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LIGHT TAILED ASYMPTOTICS IN AN UNRELIABLE M/G/1
RETRIAL QUEUE

UDC 519.21

A. AISSANI

Abstract. We consider the standard unreliable M/G/1 retrial queuing system with active and passive
breakdowns. The explicit expressions of the probability generating functions of distribution of server
state and orbit size are well known from early works. However, some problems particularly related to
Cybernetic and Artificial Intellect need to save computational effort. So, we give here another look to
solve this problem more simply, but under some light tailed assumptions.
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1. Introduction

Queueing Systems with breakdowns have been the subject of many investigations
since they are interesting modeling tools in many modern systems: production, and
telecommunication, computer science, finance and so on. Such studies are interesting
since they make a gap between Queueing Theory and Reliability theory, in the context
of probabilistic framework which is one of logics for uncertainty problems [7], [6].

In last years, a particular interest have been devoted to Retrial Queueing Systems for
their interest in many modern system (Call centers, Mobile Systems, CSMA/CD protocol
with star topology, random access protocols. . . ), see for example [11] and the references
in didactical book [9], or bibliographical surveys of [3, 4].

Early works were concerned with analytical or algorithmic resolution of the underlying
problems, see for example [6, 5]. Asymptotic methods are interesting in the sense that
we can save computational effort for the resolution of the problem under study, see [2].
We refer also to some alternative approaches to study more qualitative properties such
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as stability,see [10] or monotonicity and comparability methods, see [12]. The last paper
gives also a short survey about recent advances in Unreliable Retrial Queues.

In this note, we consider the approximation of the queue size of the unreliable M/G/1
retrial queue under light tailed assumptions. In the next section we describe the math-
ematical model and in section 3 we provide some preliminary results. The light tailed
approximation is given in section 4.

2. The Mathematical Model

We consider the standard M/G/1 retrial queuing system with active and passive
breakdowns, with the following parameters and assumptions:

• λ is the arrival rate of primary customers;
• η (resp. μ) is the Poisson rate of passive (resp. active) breakdowns;
• F (x) is probability distribution (p.d.) of the service time;
• G(x) (resp. H(x)) is p.d. of duration of passive Di (resp. active Db) interruption;
• η is retrial rate of each secondary call i.e. the retrial protocol is such that the

probability of a retrial during (t, t+ dt) is proportional to the number of units in
orbit.

• If a customer whose service is interrupted by an active breakdown need to leave
the service zone. The displaced customer must decide either to join the retrial
group (with probability c), or leave the system after interruption (with probabil-
ity 1 − c).

Now, if A(x) is one of the above p.d.’s, we denote by Ã(s), Re(s) ≥ 0 it’s Laplace–
Stieltjes transform. Let

• X(t) = 0, if the server is operative and idle at time t,
• X(t) = 1, if the server is operative and busy at time t,
• X(t) = 2, if the server is down due to an independent breakdown at time t,
• X(t) = 3, if the server is down due to an active breakdown at time t.

Let Q(t) be the number of customers in orbit at time t. We are interested with the
limiting probability

Pin = lim
t→∞P{X(t) = i, Q(t) = n}, i = 0, . . . , 3, n ≥ 0.

The explicit expressions of the probability generating functions of distribution of server
state and orbit size are well known from [1] and we recall them in the next section.

3. Preliminary Results

Consider the Standard M/G/1 Retrial Queue as described in section 1. We assume
that the ergodicity condition

ρ = λ
1 − F̃ (μ)

μ

(
1 + μ

(
E(Db) +

c

μ

))
< 1 (1)

holds.
Denote by

Pin = lim
t→∞P{X(t) = i, Q(t) = n}, i = 0, . . . , 3, n ≥ 0.

Pi(z) =
∞∑

n=0

znPin, i = 0, . . . , 3, |z| < 1.

From theorem 4.2. of [1] we know the explicit expression of these generating functions

P0(z) =
K

A
exp

(
λ

θ

∫ z

1

1 − N(λ − λu)
N(λ − λu) − u

du +
η

θ

∫ z

1

1 − G̃(λ − λu)
N(λ − λu) − u

du

)
(2)
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P1(z) =
1 − F̃ (λ − λz + μ)

λ − λz + μ
× λ − λz + η − ηG̃(λ − λz)

N(λ − λz) − z
P0(z) (3)

P2(z) = η
1 − G̃(λ − λz)

λ − λz
P0(z) (4)

P3(z) = (1 − c + cz)μ
1 − H̃(λ − λz)

λ − λz
P1(z) (5)

where

K =
1 − ρ

λ(1 + ηE(Di)) + η(1 − ρ)
and

A = K(1 + ηE(Di)) + (1 − F̃ (μ)(1 − ηK)(E(Db) +
1
μ

) (6)

These relations are obtained by different ways (Method of imbedded Markov chain,
Method of supplementary variable, algorithmic methods. . . ), see [1] and its references.

