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CONVERGENCE OF OPTION REWARDS FOR MULTIVARIATE
PRICE PROCESSES

UDC 519.21

D. S. SILVESTROV AND R. LUNDGREN

Abstract. American type options with general payoff functions possessing polynomial rate of growth
are considered for multivariate Markov price processes. Convergence results for optimal reward func-
tionals of American type options for perturbed multivariate Markov processes are presented. These
results are applied to approximation tree type algorithms for American type options for exponen-
tial multivariate Brownian price processes and mean-reverse price processes used to model stochastic
dynamics of energy prices.
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1. Introduction

The paper present results about convergence of reward functionals for American type
options in a multi-asset setting.

Optimal stopping problems for American type options have been also studied in
Kim(1990), Jacka (1991), Peskir and Shiryaev (2006), for models with stochastic volatil-
ity by Zhang and Lim (2006), for American barrier options in Gau, Huang and Sub-
rahmanyam (2000), and for generalized American knock out option in Lundgren (2007,
2010). Convergence of American option rewards have been studies in Amin and Khanna
(1994), Schwartz (1997), Silvestrov, Galochkin and Sibirtsev (1999), Kukush and Silve-
strov (2000, 2001, 2004), Jönsson (2001, 2005), Prigent (2003), Jönsson, Kukush and Sil-
vestrov (2004, 2005), Dupuis and Wang (2005), Silvestrov, Jönsson and Stenberg (2006,
2008, 2009), Stenberg (2006), Coquet and Toldo (2007), Cortazar Gravet and Urzua
(2008), Lundgren, Silvestrov and Kukush (2008), and Lundgren and Silvestrov (2009,
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The paper is based on the talk presented at the International Conference “Modern Stochastics:
Theory and Applications II” held on September 7–11, 2010 at Kyiv National Taras Shevchenko University
and dedicated to three anniversaries of prominent Ukrainian scientists: AnatoliI SkoroKhod, Volodymyr
Korolyuk and Igor Kovalenko.
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2010). For recent results concerning optimal stopping we refer to the works Dayanik
and Karatzas (2003), Henderson and Hobson (2008), and Ekström, Lindberg, Tysk, and
Wanntorp (2009).

The paper contains 6 sections. In Section 2, we introduce the model of multivariate
price processes and American type options with general payoff functions. In Section 3,
we present our main results about skeleton type approximations of reward functions and
convergence of reward functionals for discrete and continuous time multivariate Markov
price processes. We refer to Lundgren and Silvestrov (2009) for the proofs, as well as to
Silvestrov, Jönsson, and Stenberg (2006, 2008, 2009), where similar results for simpler
one-dimensional Markov price processes can be found. In Sections 4, we illustrate our
general convergence results by applying them to multivariate exponential price processes
with independent increments. In Sections 5 and 6, we apply our convergence results to
approximation tree type models for American type options for exponential multivariate
Brownian price processes and mean-reverse diffusion price processes. Further applications
of results presented in the paper relate to the approximation tree type algorithms for the
model of optimal reselling of European type options. We refer to the recent papers
Lundgren, Silvestrov and Kukush (2008) and Lundgren and Silvestrov (2010), where one
can find the corresponding results.

2. Reward functionals for multivariate Markov price processes

For every ε ≥ 0, let �Y (ε)(t) = (Y (ε)
1 (t), . . . , Y (ε)

k (t)), t ≥ 0 be a càdlàg Markov process
with the phase space R

k and transition probabilities P (ε)(t, �y, t + s, A) and a constant
initial state �Y (ε)(0) = �y0 ∈ R

k. We interpret �Y (ε)(t) as a vector log-price process. Now,
we define a vector price process �S(ε)(t) = (S(ε)

1 (t), . . . , S(ε)
k (t)), t ≥ 0 with the phase space

R
k
+ = R+ × · · · × R+, where R+ = (0,∞). Let us use the notation e�y = (ey1 , . . . , eyk),

�y = (y1, . . . , yk) ∈ R
k. The price process �S(ε)(t) and the log-price process �Y (ε)(t) are

connected by the relation, �S(ε)(t) = e
�Y (ε)(t), t ≥ 0. Due to the one-to-one mapping and

continuity property of exponential function, �S(ε)(t) is also a càdlàg Markov process.
Let g(t, �s), (t, �s) ∈ R+ × R

k
+ be a pay-off function. We assume that g(t, �s) is a real

valued Borel measurable function. Note that we do not assume pay-off functions to be
non-negative. The first condition assumes the absolute continuity of pay-off functions
and imposes power type upper bounds on their partial derivatives:

A1: (a) Function g(t, �s) is absolutely continuous in t with respect to the Lebesgue
measure on [0, T ] for every fixed �s ∈ R

k
+ and in �s with respect to the Lebesgue

measure on R
k
+ for every fixed t ∈ [0, T ]; (b) For every �s ∈ R

k
+, the partial

derivative |∂g(t,�s)
∂t | ≤ R1 + R2

∑k
j=1 sγ0

j for almost all t ∈ [0, T ] with respect to
the Lebesgue measure on [0, T ], where 0 ≤ R1, R2 < ∞ and γ0 ≥ 0; (c) For
every t ∈ [0, T ], the partial derivative |∂g(t,�s)

∂sm
| ≤ R3 + R4

∑k
j=1 sγm

j for almost
all �s ∈ R

k
+ with respect to the Lebesgue measure on R

k
+, where 0 ≤ R3, R4 < ∞

and γ1, . . . , γk ≥ 0, m = 1, . . . , k. (d) For every t ∈ [0, T ], the function g(t,�0) =
lim�s→�0 g(t, �s) ≤ R5, where 0 ≤ R5 < ∞.

It is useful to note that condition A1 implies that the function g(t, �s) is continuous in
(t, �s) ∈ [0, T ]× R

k
+.

Let F (ε)
t = σ(�Y (ε)(s), s ≤ t) be the natural filtration of σ-fields, associated with the

vector log-price process �Y (ε)(t), t ≥ 0. It is useful to note that this filtration coincides
with the natural filtration generated by the price process �S(ε)(t), t ≥ 0.

