  are the unity vectors the same as in ex-
pression (20). 

According to (33), we obtain the following expres-
sion for transverse components of the electric fields: 
 

1grad sin ( )sinn n n n
n

A a x p yξ = α α − +∑u x  

 

cos ( )cosn n n n
n

A p a x p y+ α −∑y ;            (34) 

 

2grad cos sinn n n n
n

B x q yξ = β β +∑u x  

 

sin cosn n n n
n

B q x q y+ β∑y .                 (35) 

 

Using (34), (35) and evaluating the integrals similar-
ly to previous consideration, we obtain 
 

2 22 n
ns

ds bcνξ = δ ×∑∫  

2[1 / (cos ) (tan ) / ( )]n n nb b b× α + α α +  
 

2 22 /n
n

gc h+ σ ×∑  
 

2[1 / (sin ) (cot ) / ( )]n n ng g g× β − β β .       (36) 
 

Combining (34), (35) and evaluating the integrals, 
we get 

 

2 2(grad ) 2 n
ns

ds bcνξ = δ ×∑∫  

 

2 2 2 2 2[( ) / (cos ) ( )(tan ) / ( )]n n n n n n np b p b b× + α α + − α α α +  
 

2 2 2 2 22 / [( ) / (sin )n n n n
n

gc h q g+ σ β + β +∑  

2 2( )(cot ) / ( )]n n n nq g g+ β − β β .            (37) 
 

As well as in (23), (26) if 2 2 0npνς − <  or 
2 2 0nqνς − < , the corresponding trigonometric functions 

in expressions (36) and (37) should be replaced by hy-
perbolic ones. Despite the presence of imaginary com-
ponents in (36) and (37), their overall values are always 
real. 

According to received relations, the computation of 
cutoff frequencies and electromagnetic fields in double 
ridged waveguide section were carried out for funda-

mental mode and first higher transverse-electric and 
transverse-magnetic modes. 

Based on computed results, the evaluation of broad-
band properties as well as electric and magnetic fields 
images of the double ridged waveguide section as a 
component of tunable filter were investigated in wide 
range of its cross-section dimensions. The results ob-
tained were applied for designing the transition struc-
ture from double ridged section to rectangular wave-
guide. 
 

Definition of coupling coefficients 
 

To solve the scattering electromagnetic modes prob-
lem by the section of double ridged waveguide, we 
must previously define the coefficients (6) coupling the 
parameters of mathematical and physical models of 
double ridged waveguide section. Using the designa-
tions of eigenfunctions for transverse-electric and 
transverse-magnetic modes in the double ridged and 
rectangular waveguides, we can write the extended ex-
pressions of (6) as follows: 
 

1

(2111) (2) (1)
1 1hk h k

s

dsη = ∫Φ Ψ ;                     (38) 

1

(2112) (2) (1)
1 2hk h k

s

dsη = ∫Φ Ψ ;                     (39) 

1

(2121) (2) (1)
2 1hk h k

s

dsη = ∫Φ Ψ ;                     (40) 

1

(2122) (2) (1)
2 2hk h k

s

dsη = ∫Φ Ψ .                    (41) 

 

Consider in details the evaluation of integral (38) 
comprising the product of transverse-electric eigenfunc-
tions of the double ridged and rectangular waveguides. 
Represent the expression (38) in the extended form 
 

1 11

(2) (1) (21) (21) (1) (1)
11 1 1 1 1 1[ ] [ ]h k hx hy kx ky

s s

ds ds= Φ + Φ ⋅ Ψ + Ψ +∫ ∫Φ Ψ x y x y  

 

12

(22) (22) (1) (1)
21 1 1 1[ ] [ ]hx hy kx ky

s

ds+ Φ + Φ ⋅ Ψ + Ψ∫ x y x y ,     (42) 

 

where (21)
1hxΦ , (21)

1hyΦ  denote x and y components of func-
tion Φ  in first partial region of double ridge wave-
guide; (22)

1hxΦ , (22)
1hyΦ  are x and y components of function 

Φ  in second partial region of double ridge waveguide; 

1s , 2s  define the cross section squares of first and sec-
ond partial region of double ridge waveguide. 