Recall that the function N(λ − λz) has the following interpretation. Consider the
random variable Φ representing the fundamental period i.e. the duration determined by
the competition between the service and the arrival of an active interruption. Thus the
Laplace-Stieltjes of the distribution of Φ is given by

f(s) = F̃ (s + μ) +
μH̃(s)(1 − F̃ (s + μ))

s + μ

Let N be the number of customers that joins the retrial group during the period [0, Φ].
Then the distribution of N is given by [1]

N(λ − λz) = E(zN) = F̃ (λ − λz + μ) + (1 − c + cz)
μH̃(λ − λz)(1 − F̃ (λ − λz + μ)

λ − λz + μ)

4. Light Tailed Approximation

The behavior of the orbit size distribution is based on the analytical properties of
probability generating functions 2–5.

The light tailed asymptotic of the queue size distribution in the standard Unreliable
M/G/1 Retrial Queue is based on the assumption that the generalized service time
distribution Φ has a finite exponential moment i.e.

γ = sup{t ∈ C : E(etΦ) < ∞, E(etDi) < ∞} > 0. (7)

Using this assumption, we can locate the zeros of N(λ − λz) − z, |z| ≤ σ. More
precisely, the analytic function N(λ − λz) − z, |z| ≤ 1 + γ

λ has simple zero at 1 and σ.
Furthermore, it has no other zeros on {z ∈ C : |z| ≤ σ}, where σ = σ(λ, μ, c, F (·), H(·))
is the unique root of the equation

N(λ − λz) − z = σ, 1 < σ < 1 +
γ

λ
(8)

The proof is similar to that of lemma 1 of [8]. The function f(z) = N(λ−λz), |z| < 1+γ/λ
has a simple zero at z = 1 since f ′(1) < 0. Since f(z) is strictly convex in z ∈ (0, 1+γ/λ)
and f(1) = f(σ) = 0, then f(z) < 0 for 1 < z < σ. The assertion is a consequence of the
Rouché’s theorem.

Now, the function

g(z) =
1 − N(λ − λz)
N(λ − λz) − z
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is analytic at z = 1, since it has a removable singularity at this point. On the other
hand this function has a simple pole at z = σ and the residue at this point Re s g(σ) =

−(σ−1)
−λN ′(λ−λσ)−1 . So, the function

h(z) =
1 − N(λ − λz)
N(λ − λz) − z

+
−(σ − 1)

−λN ′(λ − λσ) − 1
× 1

z − σ

has a removable singularity at z = σ. Therefore, the function g(z) can be decomposed
as a sum of the principal part at z = σ and the analytical part. More precisely, we can
find δ′ ∈ (0, 1 + γ/λ− σ) and an analytical function P (z) on Θδ′ = {z ∈ C : |z| < σ + δ′}
such that

1 − N(λ − λz)
N(λ − λz) − z

= − σ − 1
−λN ′(λ − λσ) − 1

× 1
z − σ

+ P (z), |z| < σ + δ′, z �= σ, (9)

where

P (z) =

{
1−N(λ−λz)
N(λ−λz)−z + σ−1

−λN ′(λ−λσ)−1 × 1
z−σ , |z| < σ + δ′, z �= σ,

limu→σ
1−N(λ−λu)
N(λ−λu)−u , z = σ

In a similar way, we can find δ′′ and an analytical function Q(z) on Θδ′′ such that

1 − G̃(λ − λz)
N(λ − λz) − z

= − λG̃′(λ − λσ)
−λN ′(λ − λσ) − 1

× 1
z − σ

+ Q(z), |z| < σ + δ′′, z �= σ, (10)

where

Q(z) =

⎧⎨⎩
1− �G(λ−λz)
N(λ−λz)−z + λ �G′(λ−λσ)

−λN ′(λ−λσ)−1 × 1
z−σ , |z| < σ + δ′′, z �= σ,

limu→σ
1− �G(λ−λu)
N(λ−λu)−u , z = σ

Next, we take the domain |z| < σ + δ, where δ = min(δ′, δ′′) gives the range of validity
of the two above decompositions. Substituting 9 and 10 into 2, we have