We consider Markov moments τ (ε) with respect to the filtration F (ε)
t , t ≥ 0. It

means that τ (ε) is a random variable which takes values in [0,∞] and with the property
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{ω : τ (ε)(ω) ≤ t} ∈ F (ε)
t , t ≥ 0. Let M(ε)

max,T be the class of all Markov moments

τ (ε) ≤ T , where T > 0, and consider a class of Markov moments M(ε)
T ⊆ M(ε)

max,T . The
main object of our studies is the reward functional, that is, the maximal expected pay-off
over different classes of Markov moments, M(ε)

T ,

Φ(M(ε)
T ) = sup

τ (ε)∈M(ε)
T

Eg(τ (ε), �S(ε)(τ (ε))). (1)

We use notations E�y,t and P�y,t for expectation and probability calculated under con-
dition that �Y (ε)(t) = �y. For β, c, T > 0, i = 1, . . . , k, define the exponential moment
modulus of compactness for the càdlàg process Y

(ε)
i (t), t ≥ 0,

Δβ(Y (ε)
i (·), c, T ) = sup

0≤t≤t+u≤t+c≤T
sup
�y∈Rk

E�y,t(eβ|Y (ε)
i (t+u)−Y

(ε)
i (t)| − 1).

We use the following conditions for exponential moment modulus of compactness for
log-price processes:

C1: limc→0 limε→0

∑k
i=1 Δβ(Y (ε)

i (·), c, T ) = 0 for some

β > γ = max(γ0, γ1 + 1, . . . , γk + 1),

where γ0 and γ1, . . . , γk are the parameters introduced in condition A1,
Condition C1 implies that for any constant e−β < L0 < 1 one can choose c = c(L0) > 0

and then ε0 = ε0(c) such that Δβ(Y
(ε)

i (·),c,T )+1

eβ ≤ L0 for ε ≤ ε0, and i = 1, . . . , k.
The following lemma gives asymptotically uniform upper bounds for moments of max-

imum of price processes, with respect to perturbation parameter and guarantee that the
reward functionals Φ(M(ε)

T ) take finite values for all ε small enough.
Lemma 1. Let conditions A1 and C1, hold. Then there exists a constant L1 < ∞

such that for every ε ≤ ε0,

sup
τ (ε)∈M(ε)

max,T

E|g(τ (ε), �S(ε)(τ (ε))| ≤ E sup
0≤u≤T

|g(u, �S(ε)(u))| βγ ≤ L1. (2)

Let us now assume the following condition of weak convergence (denoted by the symbol
⇒) for the transition probabilities:

B1: There exist measurable sets Yt ⊆ R
k, t ∈ [0, T ] such that: (a) P (ε)(t, �y(ε), t +

u, ·) ⇒ P (0)(t, �y, t + u, ·) as ε → 0, for any �y(ε) → �y ∈ Yt as ε → 0 and 0 ≤ t <
t + u ≤ T ; (b) P (0)(t, �y, t + u, Yt+u) = 1 for every �y ∈ Yt and 0 ≤ t < t + u ≤ T ;
(c) �Y (ε)(0) = �y0 ∈ Y0.

The following theorem presents our main convergence result. It gives conditions of
convergence for reward functionals Φ(M(ε)

max,T ).
Theorem 1. Let conditions A1, B1, and C1 hold. Then

Φ(M(ε)
max,T )→ Φ(M(0)

max,T ) as ε → 0. (3)

Let Π = {0 = t0 < t1 < · · · < tN = T } be a partition on the interval [0, T ] and
d(Π) = max1≤i≤N (ti − ti−1).

We consider the classM(ε)
Π,T of all Markov moments fromM(ε)

max,T , which only take the
values t0, t1, . . . , tN , and such that the event {ω : τ (ε)(ω) = tj} ∈ σ(�Y (ε)(t0), . . . , �Y (ε)(tj))
for j = 0, . . . , N . By definition, M(ε)

Π,T ⊆ M(ε)
max,T . This relation implies that, under

conditions of Lemma 1, −∞ < Φ(M(ε)
Π,T ) ≤ Φ(M(ε)

max,T ) < ∞.

The reward functionals Φ(M(ε)
max,T ), and Φ(M(ε)

Π,T ) correspond to American type op-
tion in continuous time, and American type option in discrete time, respectively. In the
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first case, the underlying price process is a continuous time Markov type price process,
while in the second case, the corresponding price process is a discrete time Markov
type process. The random variables �Y (ε)(t0), �Y (ε)(t1), . . . , �Y (ε)(tN ) are connected in a
discrete time inhomogeneous Markov chain with the phase space R

k, transition proba-
bilities P (ε)(tn, �y, tn+1, A), and the initial state �Y (ε)(t0) = �y0. Note that we have slightly
modified the standard definition of a discrete time Markov chain by counting moments
t0, . . . , tN as the moments of jumps for the Markov chain �Y (ε)(tn), instead of the mo-
ments 0, . . . , N . This is done in order to synchronise the discrete and continuous time
models. Thus, the optimisation problem (1) for the class M(ε)

Π,T is really a problem of
optimal expected reward for American type options in discrete time.

The following theorem gives a skeleton approximation (asymptotically uniform with
respect to perturbation parameter) for reward functionals Φ(M(ε)

max,T ).

Theorem 2. Let conditions A1, and C1 hold. Let also ε ≤ ε0 and d(Π) ≤ c where ε0

and c are defined above. Then there exist constants L2, L3 < ∞ such that the following
skeleton approximation inequality holds, for every ε ≤ ε0,

Φ(M(ε)
max,T )− Φ(M(ε)

Π,T ) ≤ L2d(Π) + L3

k∑
i=1

Δβ(Y (ε)
i (·), d(Π), T )

β−γ
β .

The following theorem gives conditions of convergence for reward functionals

Φ(M(ε)
Π,T ).

