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PARAMETER ESTIMATION FOR RECIPROCAL GAMMA
ORNSTEIN–UHLENBECK TYPE PROCESSES

UDC 519.21

N. LEONENKO, L. SAKHNO, AND N. ŠUVAK

Abstract. We consider parameter estimation for a process of Ornstein–Uhlenbeck type with recipro-
cal gamma marginal distribution, to be called reciprocal gamma Ornstein–Uhlenbeck (RGOU) process.
We derive minimum contrast estimators of unknown parameters based on both the discrete and the
continuous observations from the process as well as moments based estimators based on discrete ob-
servations. We prove that proposed estimators are consistent and asymptotically normal. The explicit
forms of the asymptotic covariance matrices are determined by using the higher order spectral densities
and cumulants of the RGOU process.
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1. Introduction

Non-Gaussian processes of Ornstein–Uhlenbeck (OU) type have been introduced by
Barndorff-Nielsen and Shephard in 2001 [10]. One of the main advantages of this type of
processes is their ability to capture important distributional deviations from normality.
Therefore, they are widely applied for modeling time series coming from different fields of
science, with an accent to financial mathematics (stochastic volatility models). Also, in
comparison to other models (e.g. geometric Gaussian and CEV models), these processes
are much more analytically tractable and therefore very suitable as practical models.
This paper deals with the Lévy driven stationary OU type process with reciprocal or

inverse gamma marginal distributions, a heavy-tailed distribution which belongs to the
Pearson family containing Gaussian, gamma, beta, reciprocal gamma, Fisher-Snedecor
and Student distributions as six subclasses (see [25]). The detailed study of Student
OU type processes can be found in [17], as well as a good motivation for application of
this OU type process. Also note that reciprocal gamma distribution is a special case
of generalized inverse Gaussian (GIG) distribution and that OU-type processes with
GIG marginals are already used in practice. However, the application of the OU-type
processes with reciprocal gamma marginals needs further investigation.
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In this paper we focus on parameter estimation for our process of interest. Estimation
of parameters of Lévy driven OU type processes is already a well studied topic. For ex-
ample, in [19] nonparametric inference was developed, in [30], [29] maximum likelihood
estimation procedures were analyzed while in [28] moment based estimators and their as-
ymptotic properties were studied. Estimation of the parameters of this type of processes
based on the sampled AR(1) process is treated in [12]. In the present paper parameters
of reciprocal gamma OU type process are estimated by both minimum contrast method
based on Whittle and Ibragimov functionals and method of moments. Derived estimators
are proved to be consistent and asymptotically normal. For moment based estimators the
consistency follows from the ergodicity and stationarity of the process while asymptotic
normality of the bivariate estimator of parameters of the marginal distribution follows
from the functional central limit theorem for α-mixing sequences (see, e.g., [13]) and the
functional delta method (see [27]). Methodology for proving these asymptotic properties
in the case of minimum contrast estimators is given in the Appendix of the paper.
The main advantage of these two methods of estimation is that, based on higher order

spectra and cumulants of the observed process, it is possible to calculate the explicit form
of the asymptotic covariances in the asymptotic normality framework. This makes an im-
portant problem of constructing asymptotic confidence intervals for unknown parameters
operational and significantly increases applicability of this process in practice.
We shall use the following notations for characteristic functions and cumulant trans-

forms for a random variable (r.v.) X :

φX(ζ) = E
{
eiζX

}
, κX(ζ) = logE

{
eiζX

}
.

We shall use the notation X d= Y for equality of distributions of two random variables,
or Xt

d= Yt for equality of the finite-dimensional distributions of stochastic processes.

2. The reciprocal gamma distribution and Lévy processes

We present basic results from the theory of reciprocal or inverse gamma distribution.

2.1. Density and characteristic functions. If the r.v. γα,β has gamma distribution
with probability density function (pdf) of the form

g(x) =

{
αβ

Γ(β) x
β−1e−αx, x > 0,

0, x ≤ 0,
(1)

where α > 0 is scale parameter and β > 0 is shape parameter, then the r.v. rα,β = 1
γα,β

has reciprocal or inverse gamma distribution with pdf

rg(x) =

{
αβ

Γ(β) x
−β−1e−

α
x , x > 0,

0, x ≤ 0,
(2)

with the same parameters α and β. These distributions will be denoted by γα,β ∼
G(α, β), rα,β ∼ RG(α, β), respectively.
Important property of gamma and reciprocal gamma r.v. is their scaling property.