Taking into account the properties of scalar multipli-
cation of two vectors, we get 
 

1 11 11

(2) (1) (21) (1) (21) (1)
1 1 1 1 1 1[ ]h k hx kx hy ky

s y x

ds dxdy= Φ Ψ + Φ Ψ +∫ ∫ ∫Φ Ψ  
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12 12

(22) (1) (22) (1)
1 1 1 1[ ]hx kx hy ky

y x

dxdy+ Φ Ψ + Φ Ψ∫ ∫ .        (43) 

 

Substituting the transversal components of vector 
eigenfunctions (34, 35) and (11, 12) into (43) as well as 
establishing the limits of integration in accordance with 
Fig. 3 and adding the normalization factors, we obtain 

1

(2) (1) (2) (1)
1 1 [ v m mh k h k

ms

ds N N A p= β ×∑∫Φ Ψ  

0

sin ( )cos sin sin
a c

m u m v
g

a x xdx p y ydy× α − α β +∫ ∫  

cos ( )sin
a

u m m m u
m g

A a x xdx+α α α − α ×∑ ∫  

0

cos cos
c

m vp y ydy× β +∫                     (44) 

0

cos cos
g

v m m m u
m

B q x xdx+β β α ×∑ ∫  

0

sin sin
h

m vq y ydy× β +∫  

0

sin sin
g

u m m m u
m

B x xdx+α β β α ×∑ ∫  

0

cos cos
h

m vq y ydy× β∫ ], 

 

where (2)
hN , (1)

kN  are the normalization factors. 
To calculate (44), therein integrals along coordinates 

x and y should be derived. Consider successively the 
evaluation of single integrals in [44] based on tables of 
integrals from trigonometric functions [10]. Using [10] 
and performing corresponding transformation, we get 
the following expressions for these integrals: 
 

sin ( )cos [ sin sin
a

m u u m u
g

a x xdx b gα − α = α α α −∫  

2 2cos cos ] / ( )m m u m ub g−α α α α − α ; 

cos ( )sin [ cos cos
a

m u u m u
g

a x xdx b gα − α = α α α −∫  

2 2sin sin ] / ( )m m u u mb g−α α α α − α ; 

0

cos cos [ sin cos
g

m u m m ux xdx g gβ α = β β α −∫  

2 2cos sin ] / ( )u m u m mg g−α β α β − α ; 

0

sin sin [ sin cos
g

m u u m ux xdx g gβ α = α β α −∫  

2 2cos sin ] / ( )m m u m ug g−β β α β − α ; 

1
0

sin sin
c

m vp y ydy cβ =∫ ; 

2 2
1 ( 1) sin [ / ( )]m

v m m vc c p p= − − β − β , m vp ≠ β ; 
 

1 / 2c c= , 0m vp = β ≠ ; 

1 0c = , 0m vp = β = ; 
 

2
0

cos cos
c

m vp y ydy cβ =∫ ; 

 

2 2
2 ( 1) sin [ / ( )]m

v v m vc c p= − − β β − β , m vp ≠ β ; 
 

2 / 2c c= , 0m vp = β ≠ ; 
 

2c c= , 0m vp = β = ; 
 

1
0

sin sin
h

m vq y ydy hβ =∫ , m vq = β ; 

 

1 0h = , m vq ≠ β  
 

1 / 2h h= , 0m vp = β ≠ ; 
 

1 0h = , 0m vp = β = ; 
 

2
0

cos cos
h

m vq y ydy hβ =∫ , m vq = β ; 

 

2 0h = , m vq ≠ β  
 

2 / 2h h= , 0m vp = β ≠ ; 
 

2h h= , 0m vp = β = ; 
 

Substituting the relations (43) and (44) together with 
values of single integrals into (38), we obtain the ex-
pression for computing the coupling coefficients be-
tween transverse-electric modes of double ridged and 
rectangular waveguides as follows:  
 

(2111) (2) (1) 2 2
1{ 2 / ( )m m m uhk h k

m

N N Tη = ε α − α ×∑  

1[ (cos / tan sin )m v u u m m up g b g c× β α − α α α α +  
 

2( cos tan sin ) ]u u u m m ug b g c+α α α − α α α −  
 

2 2
22 / / ( )[ (cosmv v m m v m v uc h T q q g− δ ε − β β α −  

 

1/ cot sin ) ( cosu m m u u u ug g h g−α β β α + α α α −  
 

2cot sin ) }m m ug g h−β β α , 
 

where 1mT , 2mT  are the frequency-independent coeffi-
cients derived by using relations (21) and (22); mvδ  is 
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the Kronecker symbol. The remaining coupling coeffi-
cients (39)─(41) are found by similar way. At that, the 
coupling coefficient (39) equals zero as for other wave-
guide junctions. 
 