Theorem 3. Let conditions A1, B1, and C1 hold. Then, the following asymptotic
relation holds for any partition Π = {0 = t0 < t1 · · · < tN = T } on the interval [0, T ]
such that d(Π) ≤ c, where c is defined above,

Φ(M(ε)
Π,T )→ Φ(M(0)

Π,T ) as ε → 0. (4)

Let us now formulate some useful sufficient conditions for an important condition of
moment compactness C1.

Let us introduce the modulus of J-compactness, for h, c > 0, i = 1, . . . , k,

Δ(Y (ε)
i (·), h, c, T ) = sup

0≤t≤t+u≤t+c≤T
sup
�y∈Rk

P�y,t{|Y (ε)
i (t + u)− Y

(ε)
i (t)| ≥ h}.

The following condition of J-compactness plays the key role in functional limit theo-
rems for Markov type càdlàg processes:

D1: limc→0 limε→0 Δ(Y (ε)
i (·), h, c, T ) = 0, h > 0, i = 1, . . . , k.

Introduce also the quantity, which represents the maximum of moment generating
functions for increments of the log-price processes Y

(ε)
i (t), t ≥ 0, i = 1, . . . , k,

Ξβ(Y (ε)
i (·), T ) = sup

0≤t≤t+u≤T
sup
�y∈Rk

E�y,te
β(Y

(ε)
i (t+u)−Y

(ε)
i (t)), β ∈ R.

The following condition formulated in terms of these moment generating functions can
be effectively verified in many cases:

C2: limε→0 Ξ±β′(�Y
(ε)
i (·), T ) < ∞, i = 1, . . . , k, for some β′ > γ, where γ is the

parameter introduced in condition A1.

Lemma 2. Conditions D1 and C2 imply that condition C1 holds for any β ∈ (γ, β′).
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3. Exponential price processes with independent increments

In order to illustrate the results given in Theorems 1–3, let us consider the model
where the log-price process �Y (ε)(t), t ≥ 0 is a càdlàg processes with independent incre-
ments, with a constant initial state �Y (ε)(0) = �y0 ∈ R

k. The process �Y (ε)(t) is a càdlàg
Markov process with transition probabilities which are connected with the distributions
of increments for this process P (ε)(t, t + u, A) by the following relation,

P (ε)(t, �y, t + u, A) = P (ε)(t, t + u, A− �y)

= P{�y + �Y (ε)(t + u)− �Y (ε)(t) ∈ A}.
(5)

Let us assume the following standard condition of weak convergence for distributions
of increments for log-price processes:

B2: P (ε)(t, t + u, ·) ⇒ P (0)(t, t + u, ·) as ε → 0, 0 ≤ t ≤ t + u ≤ T .

Representation (5) implies that condition B1 holds with the sets Yt = R
k, t ∈ [0, T ],

i.e., distributions of increments for the processes Y
(ε)
i (t) locally uniformly weakly con-

verge if and only if condition B2 holds. Also, condition B1 (c) automatically holds.
Thus, in the case of processes with independent increments, the condition B1, with the
sets Yt = R

k pointed above, is, in fact, equivalent to the standard condition of weak con-
vergence for such processes. In this case the J-compactness modulus Δ(Y (ε)

i (·), h, c, T )
takes the following form:

Δ′(Y (ε)
i (·), h, c, T ) = sup

0≤t≤t+u≤t+c≤T
P{|Y (ε)

i (t + u)− Y
(ε)
i (t)| ≥ h}.

Thus, condition C2 is reduced to the standard J-compactness condition for processes
with independent increments:

D2: limc→0 limε→0 Δ′(Y (ε)
i (·), h, c, T ) = 0, h > 0, i = 1, . . . , k.

Note that conditions B2 and D2 are necessary and sufficient for J-convergence of
processes �Y (ε)(t), t ∈ [0, T ] to process �Y (0)(t), t ∈ [0, T ] as ε → 0 and stochastic conti-
nuity of the limit process.

Also, the quantities Ξβ(Y (ε)
i (·), T ), i = 1, . . . , k take a simplified form,

Ξ′β(Y (ε)
i (·), T ) = sup

0≤t≤t+u≤T
Eeβ(Y

(ε)
i (t+u)−Y

(ε)
i (t)), β ∈ R.

Therefore, condition C2 takes the following form:

C3: limε→0 Ξ′±β′(Y
(ε)
i (·), T ) < ∞, i = 1, . . . , k, for some β′ > γ, where γ is the

parameter in condition A1.

According to Lemma 2, conditions C3 and D2 imply that condition C1 holds for any
β ∈ (γ, β′).

The following theorem summarize the remarks above.
Theorem 4. Let conditions A1, B2, D2, and C3 hold for the log-price price processes

with independent increments �Y (ε)(t). Then

Φ(M(ε)
max,T )→ Φ(M(0)

max,T ) as ε → 0. (6)

Note that the asymptotic relation (6) takes place for any initial state �y0 ∈ R
k.

It is worth to note that conditions A1, B2, D2, and C3 imply that conditions of
Theorems 2 and 3 hold for the exponential price processes with independent increments
�S(ε)(t) and, therefore, the skeleton approximation inequality given in Theorem 2 as well
as the convergence relation given in Theorem 3 also take place.
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4. Binomial tree approximations for multivariate Brownian motion

In order to illustrate the results presented above, let us consider the model where
k = 2 and the bivariate geometric Brownian price process �S(0)(t) = e

�Y (0)(t), t ≥ 0, where
the log-price process �Y (0)(t) = (Y (0)

1 (t), Y (0)
2 (t)), t ≥ 0 is a bivariate Brownian motion

with components

Y
(0)
i (t) = y

(0)
i + μit + σiWi(t), t ≥ 0, i = 1, 2,

which are correlated, i.e., EW1(t)W2(t) = ρt, t ≥ 0. Note that the log-price process has
a constant initial state �Y (0)(0) = �y0 = (y(0)

