ПРО ГРАНИЧНУ ПОВЕДІНКУ СИМЕТРИЧНИХ ВИПАДКОВИХ БЛУКАНЬ З МЕМБРАНАМИ

УДК 519.21

А. Ю. ПИЛИПЕНКО І Ю. Є. ПРИХОДЬКО

Анотація. Нехай $\{X(k),k\in\mathbb{Z}_+\}$ — випадкове блукання на \mathbb{Z} , перехідні імовірності якого відрізняються від відповідних перехідних імовірностей симетричного випадкового блукання з одиничним стрибком лише в заданому околі нуля. В роботі доводиться слабка збіжність послідовності нормованих випадкових блукань $\{X_n(k)=\frac{1}{\sqrt{n}}X(nk),k\geqslant 0\}_{n\geqslant 1}$. Основний результат роботи узагальнює результат Ј. М. Harrison'a та L. А. Shepp'a про слабку збіжність до косого броунового руху послідовності нормованих випадкових блукань з однією несиметричною точкою. Також вказано всі можливі граничні процеси.

Аннотация. Пусть $\{X(k), k \in \mathbb{Z}_+\}$ — случайное блуждание на \mathbb{Z} , переходные вероятности которого отличаются от переходных вероятностей симметричного случайного блуждания с единичным скачком только в фиксированной окрестности нуля. В работе доказана слабая сходимость последовательности нормированных случайных блужданий $\{X_n(k) = \frac{1}{\sqrt{n}}X(nk), k \geqslant 0\}_{n\geqslant 1}$. Основной результат является обобщением результата Ј. М. Harrison'а и L. А. Shepp'а про слабую сходимость к косому броуновскому движению последовательности нормированных случайных блужданий, для которой симметричность переходных вероятностей нарушается в единственной точке. Также указаны все возможные предельные процессы для рассматриваемых блужданий.

ABSTRACT. Let $\{X(k), k \in \mathbb{Z}_+\}$ be a random walk in \mathbb{Z} . Assume that transition probabilities of this walk coincide with transition probabilities of symmetric random walk except for a fixed neighborhood of zero. Weak convergence of a sequence of normed walks $\{X_n(k) = \frac{1}{\sqrt{n}}X(nk), k \geqslant 0\}_{n\geqslant 1}$ is proved. The main result is a generalization of J. M. Harrison's and L. A. Shepp's theorem on a weak convergence to a skew Brownian motion in a case when a symmetricity of the random walk fails in a single point. All possible limits for the corresponding random walks are described.

1. Вступ

Нехай $\{S(k), k \in \mathbb{Z}_+\}$ — симетричне випадкове блукання на \mathbb{Z} , S(0)=0 та $p_{i,i+1}=p_{i,i-1}=1/2, i \in \mathbb{Z}$.

Довизначимо послідовність $\{S(k), k \geqslant 0\}$ до неперервного процесу $\{S(t), t \geqslant 0\}$ як лінійну інтерполяцію значень в цілих точках і покладемо

$$S_n(t) = \frac{1}{\sqrt{n}}S(nt), \quad n \in \mathbb{N}.$$

Добре відома теорема Донскера (див. напр. [2]), яка стверджує, що при $n \to \infty$ послідовність процесів $\{S_n(t), t \in [0,1]\}_{n\geqslant 1}$ слабко збігається в C[0,1] до вінерівського процесу.

В даній роботі розглядається питання слабкої збіжності аналогічно нормованих випадкових блукань $\{X(k), k \in \mathbb{Z}_+\}$, перехідні ймовірності яких можуть відрізнятися від перехідних імовірностей $\{S(k), k \in \mathbb{Z}_+\}$ в деякому околі нуля [-m, m]. Цей окіл ми будемо називати мембраною.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60F17, 60J10.

Ключові слова і фрази. Випадкові блукання, косий броунів рух, дифузія з мембраною.

Роботу виконано при частковій підтримці гранту Державного фонду фундаментальних досліджень України та Російського фонду фундаментальних досліджень, грант № Ф40.1/023.

Випадок мембрани, що складається з однієї точки (тобто при m=0), розглядали J. М. Harrison та L. А. Shepp [3]. Вони довели, що якщо $p_{0,1}=p,\ p_{0,-1}=q=1-p$ та $p_{i,i+1}=p_{i,i-1}=1/2$ при $i\neq 0$, то послідовність нормованих вказаним чином блукань $\{X_n\}$ слабко збігається до косого броунового руху $W_{\gamma}(\cdot),\ \gamma=p-q$, тобто неперервного марковського процесу з перехідною густиною

$$p_t(x, y) = \varphi_t(x - y) + \gamma \operatorname{sign}(y)\varphi_t(|x| + |y|), \quad x, y \in \mathbb{R},$$

де $\varphi_t(x) = (2\pi t)^{-1/2} e^{-x^2/2t}$ — густина нормального розподілу N(0,t).

Коефіцієнт $\gamma \in [-1,1]$ називається коефіцієнтом проникнення. Відмітимо, що якщо $\gamma = +1$ (або -1), то W_{γ} — це броунів рух з відбиттям в нулі вгору (вниз), а якщо $\gamma = 0$, то W_{γ} — звичайний броунів рух.

Детальніше про дифузію з мембранами див. напр. в [4].

Р. А. Мінлос та О. А. Жижина [5] узагальнили результат [3] за допомогою напівгрупової теорії на випадок довільної обмеженої мембрани.

В даній роботі буде встановлено аналогічний результат, однак для його доведення використовуються імовірнісні методи, які виявились більш простими та зручнішими для узагальнень на складніші ситуації, а також наведено імовірнісну інтерпретацію коефіцієнта γ в термінах характеристик поведінки блукання всередині мембрани. Нами також описано всі можливі граничні процеси в залежності від властивостей мембрани.