Numerical results 
 

To investigate the considered waveguide resonators 
to be applied for designing the tunable bandpass filters, 
the FORTRAN program was developed. To verify the 
computational algorithm using the obtained relations, 
the resonance curve of ridged section in rectangular 
waveguide with dimensions presented in [11] was cal-
culated. The obtained results are in good agreement 
with the experimental and theoretical data of [11]. 

The main characteristics of waveguide tunable reso-
nators were calculated by using the developed program. 
Some results of these resonators investigation are de-
picted in Figures 4─7. 
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Fig. 4. Responses of the reflection coefficient modulus of the 
resonator with the correcting capacitive elements versus the 
normalized frequency under tuning the resonator on the va-
riety of resonance frequencies. 

Figures 4 and 5 illustrate the phenomenon of the 
resonance curve movement at the frequency tuning. 
These figures display the behavior of the reflection co-
efficient modulus responses as a function of normalized 
frequency /norm highf f f=  under tuning the resonator 
on the variety of resonance frequencies, where highf  
denotes the higher frequency of tuning range and f  is 
the operating frequency. For comparison, the character-
istics /norm highf f f=  of the same tunable resonator but 
without the correcting capacitive posts are presented in 
Fig 5. 
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Fig. 5. Characteristics of the tunable resonator without the 
correcting capacitive elements on the variety of resonance 
frequencies. 
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Figures 4 and 5 display characteristics of the tunable 
resonators for the cases of their optimal dimensions 
with and without the elements correcting the phase 
shifts conditioned due the frequency tuning. Fig. 4a and 
Fig. 5a illustrate scenarios of the resonance curves 
movement for four normalized tuning frequencies: 

1normf = , 0.95normf = , 0.9normf = , 0.85normf =  by 
solid lines, dashed lines, dash-dotted lines and dash-dot-
dot lines, respectively. Fig. 4b and Fig. 5b show the 
similar characteristics for three normalized tuning fre-
quencies: 0.975normf = , 0.925normf = , 0.875normf =  
denoted by solid, dashed and dash-dotted lines, respec-
tively. As follows from Fig. 4, the form of the reso-
nance curve does not altered in overall tuning range 
achieving the value 15 percent. 

Fig. 5 displays the responses of the reflection coeffi-
cient modulus of the resonator without correcting ele-
ments as a function of normalized frequency under tun-
ing the resonator on the variety of resonance frequen-
cies. This case corresponds to the resonator on induc-
tive discontinuities forming by two finite thickness 
strips disposed in vertical symmetry plane of the rec-
tangular waveguide. It can be seen that the form of the 
resonance curve is noticeably changed in considered 
tuning range. The resonance curve width is considera-
ble decreased at the variation of operating frequency 
into lower region of tuning range. 

Fig. 6 shows the variation of resonator loaded quali-
ty factor (Q-factor) of optimal dimensioned resonator 
with correcting elements in dependence on the tuning 
frequency. Fig. 7 illustrates the analogous response of 
the resonator without correcting elements. 
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Fig. 6. Loaded quality factor of the resonator with correcting 
elements versus the normalized frequency. 

As follows from Fig. 7, the value of quality factor of 
the resonator without correcting elements (on inductive 
strips) has significant dependence from the tuning fre-
quency. These quality factor values on both ends of tun-
ing range are differed almost twice. This circumstance 
prevents the establishment of the waveguide tuning fil-
ters with good performances. 
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Fig. 7. Loaded quality factor of the resonator without correct-
ing elements versus the normalized frequency. 
 