1 , y
(0)
2 ) ∈ R

2.
We approximate the process �Y (0)(t), t ≥ 0 with a bivariate binomial sum-process

�Y (ε)(t) = (Y (ε)
1 (t), Y (ε)

2 (t)), t ≥ 0 with components Y
(ε)
i (t) = y

(0)
i +

∑
1≤k≤[t/ε] Y

(ε)
k,i ,

t ≥ 0, i = 1, 2.
Here �Y

(ε)
n = (Y (ε)

n,1 , Y
(ε)
n,2 ), n = 1, 2, . . . are, for every ε > 0, i.i.d. random vectors which

have the following structure,

(Y (ε)
n,1 , Y

(ε)
n,2 ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(+u
(ε)
1 , +u

(ε)
2 ) p

(ε)
++,

(+u
(ε)
1 ,−u

(ε)
2 ) p

(ε)
+−,

with prob.
(−u

(ε)
1 , +u

(ε)
2 ) p

(ε)
−+,

(−u
(ε)
1 ,−u

(ε)
2 ) p

(ε)
−−.

(7)

In order to fit the bivariate binomial sum-processes defined above to the limit bivariate
Brownian motion, we should fit expectations, variances, and covariance coefficients for
summands (Y (ε)

n,1 , Y
(ε)
n,2 ) to the corresponding quantities for the increments of the bivariate

Brownian motion

(μ1ε + σ1(W1((n + 1)ε)−W1(nε)), μ2ε + σ2(W2((n + 1)ε)−W2(nε))).

The following system of six equations with six unknowns should be solved:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[Y (ε)
1,1 ] = u

(ε)
1 (2(p(ε)

++ + p
(ε)
+−)− 1) = μ1ε,

Var[Y (ε)
1,1 ] = (u(ε)

1 )2 − (μ1ε)2 = σ2
1ε,

E[Y (ε)
1,2 ] = u

(ε)
2 (2(p(ε)

++ + p
(ε)
−+)− 1) = μ2ε,

Var[Y (ε)
1,2 ] = (u(ε)

2 )2 − (μ2ε)2 = σ2
2ε,

Cov[Y (ε)
1,1 , Y

(ε)
1,2 ] =

u
(ε)
1 u

(ε)
2 (p

(ε)
+++p

(ε)
−−−p

(ε)
−+−p

(ε)
+−)−μ1μ2ε2

σ1σ2ε = ρ,

p
(ε)
++ + p

(ε)
−+ + p

(ε)
−+ + p

(ε)
−− = 1.

(8)

This system has, for every ε > 0, the following unique solution,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(ε)
1 =

√
ε
√

σ2
1 + μ2

1ε,

u
(ε)
2 =

√
ε
√

σ2
2 + μ2

2ε,

p
(ε)
++ = 1

4 + 1
4

√
ε
(

μ1√
σ2
1+μ2

1ε
+ μ2√

σ2
2+μ2

2ε

)
+ 1

4
ρσ1σ2+μ1μ2ε√

σ2
1+μ2

1ε
√

σ2
2+μ2

2ε
,

p
(ε)
+− = 1

4 + 1
4

√
ε
(

μ1√
σ2
1+μ2

1ε
− μ2√

σ2
2+μ2

2ε

)
− 1

4
ρσ1σ2+μ1μ2ε√

σ2
1+μ2

1ε
√

σ2
2+μ2

2ε
,

p
(ε)
−+ = 1

4 + 1
4

√
ε
(
− μ1√

σ2
1+μ2

1ε
+ μ2√

σ2
2+μ2

2ε

)
− 1

4
ρσ1σ2+μ1μ2ε√

σ2
1+μ2

1ε
√

σ2
2+μ2

2ε
,

p
(ε)
−− = 1

4 + 1
4

√
ε
(
− μ1√

σ2
1+μ2

1ε
− μ2√

σ2
2+μ2

2ε

)
+ 1

4
ρσ1σ2+μ1μ2ε√

σ2
1+μ2

1ε
√

σ2
2+μ2

2ε
.

(9)
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It is useful to note that the corresponding parameter have the following asymptotic
expansions,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(ε)
1 =

√
εσ1 + o(ε),

u
(ε)
2 =

√
εσ2 + o(ε),

p
(ε)
++ = 1

4 + 1
4ρ + 1

4

(
μ1
σ1

+ μ2
σ2

)√
ε + 1

4

(
μ1μ2
σ1σ2

− ρμ2
1

2σ2
1
− ρμ2

2
2σ2

2

)
ε + o(ε),

p
(ε)
+− = 1

4 − 1
4ρ + 1

4

(
μ1
σ1
− μ2

σ2

)√
ε− 1

4

(
μ1μ2
σ1σ2

− ρμ2
1

2σ2
1
− ρμ2

2
2σ2

2

)
ε + o(ε),

p
(ε)
−+ = 1

4 − 1
4ρ− 1

4

(
μ1
σ1
− μ2

σ2

)√
ε− 1

4

(
μ1μ2
σ1σ2

− ρμ2
1

2σ2
1
− ρμ2

2
2σ2

2

)
ε + o(ε),

p
(ε)
−− = 1

4 + 1
4ρ− 1

4

(
μ1
σ1

+ μ2
σ2

)√
ε + 1

4

(
μ1μ2
σ1σ2

− ρμ2
1

2σ2
1
− ρμ2

2
2σ2

2

)
ε + o(ε).

(10)

Relation (10) guarantees that quantities p
(ε)
±± take values in interval (0, 1) for ε small

enough in the most interesting non-degenerate case, where |ρ| < 1. Note also that the
sum of these probabilities is equal to 1, according to the last equation in (8).

The problem can be however reduced to more simple case where drift coefficients
μ1 = μ2 = 0 and the initial state �y0 = (0, 0).