Відмітимо також результати декількох робіт, близьких за тематикою до дослідження даної статті: див. [6]–[9], а також посилання в них.

2. Постановка задачі та основні результати

Розглянемо однорідний марковський ланцюг $\{X(k) = X(x_0, k), k \in \mathbb{Z}_+\}$ на \mathbb{Z} з початком в точці $x_0 \in \mathbb{Z}$ та перехідними імовірностями $p_{i,j}$ які можуть відрізнятися від відповідних імовірностей для симетричного випадкового блукання $\{S(k), k \in \mathbb{Z}_+\}$ тільки при $|i| \leq m$:

$$p_{i,i+1} = p_{i,i-1} = 1/2, \quad i \notin \{-m, \dots, m\}$$

і такими, що з точок множини $\{-m,\ldots,m\}$ ланцюг X може переходити у, взагалі кажучи, довільну точку множини $\{-m-1,\ldots,m+1\}$:

$$\sum_{j=-m-1}^{m+1} p_{i,j} = 1, \qquad i \in \{-m, \dots, m\}.$$

Будемо інтерпретувати $\{X(k), k \in \mathbb{Z}_+\}$ як симетричне випадкове блукання з (несиметричною) мембраною в множині $\{-m, \ldots, m\}$.

Довизначимо $X(x_0,t)$ для всіх $t \geqslant 0$ неперервно за лінійністю:

$$X(x_0,t) := X(x_0,[t]) + (t-[t]) \left(X(x_0,[t]+1) - X(x_0,[t]) \right).$$

Нехай $x \in \mathbb{R}$. Розглянемо наступну послідовність процесів:

$$X_n(t) = X_n(x,t) := \frac{1}{\sqrt{n}} X([\sqrt{n}x], nt), \qquad t \geqslant 0.$$

Для зручності формулювання основного твердження роботи введемо наступні імовірнісні міри на C[0,1].

Позначимо через $P_{x,W_{\gamma}}$ розподіл косого броунового руху $W_{\gamma}(\cdot)$ з початком в точці x, та $P_{x,0}$ — розподіл броунового руху з початком в точці x та залипанням в нулі.

2.1. Основна теорема.

Теорема 1. Для довільного $x \in \mathbb{R}$ послідовність процесів $\{X_n(x,t), t \in [0,1]\}_{n\geqslant 1}$ при $n \to \infty$ слабко збігається в $\mathrm{C}[0,1]$ до неперервного процесу $\{X_\infty(x,t), t \in [0,1]\}$. Зокрема:

- **А.** Якщо принаймні один зі станів -m-1 та m+1 ланцюга $\{X(k), k \in \mathbb{Z}_+\}$
 - 1) ϵ icmomним ma
 - 2) досягається з імовірністю 1,

то граничний процес X_∞ ϵ косим броуновим рухом W_γ , параметр якого визначається наступним чином.

Якщо умови 1) i 2) виконуються для обох станів -m-1 та m+1, то

$$\gamma = \frac{\alpha - \beta}{\alpha + \beta},$$

 $de\ \alpha$ — імовірність для блукання X потрапити з точки — m в точку m+1, не потрапляючи m+1; а β — навпаки — з точки m в точку m+1, не потрапляючи в m+1.

Якщо умови 1) і 2) одночасно виконуються тільки для одного зі станів -m-1 та m+1, то γ дорівнює знаку цього стану.

В. Нехай x>0, а стан -m-1 е істотним та досягається ланцюгом $\{X(k), k\in \mathbb{Z}_+\}$ з імовірністю $q,\ 0< q<1$. Тоді розподіл граничного процесу X_∞ дорівнює $qP_{x,W_{-1}}+(1-q)P_{x,0}$. Аналогічно для x<0 та стану m+1.

В. Нехай x=0, а стани -m-1 та m+1 досягаються ланцюгом $\{X(k), k \in \mathbb{Z}_+\}$ з імовірностями q та p відповідно $(q, p \geqslant 0)$ та e істотними 1 .

Якщо ці стани між собою не сполучаються, то розподіл граничного процесу X_{∞} дорівнює $qP_{0,W_{-1}}+pP_{0,W_{+1}}+(1-q-p)P_{0,0}$.

Якщо стани -m-1 та m+1 сполучаються, то розподіл граничного процесу X_{∞} дорівнює $(q+p)P_{0,W_{\gamma}}+(1-q-p)P_{0,0}$, де γ визначається аналогічно до пункту ${\bf A}$.

 Γ . Якщо будь-який (досяжний) 1 зі станів -m-1 та m+1 є неістотним, то граничний процес X_{∞} є броуновим рухом із залипанням в нулі.

Зауваження 1. При m=0, тобто коли симетричність порушується в єдиній точці нуль, отримуємо результат, який встановили Ј.М. Harrison та L.A. Shepp [3]. Зауваження 2. Твердження теореми залишається справедливим, якщо умову

$$\sum_{j=-m-1}^{m+1} p_{i,j} = 1$$

в означенні Х замінити на

$$\sum_{j=-m-N}^{m+N} p_{i,j} = 1$$

для наперед заданого N. Дійсно, в цьому випадку X можна розглядати як блукання з мембраною в [-m-N, m+N] та відповідними перехідними імовірностями.

2.2. **Приклади.** а) Нехай симетричність порушується в двох точках -1 та 1. Тобто m=1 та

$$p_{i,i\pm 1} = 1/2,$$
 $i \notin \{-1,1\},$
 $p_{-1,-2} = q',$ $p_{-1,0} = p',$
 $p_{+1,0} = q'',$ $p_{+1,+2} = p'',$

де q', p', q'', p'' — додатні числа, такі що q'+p'=q''+p''=1. Можна перевірити, що $\alpha=p'p''/(q'+p'')$ та $\beta=q'q''/(q'+p'')$. Отже, за теоремою 1, послідовність таких

 $^{^1}$ Якщо якийсь стан є недосяжним, то його істотність чи неістотність для результату неважлива. Тому для простоти формулювання всі недосяжні стани в пункті ${f B}$ ми будемо вважати істотними, а в пункті ${f \Gamma}$ — неістотними.

