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The error-correcting capabilities of regular LDPC (Low Density Parity Check) codes and BCH (Bose-Chaudhuri-
Hocquenguem) codes are examined. The qualitative analysis and the quantitative assessment of error-correcting abilities are 
performed for LDPC codes with code word length n=1000 bits and BCH codes with code word length n=1023 bits. The code 
rates of LDPC and BCH codes are determined for a known signal to noise ratio in the gaussian channel; detected code rates are 
optimal for predefined modulation type and required information reliability on the receiver side. 
 

Introduction 

Significant interest has raised for LDPC (Low Den-
sity Parity Check) codes recently. The importance of 
LDPC codes is shown by different standards and rec-
ommendations, where LDPC codes are used: DVB-S2, 
IEEE802.16 et al. [1]. Theoreticians and practices in er-
ror control coding area renewed a level of interest to 
LDPC codes over the world. Many scientific publica-
tions devoted to LDPC: [2-4] (Great Britain), [5] 
(USA), [1] (Japan) and others. 

LDPC codes are block structured linear divisible 
codes. The LPDC codes are introduced for the first by 
R. Gallagher in 1962 [6], but interest was not attracted 
to them so much at that time. These codes have been 
forgotten for several tens of years. Here is the next ex-
planation [7] of the reason why LDPC codes explora-
tion was held up after Gallagher’s publications and re-
sumed in 1998. Turbo codes were discovered in the 
middle of 1990 and have iterative decoding procedures 
with attractive error-correcting characteristics; whereas 
LDPC codes have iterative decoding procedures as well 
[8], an interest was aroused for these codes too. It was 
assumed that LDPC codes stand as well closely to 
Shannon limit as turbo codes, and this was corroborated 
in relevant researches [2, 7].  

BCH codes (Bose-Choudhury-Hocquenguem), in 
turn, are one of the best block codes. The characteristics 
of BCH codes are shown in [9]. 

The goal of this research is LDPC and BCH codes 
comparison. Criteria for comparison are the next: iden-
tical code word length, equal shift keying manipulation, 
known channel parameter SNR (Signal to Noise Ratio), 
same required bit error probability on the receiver end.  

Problem statement 

The entry parameters for task are below:  

– Channel parameter: SNR = 0…14 dB;  
– Shift keying manipulation: QPSK; 
– Code word length for antinoise coding: n=1000 for 

LDPC codes and n=1023 for BCH codes; 
– Requirement to the bit error reliability on the re-

ceiver side: 10-6.  
Output parameters are LDPC and BCH coding rates: 

RLDPC and RBCH. To reach the goal of research, the anti-
noise code rates RLDPC and RBCH are found to achieve 
required information reliability on the receiver side if 
the described entry parameters above are known; given 
code rate values are compared and the best error-
correcting method {LDPC, BCH} on the criterion 
{ RMAX , dMAX } is chosen. This task can be schematically 
presented as shown on the Fig. 1. 

So, the main task is a search of antinoise code with 
maximal code rate R and code distance d values, and 
this is a fundamental problem of coding theory [10]. 
 

 
Fig. 1. Statement of the problem 

 
The next subtasks were set up to achieve the goal: 
– Development and implementation the search pro-

cedure of minimal LDPC code distance when the code 
length and check matrix parameters are predefined; 
– Determination of positions the LDPC and BCH codes 
points in coordinates R = f (d/2n); 

h2=const, dB 
QPSK 
рbit=10-2 
LDPC: n=1000 
BCH: n=1023 
pbit_req=10-6 

h2=const, dB 
QPSK 
pbit_req=10-6 
R{LDPC, BCH} – ? { Rmax,dmax}  
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– Definition the maximum antinoise code rate that is 
able to provide required bit error reliability. 

LDPC and BCH  
codes characteristics 

BCH codes are characterized by the possibility to 
form the antinoise code with predefined error-
correcting abilities such as minimal code distance d. 
The BCH code exists for any values m and t=(d-1)/2 
with code length n=2m–1 that corrects all combinations 
of t or less errors number; this code has mt corrective 
bits in the code word. Thus, the BCH code length can 
not be chosen randomly and depends from the parame-
ter m; BCH code length always has an odd value. The 
properties of some BCH codes with parameter m=10 
and code length 210–1=1023 are shown in the Table I.  
 