Let us consider processes �̃S(0)(t) = e
�̃Y (0)(t), t ≥ 0, where the log-price process �̃Y (0)(t) =

(Ỹ (0)
1 (t), Ỹ (0)

2 (t)), t ≥ 0 is a bivariate Brownian motion with components Ỹ
(0)
i (t) =

σiWi(t), t ≥ 0, i = 1, 2, which are correlated, i.e., EW1(t)W2(t) = ρt, t ≥ 0. Obviously,

the natural filtration Ft, t ≥ 0 is the same for processes �S(0)(t), t ≥ 0 and �̃S(0)(t), t ≥ 0.
Let g(t, �s) = g(t, (s1, s2)) be payoff functions that satisfy conditions A1. Let us now

consider the transformed payoff functions g̃(t, �s) = g(t, (ey
(0)
1 +μ1ts1, e

y
(0)
2 +μ2ts2)). These

functions also satisfy condition A1 with some constants Ki, i = 1, . . . , 5 and parameters
γ0 = γ = max(γ0, γ1 + 1, γ2 + 1) and the same parameters γ1 and γ2. It follows from the
remarks above that the reward functional

Φ(M(0)
T ) = sup

τ∈MT

Eg(τ, �S(0)(τ)) = sup
τ∈MT

Eg̃(τ, �̃S(0)(τ)). (11)

Now, we can approximate the bivariate Brownian processes �̃Y (0)(t) by the correspond-

ing bivariate sum-processes �̃Y (ε)(t) as it was described above. In this case however the
parameters μ1 and μ2 will take the value 0 in systems of equations (8) and (9). In this
case, the solution to these systems will take the following simpler form,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u
(ε)
1 =

√
εσ1,

u
(ε)
2 =

√
εσ2,

p
(ε)
++ = p

(ε)
−− = 1

4 + 1
4ρ,

p
(ε)
+− = p

(ε)
−+ = 1

4 − 1
4ρ.

(12)

The probabilities in (12) take non-negative values for any |ρ| ≤ 1.
By applying convergence theorems for vector sum-processes with independent incre-

ments, given for example in Skorokhod (1964), it is easy to prove that the processes
�Y (ε)(t), t ∈ [0, T ] with parameters given in (9) weakly and moreover J-converge to

process �Y (0)(t), t ∈ [0, T ] as ε → 0. Also the processes �̃Y (ε)(t), t ∈ [0, T ] with parameters

given in (12) weakly and J-converge to process �̃Y (0)(t), t ∈ [0, T ] as ε → 0.

Thus, conditions B2 and D2 hold for processes �Y (ε)(t) and �̃Y (ε)(t).
Also, the moment generation functions E exp{β(Y (ε)

i (t + u) − Y
(ε)
i (t))} exist for any

β ∈ R and have an explicit form, namely, for 0 ≤ t ≤ t + u ≤ T , i = 1, 2,

E exp{β(Y (ε)
i (t + u)− Y

(ε)
i (t))}
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=

⎧⎪⎨
⎪⎩

(eβu
(ε)
i p

(ε)
i + e−βu

(ε)
i q

(ε)
i )[(t+u)/ε]−[t/ε], if ε > 0,

eβμiu+
β2σ2

i u

2 , if ε = 0,

(13)

where p
(ε)
1 = p

(ε)
++ + p

(ε)
+−, q

(ε)
1 = p

(ε)
−+ + p

(ε)
−− and p

(ε)
2 = p

(ε)
++ + p

(ε)
−+, q

(ε)
2 = p

(ε)
+− + p

(ε)
−−.

This makes it easy to check that condition C3 holds for processes �Y (ε)(t) for any
β′ > β.

Summarizing the remarks above, one can conclude that the conditions and, therefore,
the statement of Theorem 4 holds, for the bivariate exponential price processes with
independent increments �S(ε)(t) = exp{�Y (ε)(t)}, t ∈ [0, T ], if condition A1 holds for the
corresponding payoff functions, i.e.,

Φ(M(ε)
max,T )→ Φ(M(0)

max,T ) as ε → 0. (14)

Let assume for simplicity that ε = T/N and consider the partition Πε = {t0 = 0 <
t1 = ε < · · · < tN−1 = (N−1)ε < tN = T } on the interval [0, T ]. In this case the Markov
chain (n, �Y (ε)(nε)), n = 0, 1, . . . is a bivariate binomial tree model with the initial node
(0, �y0) and nodes of the form (n, �yn,l1,l2), l1, l2 = 0, 1, . . . , n, after n ≥ 1 steps. In the case
of a non-reduced model with parameters of the approximating bivariate Bernoulli random
vectors �Y

(ε)
n defined by relations (7) and (9), the vector points �yn,l1,l2 , l1, l2 = 0, 1, . . . , n,

n = 0, 1, . . . , N should be defined by the formula

�yn,l1,l2 = �y0 + ((2l1 − n)
√

ε
√

σ2
1 + μ2

1ε, (2l2 − n)
√

ε
√

σ2
2 + μ2

2ε). (15)

In the case of a reduced model with parameters of the approximating bivariate Ber-
noulli random vectors (Y (ε)

n,1 , Y
(ε)
n,2 ) defined by relations (7) and (12), the vector points

�yn,l1,l2 , l1, l2 = 0, 1, . . . , n, n = 0, 1, . . . , N should be defined by the simpler formula

�yn,l1,l2 = ((2l1 − n)
√

εσ1, (2l2 − n)
√

εσ2). (16)

The corresponding tree has (n + 1)2 nodes appearing in the tree after n-th step.
The standard backward procedure can be applied in order to find the optimal expected

reward at moment 0 for the discrete time exponential bivariate binomial price process
�S(ε)(tn) = e

�Y (ε)(tn), tn = nε, n = 0, 1, . . . , N . This optimal expected reward coincides,
in this case, with the reward functional Φ(M(ε)

Πε,T ) for the continuous time bivariate

exponential price processes �S(ε)(t) = e
�Y (ε)(t), t ∈ [0, T ].