The equipment of such resonators by two correcting 
sections disposed on its both ends as shown in Figures 1 
and 2 allows obtaining the desired inclination of quality 
factor responses within the tuning range. To obtain 
nearly constant bandwidth of waveguide filter in tuning 
process, the quality factors of each resonator should be 
not changed in overall tuning range. The quality factor 
response of optimally designed resonator is depicted in 
Fig. 6. It should be noted that required responses of re-
flection coefficient and quality factor of resonator can 
be obtained at the specific ratios of its geometric pa-
rameters. 
 

Conclusion 
 

Based on rigorous approach, the class of resonators 
which allow building mechanically tunable waveguide 
bandpass filters with near constant bandwidth in a wide 
tuning frequency range has been extensively investigat-
ed. By the successful combining inductive and capaci-
tive discontinuities, the near constant quality factor of 
resonators in wide frequency variation range is 
achieved. 

It is proved that the most technologically advanced 
solution can be obtain by using the waveguide connec-
tions containing double ridged posts for compensation 
of phase shifts in resonators appearing due to frequency 
variation. As a tunable element, a round rod inserting 
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into resonator cavity through the side wall of the rec-
tangular waveguide was considered. Such technical so-
lution decreases the inclination of calibration response 
of the resonator and increases its linearity. The presence 
of tunable element inevitably breaks the resonator 
symmetry with respect to vertical plane. Due to absence 
of resonator symmetry in vertical plane, the theoretical 
investigation of such combined structure becomes ex-
tremely complicated. To simplify the numerical analy-
sis of entire structure asymmetric with respect to verti-
cal plane, the idea proposed in [9] was implemented. 
This original idea was modified in order to replace 
asymmetric tunable element by its symmetric virtual 
analog. 

A transition from asymmetric tunable resonator 
structure to its symmetric virtual analog crucially sim-
plifies the problem solution, reduces the computer re-
sources and increases the accuracy of computations. To 
create effective calculating algorithms of mechanically 
tunable waveguide resonator components, their mirror 
symmetry with respect to a plane going through the 
middle of the structure perpendicularly to its longitudi-
nal axes is taken into account. Adequate mathematical 
models of the resonator components based on general-
ized scattering matrix approach are obtained. The dif-
fraction problems for doubled discontinuities such as 
doubled ridged posts in rectangular waveguide have 
been solved by the integral equation method. 

To determine vector eigenfunctions of double ridged 
waveguide, the numerical methods of internal boundary 
problem solution have been applied. The suitable ap-
proach for solving of this complicated problem was ob-
tained by the partial region method with taking into ac-
count the edge field singularity. To simplify the solu-
tion of this problem, the symmetry of double ridged 
waveguide cross section relative to vertical and hori-
zontal planes was taken into account. 

To investigate the considered waveguide resonators 
to be applied for designing the tunable bandpass filters, 
the FORTRAN program was developed. The computa-
tional algorithm using the obtained relations was veri-
fied by the comparison of calculated results of the reso-
nance curve of ridged section in rectangular waveguide 
with the experimental and theoretical data presented in 
[11]. The calculation of resonance frequencies and 
loaded quality factors of resonators are carried out in 
wide dimension range variations. 

Despite the great advances in the implementation of 
high quality ultra long communication, the problem of 
finding the ways for further improvement of tropo-
spheric station characteristics remains highly relevant. 
This circumstance necessitates the further investigations 
of waveguide resonators as the components of mechan-

ically tunable bandpass filters. To improve significantly 
the characteristics of mechanically tunable waveguide 
filters of transmit tropospheric stations operating at high 
power levels, the following problem should be neces-
sarily solved. It primarily concerns the researches of the 
various constructions of waveguide tunable resonators 
with the purpose of achieving the high linearity of their 
calibration characteristics representing the dependence 
of resonant frequency from the immersion depth of tun-
ing metallic rod into resonator cavity. Others problems 
are connected with the necessity of extension of tuning 
range and improvement of the stop band properties of 
tunable resonators. In this respect, the developed wave-
guide resonators open new possibilities in realization of 
high efficient and cost effective mechanically tunable 
filters for various transmit systems of tropospheric 
communication. 
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