блукань, довизначених і нормованих вказаним чином, слабко збігається до косого броунового руху з параметром

$$\gamma = \frac{p'p'' - q'q''}{p'p'' + q'q''}.$$

b) Нехай перехідні імовірності $p_{i,j}$ ланцюга X відрізняються від відповідних перехідних імовірностей для випадкового блукання лише в точці нуль, з якої блукання вистрибує на деяку обмежену випадкову величину, тобто

$$p_{i,i-1}=p_{i,i+1}=1/2$$
 при $i\neq 0,$ $\sum_{j=-N}^{N}p_{0,j}=1,\ p_{0,0}\neq 1.$

Застосуємо теорему 1 для m=N. Імовірності ρ_i (ймовірність потрапити в m+1не потрапляючи в -m-1 при старті з i) задовольняють систему рівнянь

$$\begin{cases} \rho_{-m-1} = 0, \\ \rho_{-m} = \frac{1}{2}\rho_{-m+1} + \frac{1}{2}\rho_{-m-1}, \\ \dots \\ \rho_{-1} = \frac{1}{2}\rho_{-2} + \frac{1}{2}\rho_{0}, \\ \rho_{0} = \sum_{j=-m}^{m} p_{0,j}\rho_{j}, \\ \rho_{1} = \frac{1}{2}\rho_{0} + \frac{1}{2}\rho_{2}, \\ \dots \\ \rho_{m} = \frac{1}{2}\rho_{m-1} + \frac{1}{2}\rho_{m+1}, \\ \rho_{m+1} = 1. \end{cases}$$

Помітимо, що точки (-m-1,0), $(-m,\rho_{-m})$, ..., $(-1,\rho_{-1})$ та $(0,\rho_0)$ лежать на одній прямій. За координатами першої та останньої з них визначимо рівняння цієї прямої:

$$y = \frac{\rho_0 - 0}{0 - (-m - 1)}x + \rho_0,$$

тобто $\rho_k=(1+\frac{k}{m+1})\rho_0,\ k\leqslant 0.$ Аналогічно, $\rho_k=(1-\frac{k}{m+1})\rho_0+\frac{k}{m+1},\ k\geqslant 0.$ Підставивши ці ρ_k в "середнє" рівняння системи, отримаєм рівняння для ρ_0 :

$$\rho_0 = \sum_{j=-m}^m p_{0,j} \rho_j = \sum_{j=-m}^m p_{0,j} \left(1 - \frac{|j|}{m+1}\right) \rho_0 + \sum_{j=1}^m p_{0,j} \frac{j}{m+1}$$
$$= \rho_0 - \sum_{j=-m}^m p_{0,j} \frac{|j|}{m+1} \rho_0 + \sum_{j=1}^m p_{0,j} \frac{j}{m+1}.$$

Звідси

$$\rho_0 = \frac{\sum_{j=1}^m j p_{0,j}}{\sum_{j=-m}^m |j| p_{0,j}}.$$

Таким чином, в цьому випадку маємо (для $\alpha = \rho_{-m}$ та $\beta = 1 - \rho_m$)

$$\gamma = \frac{\sum_{j=1}^{m} |j| p_{0,j} - \sum_{j=-m}^{-1} |j| p_{0,j}}{\sum_{j=1}^{m} |j| p_{0,j} + \sum_{j=-m}^{-1} |j| p_{0,j}} = \frac{\sum_{j=-m}^{m} j p_{0,j}}{\sum_{j=-m}^{m} |j| p_{0,j}}.$$

Отже, якщо блукання X вистрибує з нуля на обмежену випадкову величину ξ з розподілом $\mathsf{P}(\xi=j)=p_{0,j},$ то граничний для послідовності $\{X_n\}$ процес X_∞ є косим броуновим рухом з параметром

$$\gamma = \frac{\mathsf{E}\,\xi_+ - \mathsf{E}\,\xi_-}{\mathsf{E}\,|\xi|} = \frac{\mathsf{E}\,\xi}{\mathsf{E}\,|\xi|}.$$

Цей результат (для довільної інтегровної випадкової величини ξ) відмітили без доведення J. M. Harrison та L. A. Shepp [3].

3. Доведення теореми 1

Доведемо теорему 1 для випадку, коли $x_0 > 0$, а стан m+1 є істотним і досягається ланцюгом X з імовірністю 1. Інші випадки розглядаються аналогічно.

3.1. **Побудова допоміжної послідовності.** Для дослідження граничної поведінки ланцюга Маркова $\{X(k), k \in \mathbb{Z}_+\}$ нам буде зручно представити його як деяку "склейку" двох незалежних ланцюгів Маркова $\{Y(k), k \in \mathbb{Z}_+\}$ та $\{Z(k), k \in \mathbb{Z}_+\}$, що мають більш просту структуру: Y — модуль звичайного випадкового блукання, а Z — ланцюг Маркова на $\{-m-1, \ldots, m+1\}$, що описує рух процесу X в мембрані. Наведемо принцип побудови.

Розглянемо траєкторію $\{X(x_0,k), k \in \mathbb{Z}_+\}$ з початком в точці $x_0 \in \mathbb{Z}$. Без втрати загальності можна вважати, що $x_0 > m$. Визначимо послідовність моментів зупинки $\{\tau_k, \sigma_k, k \ge 1\}$ наступним чином.