To estimate the difference Φ(M(ε)
max,T )−Φ(M(ε)

Πε,T ) we can use Theorem 3.1 from Part
1. In this case, d(Πε) = ε and, for β ∈ R and i = 1, 2,

Δβ(Y (ε)
i (·), ε, T ) = Eeβ|Y (ε)

1,i | − 1 ≤ eβu
(ε)
i − 1. (17)

Theorem 3 yields in this case the following relation,

Φ(M(ε)
max,T )−Φ(M(ε)

Πε,T ) ≤ L3ε+L4((eβu
(ε)
1 −1)

β−γ
β +(eβu

(ε)
2 −1)

β−γ
β ) → 0 as ε→ 0. (18)

As was pointed out in Section 3, the reward functional Φ(M(ε)
Πε,T ) is the option opti-

mal expected reward for American type options in discrete time that correspond to the
discrete time Markov log-price process �Y (ε)(tn), tn = nε, n = 0, 1, . . . , N , with parameter
ε = T/N . Introduce the corresponding reward functions,

w(ε)(tn, �yn,l1,l2) = sup
tn≤τ (ε)≤tN=T

Etn,�yn,l1,l2
g(τ (ε), e

�Y (ε)(τ (ε))),

where τ (ε) is a discrete time Markov stopping moment such that event {τ (ε) ≤ tk}
depends only on trajectory �Y (ε)(tr), tn ≤ tr ≤ tk for tn ≤ tk ≤ tN , and vector points
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Figure 1. Rewards for exchange of Asset 1 for Asset 2, with volatilities
0.05 ≤ σ1 ≤ 1 and 0.05 ≤ σ2 ≤ 1.

�yn,l1,l2 , l1, l2 = 0, . . . , n, n = 0, . . . , N were defined in (15), and, in particular, �y0,0,0 =
�y0 = (y(0)

1 , y
(0)
2 ). Then,

Φ(M(ε)
Πε,T ) = w(ε)(0, �y0). (19)

The reward functions w(ε)(tn, �yn,l1,l2) can be found using the following backward re-
currence relations,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(ε)(tN , �yN,l1,l2) = g(tN , e�yN,l1,l2 ), l1, l2 = 0, . . . , N,

w(ε)(tn, �yn,l1,l2) = g(tn, e�yn,l1,l2 ) ∨ (
w(ε)(tn+1, �yn+1,l1+1,l2+1)p

(ε)
++

+w(ε)(tn+1, �yn+1,l1+1,l2)p
(ε)
+−,

+w(ε)(tn+1, �yn+1,l1,l2+1)p
(ε)
−+ + w(ε)(tn+1, �yn+1,l1,l2)p

(ε)
−−

)
,

l1, l2 = 0, . . . , n, n = N − 1, . . . , 0.

(20)

The corresponding approximation result for the bivariate binomial tree algorithm de-
scribe above can be summarized in the following theorem.

Theorem 5. Let condition A1 holds and |ρ| < 1. Then

w(ε)(0, �y0) = Φ(M(ε)
Πε,T )→ Φ(M(0)

max,T ) as ε→ 0. (21)

Note that the asymptotic relation (21) takes place for any initial state �y0 ∈ R
2.

Note that the modification of the approximation algorithm based on the reduced model
described in (12) can be built and utilized in a similar way without assumption |ρ| < 1.

Another example of a typical payoff function, is a linear combination of payoff functions
for a portfolio of options g(t, �s) = e−rt(a1[s1 −K1]+ + a2[s2 −K2]+).
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Let us also mention the model of exchange of assets with payoff function g(t, �s) =
e−rt(s1 − s2). Note that this is an example of payoff function which is not nonnegative.
The optimal stopping strategies for this model were recently studied in Mishura and
Shevchenko (2009).

In both cases, the payoff functions are continuous, do not depend on perturbation pa-
rameter ε, and have obviously a polynomial rate of growth. Thus, condition A1 automati-
cally holds. Therefore, according to Theorem 5 the optimal expected reward functions for
the described above bivariate binomial exponential model converge to the corresponding
optimal expected reward functionals for the corresponding bivariate geometric Brownian
motion. It is useful to note that the results concerning bivariate binomial models admit
an obvious generalization to the case of multivariate binomial models.

Let us give a numerical example for the model of exchange of assets with payoff
function g(t, �s) = e−rt(s1 − s2). We consider the case when the holder of the option has
the right to change asset 1 for asset 2. The option has maturity in 6 months. Asset 1
has initial price 10 with a drift estimated to be 0.02 and volatility are estimated to 0.1
per year. Asset 2 has initial price 9.5 with a drift estimated to be 0.08 and volatility are
estimated to 0.35 per year. The correlation between the two assets are assumed to be
ρ = 0.3. The risk free interest rate are assumed to be r = 0.04 for the time period of the
contract.

Our studies show that tree size N = 100 is enough, the expected reward for a tree with
size N = 100 is 0.0850, this should be compared with the expected reward for a tree with
size N = 150 which is 0.0858. The calculation time for this tree size is 5.11 seconds on a
1.73 GHz Intel� Pentium-M processor, 1GB internal memory using Matlab�. Figure 1
illustrates the reward for exchanging Asset 1 for Asset 2 when parameters of the model
are as above except the volatility vary on the interval [0.05, 1] for the two different assets.
It is worth to note that for some combinations of volatility the reward will be negative
and thus exchange is not profitable. This question does however require an additional
investigation.