P0(z) = E(zQ; X = 0)

=
K

A
exp

(
λ

θ

∫ z

1

1 − N(λ − λu

N(λ − λu) − u
du +

η

θ

∫ z

1

1 − G̃(λ − λu)
N(λ − λu) − u

du

)
(11)

Thus,

P0(z) =
K

A
exp

(
λ

θ

∫ z

1

a

u − σ
du

)
× exp

(
λ

θ

∫ z

1

P (u)du

)

× exp

(
η

θ

∫ z

1

b

u − σ
du

)
× exp

(
η

θ

∫ z

1

Q(u)du

)
where

a =
λ

θ

σ − 1
−λN ′(λ − λσ)

and

b =
η

θ

G̃(λ − λσ) − 1
−λN ′(λ − λσ)

.

Finally, we get

P0(z) =
K

A

(
σ − z

σ − 1

)−a−b

Λ(z), |z| < σ (12)

where

Λ(z) = exp

(
λ

θ

∫ z

1

P (u)du +
η

θ

∫ z

1

Q(u)du

)
(13)

Since P (z) and Q(z) are analytic on {z ∈ C : |z| < σ + δ}, so is Λ(z).
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Consider the power series expansion of the function Λ(z) at z = 0, i.e.

Λ(z) =
∞∑

n=0

ϕnzn, |z| < σ + δ. (14)

On the other hand, we note that we have the following power series expansion for the
first factor

K

A

(
σ − z

σ − 1

)−a−b

=
K

A

(
σ − 1

σ

)a+b ∞∑
n=0

Γ(a + b + n)
Γ(a + b)Γ(n + 1)

σ−nzn. (15)

By using verbatim the computation [8] we show

lim
n→∞

P (X = 0, Q = n)
(Γ(a + b + n)/Γ(a + b)Γ(n + 1))σ−n

=
K

A

(
σ − 1

σ

)a+b ∞∑
n=0

ϕnσn

=
K

A

(
σ − 1

σ

)a+b

Λ(z) = Γ(a + b)c0,

(16)

where

c0 =
K

AΓ(a + b)

(
σ − 1

σ

)a+b

× exp

( ∫ σ

1

(
λ
θ × {1 − N(λ − λu)} + η

θ × {1 − G̃(λ − λu)}
{1 − N(λ − λu)} +

a + b

u − σ

)
du

)
.

(17)

Now, taking into account that Γ(a + b + n)/Γ(n + 1) ∝ na+b−1 as n → ∞, the relation
16 is equivalent to

P (X = 0, Q = n) ∝ c0n
a+b−1σ−n (18)

as n → ∞. Here gn ∝ hn means that

lim
n→∞

gn

hn
= 1.

Similar approximations can be obtained for the probability generating functions 3-5.
Consider for example the case of the distribution of the number of customers in orbit
when the server is operative and busy P1(z). Denote by

A(z) =
1 − F̃ (λ − λz + μ)

λ − λz + μ
× λ − λz + η − ηG̃(λ − λz)

N(λ − λz) − z
P0(z) (19)

Similarly to 10, we can find some β ∈ (
0, 1 + γ

λ − σ
)

and an analytical function S(z)
on Θδ such that

A(z)
N(λ − λz) − z

= − A′(σ)
−λN ′(λ − λσ) − 1

× 1
z − σ

+ S(z), |z| < σ + β, z �= σ, (20)

where

S(z) =

{
A(z)

N(λ−λz)−z + A′(σ)
−λN ′(λ−λσ)−1 × 1

z−σ , |z| < σ + β, z �= σ,

limu→σ
A(u)

N(λ−λu)−u , z = σ

Substituting now 19 into 3, we have the following representation

P1(z) =
K

A

A(σ)(σ − 1)
−λN ′(λ − λσ) − 1

(
σ − z

σ − 1

)−a−b−1

Λ(z)

+
K

A
A(σ)

(
σ − z

σ − 1

)−a−b

S(z)Λ(z)

(21)
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Denotes respectively by
∑∞

n=0 pnzn and
∑∞

n=0 qnzn the series expansion of the two terms
in 21. We obtain by the same method that

pn = P (X = 1, Q = n) ∝ c′0n
a+b−1σ−n, c′0 = A(σ)(σ − 1)c0, (22)

qn ∝ c1S(σ)na+bσ−n (23)
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