Позначимо $\tau_1 := \inf\{j>0\colon |X(x_0,j)|=m\}$ — момент першого досягнення процесом X точки m. Далі,

$$\sigma_k := \inf\{j > \tau_k : |X(x_0, j)| = m + 1\}, \qquad k \geqslant 1,$$

 $\tau_{k+1} := \inf\{j > \sigma_k : |X(x_0, j)| = m\}, \qquad k \geqslant 1$

— моменти послідовних досягнень множин $\{-m-1,m+1\}$ та $\{-m,m\}$ відповідно. Побудуємо процес $\{Y(k),k\geqslant 0\}$ наступним чином.

Покладемо $Y(k) := |X(x_0,k)| - m, \ k = 0,\ldots,\tau_1$. Цим ми одержуємо частину траєкторії Y, яка закінчилась в момент τ_1 потраплянням в точку нуль. Покладемо

$$Y(\tau_1 + 1) := 1,$$

$$Y(\tau_1 + 1 + k) := |X(x_0, \sigma_1 + k)| - m, \qquad k = 1, \dots, \tau_2 - \sigma_1,$$

$$Y(\tau_1 + 1 + \tau_2 - \sigma_1 + 1) := 1,$$

$$Y(\tau_1 + 1 + \tau_2 - \sigma_1 + 1 + k) := |X(x_0, \sigma_2 + k)| - m, \qquad k = 1, \dots, \tau_3 - \sigma_2,$$

$$Y(\tau_1 + 1 + \tau_2 - \sigma_1 + 1 + \tau_3 - \sigma_2 + 1) := 1,$$

і так далі.

Легко бачити, що $\{Y(k), k \in \mathbb{Z}_+\}$ — симетричне випадкове блукання на \mathbb{Z}_+ з відбиттям в нулі, тобто

$$P(Y(k+1) = i \pm 1/Y(k) = i) = 1/2, \quad i \neq 0;$$
 $P(Y(k+1) = 1/Y(k) = 0) = 1.$

Помітимо, що послідовність $\{Y(k)\}$ будувалася по тій частині траєкторії $\{X(k)\}$, яка знаходиться поза мембраною [-m,m]. По іншій частині траєкторії X побудуємо послідовність $\{Z(k), k \in \mathbb{Z}_+\}$:

$$Z(0) := m,$$

$$Z(k) := X(x_0, \tau_1 + k), \qquad k = 1, \dots, \sigma_1 - \tau_1,$$

$$Z(\sigma_1 - \tau_1 + 1) := m \operatorname{sign}(Z(\sigma_1 - \tau_1)),$$

$$Z(\sigma_1 - \tau_1 + 1 + k) := X(x_0, \tau_2 + k), \qquad k = 1, \dots, \sigma_2 - \tau_2,$$

$$Z(\sigma_1 - \tau_1 + 1 + \sigma_2 - \tau_2 + 1) := m \operatorname{sign}(Z(\sigma_1 - \tau_1 + 1 + \sigma_2 - \tau_2)),$$

і так далі.

Неважко бачити, що Z є марковським ланцюгом на $\{-m-1,\ldots,m+1\}$ з перехідними імовірностями $p_{i,j}$ при $i=-m,\ldots,m$ та $p_{-m-1,-m}=p_{m+1,m}=1$.

Траєкторії процесів Y і Z визначаються по різним ланкам траєкторії маркового ланцюга X. Можна перевірити, що процеси Y та Z незалежні. Таким чином, по траєкторіях процесу X ми побудували пару незалежних процесів Y та Z.

Навпаки, якщо Y — модуль симетричного випадкового блукання, а Z — незалежний з Y марковський ланцюг на $\{-m-1,\ldots,m+1\}$ з відповідними перехідними імовірностями, то по них можна однозначно побудувати послідовність \widetilde{X} (яка буде мати такий самий розподіл, що й X), склеюючи по черзі відповідні екскурсії процесів Y та Z наступним чином.

Позначимо η_k та ζ_k — моменти k-го досягнення точки нуль процесом Y та множини $\{-m-1,m+1\}$ процесом Z відповідно. Тоді в ролі першої частини траєкторії нового процесу \widetilde{X} ми візьмемо частину траєкторії процеса Y до моменту η_1 та зсунемо її на m одиниць вгору (нагадаємо, $x_0>m>0$). В ролі наступної частини траєкторії \widetilde{X} візьмемо ділянку траєкторії Z від 0 до ζ_1 . Далі знову підставляємо ділянку траєкторії Y: візьмемо екскурсію процесу Y від η_k+1 до η_{k+1} та зсунемо на m одиниць вгору. Якщо $\mathrm{sign}(Z(\zeta_k))=-1$, то відобразимо цю частину траєкторії симетрично відносно осі Ot. Далі знов підставляємо траєкторію Z від ζ_1+1 до ζ_2 , і так далі. Завдяки таким зсуву та відображенню отримана траєкторія виходить неперервною.

Неважко бачити, що побудований таким чином процес \widetilde{X} еквівалентний вихідному процесу X. Тобто така побудова є взаємнооднозначною.

Введемо послідовність "У зі знаком":

$$Y'(k) := \operatorname{sign}(Z(\zeta_j))Y(k), \qquad k = \eta_j, \dots, \eta_{j+1}, \ j \geqslant 1.$$

Довизначимо всі процеси лінійно для всіх $t \ge 0$ так само, як і X. Далі ми покажемо, що послідовність процесів $Y_n' = \{\frac{1}{\sqrt{n}}Y'(nt), t \ge 0\}$ слабко збігається до косого броунового руху, а потім переконаємось, що границя послідовності $\{X_n\}$ буде такою ж самою.

Зауважимо, що "зіпсована" (тобто несиметрична) точка в блуканні Y' лише одна, але застосовувати до Y' результат Гарісона—Шепа [3] ми не можемо, оскільки Y' не є ланцюгом Маркова. Дійсно, імовірності переходу з точки нуль залежать від того, з якого боку в неї потрапило блукання.