6. Binomial tree approximations for mean reverse price processes

Let us consider the model of price process introduced by Schwartz (1997) for modeling
energy prices. It has the following form

d lnS(t) = −α(ln S(t)− lnS(0))dt + νdW (t), t ≥ 0, (22)

where α, ν > 0, W (t) is a standard Brownian motion, and the initial state S(0) = s0 > 0 is
a constant. We consider further the case when we want to price an American call option,
that is where a payoff function of the form g(t, s) = e−rt[s − K]+, where r, K > 0. It
is easy to check that the payoff function satisfies condition A1 with some constants Ki,
i = 1, . . . , 5 and parameters γ0 = 1 and γ1 = 0. Our object of interest is in this case the
reward functional

Φ(M(0)
max,T ) = sup

0≤τ≤T
Ee−rτ [S(τ)−K]+. (23)

Equation (22) has the following solution S(t) = s0e
νe−αt

�
t
0 eαsdW (s), t ≥ 0. The

process S(t) is a diffusion process, which however can be represented as a non-random
transformation of a simpler exponential Gaussian process with independent increments
S(0)(t) = eνe−αT

� t
0 eαsdW (s), t ≥ 0. It follows from the above formulas that S(t) =

s0(S(0)(t))eα(T−t)
, t ≥ 0. The processes S(t), t ≥ 0 and S(0)(t), t ≥ 0 have the same

natural filtration Ft, t ≥ 0 and therefore the class Φ(M(0)
max,T ) of all Markov moments

0 ≤ τ ≤ T is also the same for these processes.
Let us now consider the transformed payoff function g̃(ε)(t, s) = e−rt[s0s

eα(T−t) −
K]+. This function also satisfies condition A1 with some constants K ′

i, i = 1, . . . , 5 and
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parameters γ0 = eαT + 1, γ1 = eαT − 1. It follows from the remarks above that the
reward functional

Φ(M(0)
max,T ) = sup

0≤τ≤T
Ee−rτ [S(τ)−K]+ = sup

0≤τ≤T
Ee−rτ [s0S

(0)(τ)eα(T−τ) −K]+ (24)

The process S(0)(t) = eY (0)(t), t ≥ 0, where Y (0)(t) = νe−αT
∫ t

0 eαsdW (s), t ≥ 0, is a
Gaussian process with independent increments.

We approximate the process Y (0)(t), t ≥ 0 with a trinomial sum-process Y (ε)(t) =∑
1≤k≤[t/ε] Y

(ε)
n , t ≥ 0, where Y

(ε)
n , n = 1, 2, . . . are, for every ε > 0, independent random

variables that have the following structure

Y (ε)
n =

⎧⎪⎨
⎪⎩

u(ε) p
(ε)
n,+,

0 with prob. p
(ε)
n,·,

−u(ε) p
(ε)
n,−.

(25)

Let us assume that ε = T/N .
In order to fit the trinomial sum-processes Y (ε)(t) to the limit process Y (0)(t), we

should fit expectation and variance for the random variables Y
(ε)
n and increment of the

limit process Y (0)(nε)− Y (0)((n− 1)ε) for n = 1, . . . , N .
Simple calculations show that

E(Y (0)(nε)− Y (0)((n− 1)ε)) = Eνe−αT

∫ nε

(n−1)ε

νeαsdW (s) = 0 (26)

and
σ2

n,ε = Var(Y (0)(nε)− Y (0)((n− 1)ε))

= Var νe−αT

∫ nε

(n−1)ε

eαsdW (s) = ν2e−2αT e2αnε 1− e−2αε

2α
.

(27)

The following system of 3N equations and 3N + 1 unknowns should be solved,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EY
(ε)
n = u(ε)(p(ε)

n,+ − p
(ε)
n,−) = 0,

VarY (ε)
n = (u(ε))2(p(ε)

n,+ + p
(ε)
n,−) = σ2

n,ε,

p
(ε)
n,+ + p

(ε)
n,− + p

(ε)
n,· = 1,

n = 1, . . . , N.

(28)

The system above has the solution of the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(ε) = κ
√

ε,

p
(ε)
n,+ = p

(ε)
n,− = σ2

n,ε

2κ2ε ,

p
(ε)
n,· = 1− σ2

n,ε

κ2ε ,
n = 1, . . . , N.

(29)

Let us consider the probability p
(ε)
n,+ =

σ2
n,ε

2κ2ε . It is easy to show that ν2e−2αT ≤ σ2
n,ε

ε ≤
ν2e−2αT e2αT = ν2 for n = 1, . . .N . Thus, it is possible to choose κ large enough such
that the values of probabilities 0 ≤ ν2e−2αT

2u2 ≤ p
(ε)
n,+ ≤ ν2

2u2 ≤ 1
2 for n = 1, . . . , N . In fact

one can take any κ ≥ ν.
The defining relation (25) implies that for any δ > 0 if ε is small enough, namely, if

κ
√

ε ≤ δ, then ∑
n≤[T/ε]

P{|Y (ε)
n | > δ} = 0. (30)

Also, by the definition of processes Y (ε)(t), for ε ≥ 0 and 0 ≤ t ≤ T ,

EY (ε)(t) = 0, (31)
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and, for every 0 ≤ t ≤ T ,

VarY (ε)(t) = ν2e−2αT

∫ [t/ε]ε

0

e2αsds = ν2e−2αT e2α[t/ε]ε − 1
2α

→ VarY (0)(t) = ν2e−2αT e2αt − 1
2α

as 0 < ε → 0,

(32)

Since the functions in (32) are monotone, and the corresponding limit function is
continuous, this convergence is also uniform in interval [0, T ] and, therefore, conditions
of Ascoli-Arzelá theorem, in particular, condition of compactness in uniform topology
holds as ε → 0.

The remarks above imply that conditions of convergence theorems for vector sum-
processes with independent increments, given, for example, in Skorokhod (1964), hold
for processes �Y (ε)(t), t ∈ [0, T ]. Thus, the processes Y (ε)(t), t ∈ [0, T ] weakly and,
moreover, J-converge to the process Y (0)(t), t ∈ [0, T ] as ε → 0.

Therefore, conditions B2 and D2 hold for step-sum processes with independent incre-
ments Y (ε)(t).

Also, the moment generation function E exp{β(Y (ε)(t + s) − Y (ε)(t))} exists for any
β ∈ R and has an explicit form, namely, for 0 ≤ t ≤ t + s ≤ T ,

E exp{β(Y (ε)(t + s)− Y (ε)(t))}

=

⎧⎪⎨
⎪⎩

∏[(t+s)/ε]
[t/ε]+1 (eβκ

√
εp

(ε)
n,+ + e−βκ

√
εp

(ε)
n,− + p

(ε)
n,·) if ε > 0,

e
1
2 β2ν2e−2αT

�
t+s
t

e2αvdv if ε = 0.