TABLE I.  BCH CODES 
 

n k n-k=mt t R 
1023 1003 20 2 0.98 
1023 993 30 3 0.97 
1023 983 40 4 0.96 
1023 973 50 5 0.95 

. . . 
1023 783 240 24 0.77 
1023 773 250 25 0.76 
1023 763 260 26 0.75 
1023 753 270 27 0.74 

. . . 
1023 243 780 78 0.24 
1023 233 790 79 0.23 
1023 223 800 80 0.22 
1023 213 810 81 0.21 
1023 203 820 82 0.20 

 

As follows from example, BCH code with code 
length n=1023 can be formed with code rate step 0.01. 
Herewith the BCH code rate decreases linearly whereas 
error-correcting capability increases: 

 1 0,0097R t= − , or  (1) 

 
1

0,0098

R
t

−=   (2) 

Inaccuracy of (1) and (2) is lower than 2.2%. 
Let’s turn to the LDPC codes characteristics. LDPC 

codes are not analytical and this is one of the differ-
ences from BCH codes. LDPC code properties cannot 
be defined analytically as a result of this. 

A lot of LDPC code modifications exist, and most of 
them are not explored in full. Together with this, all 
LDPC codes are classified by two groups: regular and 
non-regular. These two groups are differentiated by the 
check matrix construction that used for encoding and 
decoding code words. Non-regular LDPC codes are 
built based on regular LDPC codes [8].  

It is shown in [11] that regular LDPC codes more of-
ten demonstrate better characteristics than non-regular 
LDPC codes. It’s shown in [2] that regular LDPC codes 
have better properties in Gaussian channel than non-
regular LDPC codes. Together with this, the conditions 
are presented in [5] when non-regular LDPC codes 
have better characteristics actually. Thereby, either reg-
ular LDPC codes or non-regular LDPC codes are enti-
tled to existence in the theory and practice of antinoise 
coding.  

Forming of regular LDPC codes is defined in con-
secutive order. Regular LDPC code with a code length 
n forms based on the check matrix H. Сheck matrix H 
has a fixed value of “ones” in the matrix row rW  and a 
fixed value of “zeros” in the column cW  [2]. It’s con-
sidered that check matrix H has a low density of “ones” 
when density of “ones” in check matrix H is less than 
50% of all the check matrix elements.  

The LDPC code error-correcting ability is specified 
based on specific parameters of check matrix H: n , rW , 

cW . At the same time, positions of “ones” in the check 
matrix Н are based on random permutations the basic 
sub matrix H1 columns.  Each column of basic sub ma-
trix H1 includes only solus “one”. The regular LDPC 
code rate is defined as a function of check matrix H pa-
rameters (3):  
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Withal, LDPC codes check matrices Н with the 
same matrix parameters, but different positions of 
“ones” in check matrix, can generate antinoise codes 
with different code distances and respectively different 
error-correcting abilities. Hence the task raises to search 
the best check matrix H with known parameters n , rW , 

cW  by the criterion of maximal error-correcting ability 

of LDPC code: ( )max max 2 / 2t d≤ − . 

LDPC code check matrix H can be represented as: 

 , (4) 

Where Н1 – basic submatrix, 1( )i Hπ  – submatrices 
are generated by random rearrangement of basic subma-
trix columns Н1, i=1,2,…,Wc–1. 

Check matrix H can be transformed into the matrix 
form: 
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Where A  – some non-sparse fixed matrix with “ze-
ros”, “ones” and dimensions ( )( )n k k− × ; n kI −  – identi-

ty matrix with dimensions ( ) ( )n k n k− × − . The genera-

tion matrix G can be represented as: 
 | T

kG I A = −    (6) 

If the check matrix Н is presented as (5), then the 
generation matrix G (6) can be simply given from the 
matrix Н by transformation.  

The matrix G is also named as generative matrix so 
far as code words that can be represented as linear com-
binations of matrix G rows. The matrices Н and G are 
related as [2]: 

 0,  0T TGH HG= =   (7) 
Code distance d for regular LDPC code is defined as 

the least columns number of check matrix H that overall 
gives 0. The analytical description for LDPC code er-
ror-correcting abilities doesn’t exist so far; however, the 
forward and backward theorems exist for LDPC code 
distance [10]. 

Theorem 1. If any l ≤ d – 1 columns of linear code 
check matrix Н are linearly independent, then a mini-
mal code distance will be at least d. If d linearly inde-
pendent columns are found, then minimal code distance 
is equal d. 

Theorem 2. If minimal code distance is equal d, then 
any  
l ≤ d – 1 columns of check matrix H are linearly inde-
pendent and exactly d linearly independent columns ex-
ist. 