3.2. Слабка збіжність допоміжної послідовності. Дослідимо розподіли Y'. Нехай 0 < a < b. Позначимо через r(n) кількість відвідувань блуканням Y точки нуль за час n. Тоді

$$P(Y'(n) \in [a, b]) = P(Y(n) \in [a, b], sign(Z(\zeta_{r(n)})) = +1)$$

$$= \sum_{k=0}^{n} P(Y(n) \in [a, b], sign(Z(\zeta_{k})) = +1, r(n) = k).$$

(Тут і далі суми по кількостях повернень для простоти записів беруться від 0 до n, хоча ненульовими можуть бути не більше першої половини доданків.)

Перший доданок (тобто при k=0) цієї суми — це імовірність для $\{Y(n)\}$ потрапити в [a,b], не потрапляючи до того в нуль. Ця ймовірність знаходиться за допомогою принципу відбиття (див. напр. [1], Гл.ІІІ, §2):

$$P(Y(n) \in [a, b], r(n) = 0) = P(S(n) \in [a, b]) - P(S(n) \in [-b, -a]).$$

Толі

$$\mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt])\in[a,b], r(nt)=0\right)\to \int_a^b (\varphi_t(x-x_0)+\varphi_t(x+x_0))dx, \qquad n\to\infty.$$

Для знаходження границі виразу

$$\sum_{k=1}^{n} \mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt]) \in [a,b], \operatorname{sign}(Z(\zeta_k)) = +1, \ r(nt) = k\right)$$

$$= \sum_{k=1}^{n} \mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt]) \in [a,b], r(nt) = k\right) \cdot \mathsf{P}(\operatorname{sign}(Z(\zeta_k)) = +1)$$

застосуємо теорему Тьопліца. Наведемо тут одне її формулювання, яке буде зручне для подальшого використання.

Теорема. $Hexaŭ\ s_n,\ a_{n,k}\ -\ nesi\partial$ 'ємні числа, такі що

- 1) $\lim_{n\to\infty} s_n = s$;
- 2) $\lim_{n\to\infty} \sum_{k=1}^{n} a_{n,k} = A;$ 3) $\lim_{n\to\infty} a_{n,k} = 0, k \ge 1.$

 $To \partial i \lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} s_k = As.$

Покладемо в теоремі Тьопліца $s_k = \mathsf{P}(\mathrm{sign}(Z(\zeta_k)) = +1)$ та

$$a_{n,k} = \mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt]) \in [a,b], r(nt) = k\right).$$

Неважко перевірити, що послідовність $\{Z'(k) = \operatorname{sign} Z(\zeta_k), k \in \mathbb{Z}_+\}$ є ланцюгом Маркова. Нехай імовірності α та β (див. теорему 1) додатні та менші за одиницю (інші випадки розглядаються тривіально). Тоді ланцюг $\{Z'(k)\}$ є однорідним та аперіодичним, а отже, існує стаціонарний розподіл (q,p), причому $\lim_{n\to\infty} s_n = p$. Ми знайдемо цей розподіл в кінці доведення.

Розглянемо тепер суму $\sum_{k=1}^{n} a_{n,k}$. Помітимо, що

$$\sum_{k=1}^{n} a_{n,k} = \mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt]) \in [a,b], \ r(nt) > 0\right).$$

Тоді із принципу відбиття випливає, що

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} = 2 \int_{a}^{b} \varphi_t(x+x_0) dx.$$

Покажемо нарешті, що $\lim_{n \to \infty} a_{n,k} = 0$. Дійсно, імовірність

$$a_{n,k} = \mathsf{P}\left(\frac{1}{\sqrt{n}}Y([nt]) \in [a,b], r(nt) = k\right),$$

очевидно, не перевищує імовірність P(r(nt) = k). Нехай $\tau_1 = \tau_1(n)$ — момент першого потрапляння в нуль блуканням $\{Y_n(k), k \ge 0\}$ зі стартом в точці $[x_0\sqrt{n}]$. Позначимо через $r_0 = r_0(n)$ кількість повернень в нуль блуканням $\{S'(k) = S(\tau_1 + k), k \ge 0\}$ (тобто блуканням зі стартом в точці 0) за час n. Тоді

$$\begin{split} a_{n,k} &\leqslant \mathsf{P}(r(nt) = k) \leqslant \mathsf{P}(1 \leqslant r(nt) \leqslant k) \\ &= \mathsf{P}(1 \leqslant r(nt) \leqslant k, \tau_1(n) < n(t-\delta)) + \mathsf{P}(1 \leqslant r(nt) \leqslant k, \tau_1(n) \geqslant n(t-\delta)) \\ &\leqslant \mathsf{P}(r_0(n\delta) \leqslant k) + \mathsf{P}(n(t-\delta) \leqslant \tau_1(n) \leqslant nt). \end{split}$$

Із результатів [1, Гл.III §4,§6] випливає, що права частина останньої нерівності може бути зроблена як завгодно малою для достатньо великих n, тобто $\lim_{n\to\infty} a_{n,k}=0$.