(33)

Using formula (33) it is possible to check that condition C3 holds for any β′ > β.

Indeed, since ν ≤ κ and
σ2

n,ε

2κ2ε ≤ 1
2 for n = 1, . . . , N , we get,

Ξ′±β′(Y
(ε)(·), T ) = sup

0≤t≤t+u≤T
Ee±β′(Y (ε)(t+u)−Y (ε)(t))

≤
[T/ε]∏
n=1

(1 +
σ2

n,ε

2κ2ε
(eβ′κ

√
ε + e−β′κ

√
ε − 2))

≤ (1 +
1
2
(eβ′κ

√
ε + e−β′κ

√
ε − 2))T/ε → e

β′2κ2T
2 < ∞ as ε → 0.

(34)

Therefore, all conditions of Theorem 4 hold for log-price processes Y (ε)(t) and, there-
fore,

Φ(M(ε)
max,T )→ Φ(M(0)

max,T ) as ε → 0. (35)

Let us now consider the partition Πε = {t0 = 0 < t1 = ε < · · · < tN−1 = (N − 1)ε <
tN = T } on the interval [0, T ]. In this case, the Markov chain (n, Y (ε)(nε)), n = 0, 1, . . .
is a trinomial tree model with the initial node (0, 0) and nodes of the form (n, yn,l),
l = 0,±1, . . ., ±n, after n ≥ 1 steps. In the case of model with parameters of the
approximating trinomial random variables Y

(ε)
n defined by relations (25) and (29), the

points yn,l, l = 0,±1, . . . ,±n, n = 0, 1, . . . , N should be defined by the formula

yn,l = l
√

εκ. (36)

The corresponding tree has 2n + 1 nodes after n steps. The number of nodes is a
linear function of n.

The standard backward procedure can be applied in order to find the optimal expected
reward at moment 0 for the discrete time exponential trinomial price process S(ε)(tn) =
eY (ε)(tn), tn = nε, n = 0, 1, . . . , N . This optimal expected reward coincides, in this case,
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with the reward functional Φ(M(ε)
Πε,T ) for the continuous time exponential price processes

S(ε)(t) = eY (ε)(t), t ∈ [0, T ].
To estimate the difference Φ(M(ε)

max,T )−Φ(M(ε)
Πε,T ) we can use Theorem 3.1 from Part

1. In this case, d(Πε) = ε and for β ∈ R,

Δβ(Y (ε)(·), ε, T ) = max
1≤n≤N

(Eeβ|Y (ε)
n | − 1) ≤ eβκ

√
ε − 1. (37)

Theorem 3 yields in this case the following relation,

Φ(M(ε)
max,T )− Φ(M(ε)

Πε,T ) ≤ L3ε + L4(eβκ
√

ε − 1)
β−γ

β → 0 as ε → 0. (38)

As was pointed out in Section 3, the reward functional Φ(M(ε)
Πε,T ) is the option opti-

mal expected reward for American type options in discrete time that correspond to the
discrete time Markov log-price process Y (ε)(tn), tn = nε, n = 0, 1, . . . , N with parameter
ε = T/N . Introduce the corresponding reward functions,

w(ε)(tn, yn,l) = sup
tn≤τ (ε)≤tN =T

Etn,yn,l
e−rτ (ε)

[s0e
Y (ε)(τ (ε))eα(T−τ(ε)) −K]+,

where τ (ε) is a discrete time Markov stopping moment such that event {τ (ε) ≤ tk}
depends only on trajectory �Y (ε)(tr), tn ≤ tr ≤ tk for tn ≤ tk ≤ tN , and yl = l

√
εu,

l = 0,±1, . . . ,±n, n = 0, . . . , N . Then,

Φ(M(ε)
Πε,T ) = w(ε)(0, 0). (39)

The reward functions w(ε)(tn, yl) can be found using the following backward recurrence
relations,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

w(ε)(tN , yN,l) = e−rtN [s0e
yN,l −K]+, l = 0,±1, . . . ,±N,

w(ε)(tn, yn,l) = e−rtn [s0e
yn,le

α(T−tn) −K]+ ∨ (
w(ε)(tn+1, yn+1,l+1)p

(ε)
n,+

+w(ε)(tn+1, yn+1,l)p
(ε)
n,· + w(ε)(tn+1, yn+1,l−1)p

(ε)
n,−

)
,

l = 0,±1, . . . ,±n, n = N − 1, . . . , 0.

(40)

The corresponding convergence result of the Schwartz model can be summarized in
the following theorem.

Theorem 6. Let the price process corresponds to Schwartz model and consider an
American option that have the standard payoff function. Then

w(ε)(0, 0) = Φ(M(ε)
Πε,T )→ Φ(M(0)

max,T ) as ε → 0. (41)

Note that the asymptotic relation (41) takes place for any initial state s0 ∈ R
1
+.

Note also that in the above described approximation tree algorithm as well as in
Theorem 6, the standard payoff function g(t, s) = e−rt[s −K]+ can be replaced by any
payoff function satisfying condition A1.

Let us now consider a numerical example when a standard American call option writ-
ten on a commodity that are assumed to follow the Schwartz model. The commodity
are currently traded at 10 and has an estimated volatility of 0.25 and mean reverting
coefficient of α = 1. The option has a strike price K = 11 and maturity T = 0.5 years.
Finally, the risk free interest rate are r = 0.04.

Our studies show that tree size N = 50 is enough, the expected reward for a tree with
size N = 50 is 0.2802, this should be compared with the expected reward for a tree with
size N = 100 which is 0.2863. The calculation time for this tree size is 0.963 seconds on
a 1.73 GHz Intel� Pentium-M processor, 1GB internal memory using Matlab�.

For low values of the ν parameter the option reward reaches its minimum, and when
the ν value are high and the α value are low the option reward reaches its maximum.
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Figure 2. Reward of an American option a commodity assumed to
follow the Schwartz model, having parameters 0.1 ≤ α ≤ 2.5 and 0.04 ≤
ν ≤ 1.
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