Thus, it’s possible to conclude from theorems 1 and 
2 that LDPC code distance d can be identified from ma-
trices H and G as the next: the d value equals the least 
columns number of matrix Н that sum up to 0; the d 
value equals the least row weight (the number of ones 
in the row) in matrix G. 

The LDPC codes error-correcting ability is re-
searched in current work based on the described proper-
ties of check and generating matrices. The same LDPC 
code word length n=1000 and different check matrix H 
parameters result in different antinoise code rates R and 
different numbers of corrected errors per code words re-
spectively. Given results in experiments are compared 
with error-correcting abilities of BCH codes with code 
word length n=1023 bits.  

 LDPC codes error-correcting ability  

Known methods for LDPC code distance d search 
complexity grows exponentially as is shown in [2]. 
Known search methods give a possibility to define the 
code distance value for codes with code length less that 
n<1000 bits in terms of spending sensible time re-
sources for a search. The LDPC code error-correcting 

value can be found from matrices H and G by search, 
but the given code distance value can be not the best for 
used LDPC matrix parameters.  

The study of LDPC code error-correcting abilities 
with code length n=1000 bits is performed in this work 
based on the theorems 1 and 2. This idea is shown on 
Fig. 2. 

The line #1 (Fig. 2) indicates the code distance d 
search complexity when use only theorem 1 (by using 
matrix Н); the line #2 designates a code distance d 
search complexity when use only the theorem 2 (by us-
ing matrix G). The “complexity” term means in this 
context the number of elementary operations to execute 
in the specific time point and save the same progress of 
the end results receiving. 
 

 
Fig. 2. A graphical representation of application  

the theorems 1, 2 for code distance search process 

The point A (Fig. 2) indicates the moment when it’s 
better to use theorem 1 before that, but it’s better to use 
theorem 2 after point A. The point A corresponds the 
case when code distance d = 6 (t = 2) is found by theo-
rem 1. As soon as the matrix Н has d = 6, then search 
by theorem 1 stops and further search of code distance 
d continues by reduction the matrix H to matrix G in 
canonical form (5). Thus, the minimal time for search 
LDPC code distance spends if combine theorems 1, 2 
for the search process.  

The described algorithm above for LDPC code dis-
tance search is implemented on Java language. LDPC 
code distance results for n=1000 are obtained from set 
of numerical experiments performed on high perfor-
mance computing cluster in NTUU “KPI”. Matrix H 
and found LDPC code error-correcting parameters are 
presented in Table II. 
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TABLE II.  GIVEN PARAMETERS OF LDPC CODES 

n Wr Wc k R d t 
1000 100 10 909 0.91 22 10 
1000 100 20 819 0.82 40 19 
1000 100 30 729 0.73 64 31 
1000 100 40 639 0.64 98 48 
1000 100 50 549 0.55 138 68 

 

 

LDPC and BCH  
codes comparison 

The method for search the best antinoise block 
code by criterion of maximal approach to the Shannon 
limit is described in [9]. This method implies the block 
code selection with using up-to-date theory of anti-
noise coding. This method is used for calculation and 
error-correcting abilities comparison of LDPC and 
BCH codes. Regarding the method [9] and problem 
statement (Fig. 1), the next factors can be noted: 1) if 
the manipulation QPSK is used, then an initial bit er-
ror probability pbit=10-2 is reached when the signal to 
noise ratio in the channel is h2=7.3 dB; 2) if antinoise 
block code with code length n=1000 bits is used and 
required reliability is pbit_req =10-6, then it’s needed to 
correct up to t=28 errors [9]. Only in this case the re-
quired reliability pbit_req =10-6 can be achieved on the 
receiver side; 3) to satisfy the required reliability 
pbit_req =10-6, the value d/2n for antinoise code should 
meet 0.03. 

The limit conditions of antinoise codes existence 
with some error-correcting abilities are described by 
Plotkin limit [10]. A sufficient condition for antinoise 
codes with specific error-correcting abilities is defined 
by the Varshamov-Gilbert limit (VG). Thereby, the 
Plotkin and VG criteria provides an opportunity to 
compare different error-correcting block codes in the 
same relative coordinates R = f (d/2n) for assessment 
the error-correcting capabilities. 