Отже, за теоремою Тьопліца

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} s_k = 2p \int_a^b \varphi_t(x+x_0) \, dx.$$

$$\lim_{n \to \infty} P(\frac{1}{\sqrt{n}} Y'([nt]) \in [a, b]) = \int_a^b (\varphi_t(x - x_0) + (2p - 1)\varphi_t(x + x_0)) dx. \tag{1}$$

Аналогічно знаходиться відповідний граничний розподіл при від'ємних a і b. Враховуючи, що імовірність потрапити в [a,b], не заходячи в нуль, при цьому дорівнює

$$\lim_{n \to \infty} \mathsf{P}(\frac{1}{\sqrt{n}}Y'([nt]) \in [a,b]) = 2q \int_a^b \varphi_t(x-x_0) \, dx, \qquad a < b < 0, \tag{2}$$
 де $q = \lim_{n \to \infty} \mathsf{P}(\mathrm{sign}(Z(\zeta_n)) = -1).$

Помітимо, що 2p-1=p-q. Тоді з (1) та (2) випливає, що

$$\lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}}Y'([nt]) \in [a, b]\right)$$

$$= \int_{a}^{b} \left(\varphi_{t}(x - x_{0}) + (p - q)\operatorname{sign}(x)\varphi_{t}(|x| + |x_{0}|)\right)dx, \quad -\infty \leqslant a \leqslant b \leqslant \infty.$$

Двовимірні розподіли досліджуються аналогічно, знов розбиваючи імовірність $P(Y'(nt_1) \in [a_1, b_1], Y'(nt_2) \in [a_2, b_2])$ на (тепер подвійну) суму по можливих кількостях k_1 та k_2 повернень в нуль за час nt_1 та за подальший час $n(t_2-t_1)$ відповідно. Виділимо знов з цієї суми доданки при k=0:

$$\sum_{k_1,k_2=0}^n = \sum_{k_1=0}^0 \sum_{k_2=0}^0 + \sum_{k_1=0}^0 \sum_{k_2=1}^n + \sum_{k_2=0}^0 \sum_{k_1=1}^n + \sum_{k_1,k_2=1}^n.$$

Границі для перших трьох сум знаходяться так само, як і при одновимірних розподілах (за допомогою принципу відбиття та теореми Тьопліца), а для дослідження останньої суми доведемо наступний наслідок з теореми Тьопліца.

Теорема. $Hexaŭ s'_n, s''_n ma a_n(k_1, k_2) - невід'ємні числа, такі що$

- 1) $\lim_{n\to\infty} s'_n = s'$, $\lim_{n\to\infty} s''_n = s''$; 2) $\lim_{n\to\infty} \sum_{k_1=1}^n \sum_{k_2=1}^n a_n(k_1, k_2) = A$; 3) $\lim_{n\to\infty} \sum_{k_1=1}^n a_n(k_1, k_2) = \lim_{n\to\infty} \sum_{k_2=1}^n a_n(k_1, k_2) = 0$, $k_1, k_2 \ge 1$.

 $To \partial i$

$$\lim_{n \to \infty} \sum_{k_1=1}^n \sum_{k_2=1}^n a_n(k_1, k_2) s'_{k_1} s''_{k_2} = As's''.$$

Доведення. Позначимо

$$a'_{n,k_1} = \sum_{k_2=1}^{n} a_n(k_1, k_2)$$

i

$$a_{n,k_2}^{"} = \sum_{k_1=1}^{n} a_n(k_1, k_2) s_{k_1}^{'}.$$

Тоді для a_{n,k_1}' та s_{k_1}' виконуються умови теореми Тьопліца, тому

$$\lim_{n \to \infty} \sum_{k_1 = 1}^n a'_{n, k_1} s'_{k_1} = As'.$$

Помітимо, що $\sum_{k_1=1}^n a'_{n,k_1} s'_{k_1} = \sum_{k_2=1}^n a''_{n,k_2}$. Крім того, за теоремою Тьопліца,

$$\lim_{n \to \infty} a_{n,k_2}'' = \lim_{n \to \infty} \sum_{k_1 = 1}^n a_n(k_1, k_2) s_{k_1}' = 0 \cdot s' = 0, \qquad k_2 = 1, \dots, n.$$

Таким чином, застосувавши теорему Тьопліца ще один раз, одержимо

$$\lim_{n \to \infty} \sum_{k_2=1}^n \sum_{k_1=1}^n a_n(k_1, k_2) s'_{k_1} s''_{k_2} = \lim_{n \to \infty} \sum_{k_2=1}^n a''_{n, k_2} s''_{k_2} = As's''.$$

Теорему доведено

Цей наслідок з теореми Тьопліца можна інтерпретувати як "подвійну" теорему Тьопліца, наслідком з якої буде "потрійна", і так далі.

Таким чином, для дослідження скінченновимірних розподілів, аналогічно до одновимірних, відповідні імовірності розбиваються на суми по можливих кількостях відвідувань точки нуль і застосовуються відповідні "кратні" теореми Тьопліца: для подвійних сум — "подвійна", для потрійних — "потрійна", і так далі.

Для доведення слабкої збіжності послідовності

$$\left\{\frac{1}{\sqrt{n}}Y'(nt), t \in [0,1]\right\}$$

в C[0,1] тепер достатньо показати її відносну компактність.

Для відносної компактності послідовності $\{V_n(t), t \in [0,1]\}$ в C[0,1] необхідно й достатньо (див. [2], Т.8.2) виконання наступних двох умов:

(i) для довільного $\varepsilon > 0$ існує таке число a, що для всіх $n \geqslant 1$

$$P(|V_n(0)| > a) < \varepsilon;$$

(ii) для довільних $\alpha > 0$, $\varepsilon > 0$ існують $\delta > 0$ і n_0 , такі що

$$P(w_{V_n}(\delta) > \alpha) < \varepsilon, \quad n \geqslant n_0$$

де $w_f(\delta) = \sup_{|t-s| < \delta} |f(t) - f(s)|$ — модуль неперервності функції f.

Умова (i) очевидно виконується. Перевіримо умову (ii). З побудови Y' (див. кінець п. 3.1) випливає, що |Y'| = Y = |S|, де S— звичайне симетричне випадкове блукання; а також, що змінювати знак Y' може, лише коли Y дорівнює нулю. Тому

$$w_{Y_n'}(\delta) \leqslant 2w_{Y_n}(\delta) = 2w_{|S_n|}(\delta) \leqslant 2w_{S_n}(\delta),$$

Тобто умова (ii) для послідовності Y'_n випливає з відповідної умови для послідовності S_n , яка є відносно компактною за теоремою Донскера.

Таким чином, доведено слабку збіжність послідовності процесів

$$\left\{\frac{1}{\sqrt{n}}Y'(nt), t \in [0,1]\right\}$$

до косого броунового руху $\{W_{\gamma}(t), t \in [0,1]\}$

3.3. Повернення до послідовності X_n . Щоб показати, що послідовність процесів $X_n = \{\frac{1}{\sqrt{n}}X(nt), t \in [0,1]\}$ збігається до того ж граничного процесу, що і послідовність $\{\frac{1}{\sqrt{n}}Y'(nt), t \in [0,1]\}, n \geqslant 1$, нам знадобляться наступні допоміжні твердження.

Лема 1. Нехай $V_n(\cdot) \Rightarrow V(\cdot)$ в C[0,1]. Припустимо, що $\{\eta_n(t), t \in [0,1]\}$ — послідовність неперервних по t процесів, таких що $\sup_t |\eta_n(t)| \stackrel{\mathsf{P}}{\to} 0$, $n \to \infty$. Тоді послідовність випадкових процесів $\{V_n'(t) = V_n(t) + \eta_n(t), t \in [0,1]\}$ слабко збігається в C[0,1] до $\{V(t), t \in [0,1]\}$.

Пема 2. Нехай $V_n(\cdot) \Rightarrow V(\cdot)$ в C[0,1]. Припустимо, що $\{\theta_n(t), t \in [0,1]\}$ — послідовність неперервних по t процесів, таких що $0 \leqslant \theta_n(t) \leqslant t, t \in [0,1]$ і $\sup_t \theta_n(t) \stackrel{\mathsf{P}}{\to} 0, n \to \infty$. Тоді послідовність випадкових процесів $\{V_n'(t) = V_n(t - \theta_n(t)), t \in [0,1]\}$ слабко збігається в C[0,1] до $\{V(t), t \in [0,1]\}$.

Для доведення леми 2 достатньо перевірити, що $\sup_t |V_n(t-\theta_n(t))-V_n(t)| \stackrel{\mathsf{P}}{\to} 0,$ $n\to\infty,$ і далі використати лему 1.

Оскільки для довільних $|t-s|<\delta$

$$|V_n(t) - V_n(s)| \le \sup_{|t-s| < \delta} |V_n(t) - V_n(s)| = w_{V_n}(\delta),$$

то оцінка

$$P\left(\sup_{t} |V_n(t - \theta_n(t)) - V_n(t)| > \alpha\right)$$

$$= P\left(\sup_{t} |V_n(t - \theta_n(t)) - V_n(t)| > \alpha, \sup_{t} \theta_n(t) \leq \delta\right)$$

$$+ P\left(\sup_{t} |V_n(t - \theta_n(t)) - V_n(t)| > \alpha, \sup_{t} \theta_n(t) > \delta\right)$$

$$\leqslant P(w_{V_n}(\delta) > \alpha) + P\left(\sup_{t} \theta_n(t) > \delta\right)$$

виконується для довільних α і δ .

Отже, якщо для заданних $\alpha>0$ та $\varepsilon>0$ вибрати $\delta>0$ та n_1 , так щоб для довільних $n\geqslant n_1$ виконувалось (див. (ii) в кінці п.3.2)

$$P(w_{V_{-}}(\delta) > \alpha) < \varepsilon/2$$

а для ε та δ вибрати n_2 , таке щоб для довільних $n\geqslant n_2$ виконувалось (за умовою леми)

$$\mathsf{P}\left(\sup_{t}\theta_{n}(t)>\delta\right)<\varepsilon/2,$$

то для довільних $n \geqslant n_1 \lor n_2$ маємо

$$\mathsf{P}\left(\sup_{t}|V_n(t-\theta_n(t))-V_n(t)|>\alpha\right)<\varepsilon.$$

Тоді $V_n'(\cdot)$ збігається до $V(\cdot)$ за лемою 1 як сума $V_n(\cdot)$ та $V_n(\cdot - \theta_n(\cdot)) - V_n(\cdot)$. Лему доведено.

Застосуємо лему 2 для $V_n(t)=\frac{1}{\sqrt{n}}Y'(nt)$, а в ролі $\theta_n(t)$ візьмемо долю часу, проведеного процесом X в мембрані. Для того, щоб скористатися лемою, ми маємо показати, що $\sup_t \theta_n(t)$ прямує при $n\to\infty$ до нуля за імовірністю.

Нехай r(n) — кількість відвідувань точки нуль блуканням $S(k) = S([\sqrt{n}x_0], k)$ зі стартом в точці $[\sqrt{n}x_0]$ за n кроків, а $\zeta_k' = \zeta_{k+1} - \zeta_k$ — довжини екскурсій процеса Z всередині мембрани. Нехай також $r_0(n)$ — кількість повернень в нуль блуканням $S'(k) := S(\tau_1 + k), \ k \geqslant 0, \ \text{де } \tau_1 = \tau_1(n)$ — момент першого потрапляння в нуль блуканням $S([\sqrt{n}x_0], k)$. Тоді (оскільки $r(n) = r_0(n - \tau_1) \leqslant r_0(n)$) маємо оцінку:

$$\theta_n(t) \leqslant \frac{1}{n} \sum_{k=1}^{r(n)} \zeta_k' \leqslant \frac{1}{n} \sum_{k=1}^{r_0(n)} \zeta_k'.$$

Покажемо, що вираз

$$\frac{1}{n} \sum_{k=1}^{r_0(n)} \zeta_k' = \frac{r_0(n)}{n} \frac{1}{r_0(n)} \sum_{k=1}^{r_0(n)} \zeta_k'$$

в правій частині оцінки прямує за імовірністю до нуля.