The dependency R = f(d/2n) is shown on the Fig. 3.  
The Plotkin and VG limits are shown in these coordi-
nates. The positions of some BCH (Table I) and given 
experimentally LDPC codes (Table II) are plotted on 
Fig. 3 with code rates 0,55…0.9. If take into account the 
code length n ~ 1000 bits and set the value d/2n=0.03, 
then the triangle between Plotkin and VG limits shows 
the shaded area (Fig. 3) which outlines the region of an-
tinoise codes parameters that can provide expected reli-
ability pbit_req=10-6 [9]. If compare the characteristics of 
BCH codes with n=1023 bits and LDPC codes with 
n=1000 bits, then it’s possible to say that the next code 
rates fit the ratio d/2n=0.03: RBCH=0.7 and RLDPC=0.73. 
If RBCH=RLDPC=0,55, then d/2nBCH=0,05 a nd 
d/2nLDPC=0,07. The above two instances demonstrate a 

better correcting capabilities of LDPC codes in compari-
son with BCH codes (RLDPC>RBCH if 
d/2nLDPC=d/2nBCH=const; or d/2nLDPC>d/2nBCH when 
RLDPC=RBCH; or dLDPC>dBCH when  n=const). 

If continuously change the parameter h2, then it’s 
possible to get dependency R=f(h2) (Fig. 4). Both 
Plotkin and VG limits are stood below the Shannon 
limit in coordinates R=f(h2). Consequently, if channel 
parameter h2, current bit error probability pbit, required 
reliability pbit_req are known, then it’s not possible to 
come to Shannon limit nearer, than it’s defined by 
Plotkin limit. 

 

Fig. 3. BCH (n=1023) and LDPC (n=1000) 

Specified above conditions give an opportunity to 
choose the antinoise code that lies to Shannon limit 
closely as much as possible. The LDPC and BCH codes 
positions in coordinates R = f (h2) are shown on Fig. 4.  
 

 
Fig. 4. LDPC (n=1000) and BCH (n=1023) codes 
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As shown on Fig. 4, LDPC codes stand a little bit 
closely to Shannon limit than BCH codes. This behav-
ior takes a place more and more if LDPC code rate 
drops down: R<0.7. If R<0.7, then LDPC code is pref-
erable when choose between LDPC and BCH.  

The indisputable advantage of LDPC code is a pos-
sibility to increase the code word length n right up to 
tens of thousands bits. This explained by relatively sim-
ple methods of coding and decoding. Together with 
that, the advantage of BCH code is the opportunity to 
define code parameters analytically and choose appro-
priate code with needed parameters (e.g., it’s possible to 
choose the BCH code rate with a step 0.01 for code 
length n=1023 bits) to meet the requirements of errors 
correcting regarding the method described in [9]. 

Conclusions 

The procedure complexity of the LDPC check ma-
trix H searching with good error-correcting ability 
grows exponentially with increasing a code word 
length.  

There is no need for BCH codes to perform the 
search matrix procedure because of the nature of encod-
ing/decoding processes. This is an advantage of BCH 
codes. 

Research showed that LDPC codes can be charac-
terized as antinoise codes with good error-correction 
properties. Relative number of corrected errors per 
code word is almost the same for LDPC (n=1000) and 
BCH (n=1023) codes.  LDPC codes have a little bit 
better error-correcting abilities than BCH codes have 
if code rate R<0.7 (it’s implied that other parameters 
like code length, signal to noise ratio, manipulation 
method, required reliability are the same for LDPC 
and BCH).  

The coded rates are obtained for LDPC (n=1000) 
and BCH codes (n=1023) for gaussian channel when 
signal to noise value is known. Given code rates 
RBCH=0.7 и RLDPC=0.73 notices that it’s possible to use 
both LDPC and BCH codes with a specific manipula-
tion type to satisfy required information reliability. 
According to numerical LDPC and BCH code rates 
values, LDPC code can be recommended as more ef-
fective if signal to noise values are bigger than 7 dB. If 
signal to noise values are smaller than 7 dB, then 
LDPC and BCH codes can be used pari passu. These 
recommendations are reasonable for manipulation 
QPSK, code word length 1000 bits and required in-
formation reliability 10-6.  

The LDPC code word length can reach tens of 
thousands.  This is possible because of relatively sim-
ple code words encoding/decoding procedures, and 
this is an advantage of LDPC codes. As opposed to 
LDPC, the BCH codes have more complex encod-

ing/decoding procedures. As a result of this, BCH 
codes with long code words n>1000 are less practical 
than LDPC codes, or they are technically complicated 
with realization. 
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