Оскільки $\frac{r_0(n)}{\sqrt{n}}$ збігається за розподілом до модуля нормальної випадкової величини (див. [1]), то відношення $\frac{r_0(n)}{n}$, очевидно, прямує за імовірністю до нуля. Дослідимо тепер асимптотику

$$\frac{1}{r_0(n)} \sum_{k=1}^{r_0(n)} \zeta_k'.$$

Згрупуємо доданки так, щоб кожна групка $\widetilde{\zeta}'_k = \zeta'_{i_k} + \dots + \zeta'_{i_{k+1}-1}$ була часом виходу з мембрани вгору. Кількість таких групок, очевидно, не перевищує $r_0(n)$, тому виконується опінка

$$\frac{1}{r_0(n)} \sum_{k=1}^{r_0(n)} \zeta_k' \leqslant \frac{1}{r_0(n)} \sum_{k=1}^{r_0(n)} \widetilde{\zeta}_k',$$

в правій частині якої стоїть сума незалежних однаково розподілених випадкових величин $\widetilde{\zeta}_k'$. Оскільки Е $\widetilde{\zeta}_k' < \infty$, $\widetilde{\zeta}_k'$ не залежать від $r_0(n)$, та $r_0(n) \to \infty$, $n \to \infty$ м.н.,

$$\frac{1}{r_0(n)} \sum_{k=1}^{r_0(n)} \widetilde{\zeta}_k' \stackrel{\mathsf{P}}{\to} \mathsf{E} \, \widetilde{\zeta}_1', \qquad n \to \infty.$$

А отже, відношення $\frac{1}{n}\sum_{k=1}^{r(n)}\zeta_k'$ прямує за імовірністю до нуля.

Тоді за лемами 1, 2,

$$\frac{1}{\sqrt{n}}X(nt) = \frac{1}{\sqrt{n}}Y'(n(t - \theta_n(t))) + \frac{1}{\sqrt{n}}(X(nt) - Y'(n(t - \theta_n(t))))$$

збігається до $W_{\gamma}(t)$, оскільки $|X(nt)-Y'(n(t-\theta_n(t)))| \leqslant m$ за побудовою.

Залишається тільки вказати параметри отриманого косого броунового руху.

У випадку, коли всі стани ланцюга $\{X(k), k \in \mathbb{Z}_+\}$ сполучні, стаціонарний розподіл (q, p) марковського ланцюга

$$Z'(k) = \operatorname{sign}(Z(\zeta_k)) = Z(\zeta_k)/(m+1)$$

знаходиться як розв'язок (лінійно залежної) системи

$$(q,p)\begin{pmatrix} 1-\rho_{-m} & \rho_{-m} \\ 1-\rho_{m} & \rho_{m} \end{pmatrix} = (q,p),$$

 $(q,p)\begin{pmatrix} 1-\rho_{-m} & \rho_{-m}\\ 1-\rho_{m} & \rho_{m} \end{pmatrix}=(q,p),$ для якого q+p=1, де $\rho_i,\ i=-m,\dots,m-$ імовірності з i потрапити в m+1, не потрапляючи в m-1 — шукаються з системи

$$\rho_i = p_{i,m+1} + \sum_{j=-m}^{m} p_{i,j} \rho_j, \qquad i = -m, \dots, m.$$

Таким чином,

$$p = \frac{\rho_{-m}}{1 - \rho_m + \rho_{-m}}, \qquad q = \frac{1 - \rho_m}{1 - \rho_m + \rho_{-m}}.$$

 $p=\frac{\rho_{-m}}{1-\rho_m+\rho_{-m}}, \qquad q=\frac{1-\rho_m}{1-\rho_m+\rho_{-m}}.$ Перейшовши до позначень теореми 1 $(\rho_{-m}=\alpha,1-\rho_m=\beta),$ отримуємо потрібний результат:

$$p = \frac{\alpha}{\alpha + \beta}, \qquad q = \frac{\beta}{\alpha + \beta}.$$

Якщо умови 1) та 2) теореми 1 одночасно виконуються тільки для стану m+1, то, очевидно, p = 1.

ЛІТЕРАТУРА

- 1. В. Феллер, Введение в теорию вероятностей и её приложения, издание второе, т. 1, "Мир", Москва, 1967.
- 2. П. Биллингсли, Сходимость вероятностных мер, "Наука", Москва, 1977.
- 3. J. M. Harrison and L. A. Shepp, On skew Brownian motion, Ann. Probab. 9(2) (1981), 309-313.
- 4. М. І. Портенко, Дифузія в середовищах з напівпрозорими мембранами, Труди Інституту математики НАН України, Секція "Теорія ймовірностей та математична статистика", т. 8, Київ, 1994.
- 5. Р. А. Минлос, Е. А. Жижина, Предельный диффузионный процесс для неоднородного случайного блуждания на одномерной решетке, УМН 52:2(314) (1997), 87-100.
- 6. A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behavior of the "horizontal-vertical" random walk and some extensions of the Donsker-Prokhorov invariance principle, Theory Probab. Appl. 47 (2003), no. 3, 377-394.
- 7. J. K. Brooks and R. V. Chacon, Diffusions as a limit of stretched Brownian motions, Advances in Mathematics 49 (1983), 109-122.
- 8. M. I. Freidlin and A. D. Wentzel, Diffusion processes on an open book and the averaging principle, Stochastic Processes and their Applications 113 (September 2004), no. 1, 101-126.
- 9. A. M. Kulik, A limit theorem for diffusions on graphs with variable configuration, ArXive: math.PR/0701632.

Інститут математики НАН України, вул. Терещенківська 3, 01601, Київ, Україна $A\, \partial peca$ електронної пошти: apilip@imath.kiev.ua

Національний Технічний університет України "КПІ", проспект Перемоги 37, 03056, Київ. Україна

 $A\, dpeca$ електронної пошти: npuxodbko@gmail.com