Note that γα,β
d= γ1,β

α and E{γα,β} = β
α , E{γ2α,β} = β(β+1)

α2 . Also, rα,β
d= α · r1,β . In this

case only moments less then β exist for RG(α, β) and if so:

E {rα,β} = α

β − 1
, β > 1; Var {rα,β} = α2

(β − 1)2(β − 2)
, β > 2.

Both pdf’s (1) and (2) have tails of Pareto type and they belong to the class of
the generalized inverse Gaussian distributions (GIG) (see, e.g., [10, Section 2.2.]). In
particular, when α = n/2, β = n/2 and n ≥ 1 is an integer, the gamma random variable
γn

2 , n
2

d= 1
nγ 1

2 , n
2

d= 1
nχ

2
n, where χ

2
n has chi-square distribution with n degrees of freedom.
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The expectation of reciprocal gamma r.v. exists when β > 1, the variance exists when
β > 2, the n-th moments exists when β > n and can be calculated using the formula:

E{rn
α,β} =

αn∏n
i=1(β − i)

= αnΓ(β − n)
Γ(β)

, β > n. (3)

According to Witkovsky [31], characteristic function of r.v. X ∼ RG(α, β) is

φRG(ζ) = E[eiζX ] =
2αβ · (−iζα−1)β/2 ·Kβ

[
2α(−iζα−1)1/2]

Γ(β)
, ζ ∈ R, (4)

where Kβ(·) denotes the modified Bessel function of the third kind (see, e.g., [1]).

2.2. Infinite divisibility and self-decomposability. It is known that the generalized
hyperbolic distributions (GHD) are infinite divisible (ID) and self-decomposable (SD)
(see, e.g., [10] and references therein). Thus, the reciprocal gamma distribution has to
be infinitely divisible and self-decomposable.
Recall (see [10]) that a r.v. X is SD if its characteristic function φ(ζ) has the property

that for every c ∈ (0, 1) there exists a characteristic function φc(ζ) such that

φ(ζ) = φ(cζ) · φc(ζ) (5)

for all ζ ∈ R. Property (5) means that for any c ∈ (0, 1) the exists a r.v. Xc such that
X

d= cX +Xc, where random variables X and Xc are independent.
All SD characteristic functions (i.e., SD r.v.) are ID. It means that for every n ≥ 1

there exists a characteristic function φn(ζ), such that φ(ζ) = [φn(ζ)]n, ζ ∈ R.
A stochastically continuous process {L(t), t ≥ 0}, L(0) = 0, with strictly stationary

and independent increments is called the (homogeneous) Lévy process. Usually we may
choose a version with cádlág paths or with paths (a.s.) from the Skorokhod space of
cádlág functions (see [11] or [26]). Then the law of L(t) is determined by the law of L(1)
which is ID. The independence and stationarity of the increments of the Lévy process
means that the cumulant transforms are

κL(t)(ζ) = t · κL(1)(ζ), t ≥ 0, ζ ∈ R. (6)

Familiar special classes of Lévy process are Brownian motion and the compound Pois-
son processes. All Lévy processes except for Brownian motion have jumps.
We say that X(t) has the scaling property if for each c ∈ (0, 1) there exists a nonran-

dom function M(c) such that

X(ct) d=M(c) ·X(t), t ≥ 0, (7)

For every infinitely divisible random variable T there exists a Lévy process such that
L(1) d= X . The following theorem is proved by Jurek [20].

Theorem 2.1. Let L(t) be a Lévy process with the strong Markov property. That is,
for any independent r.v. T ≥ 0 L(t + T ) − L(T ) and L(t) have the same probability
distributions. Assume the scaling property (7) holds. If T is SD and the (nonrandom)
scaling function M(c) is a homeomorphism of the unit interval, then L(T ) is SD.

From Theorem 2.1 we obtain the following result.

Theorem 2.2. The reciprocal gamma distribution RG(α, β) with probability density
function (2) and characteristic function (4) is self-decomposable (and infinitely divisi-
ble).
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3. Reciprocal gamma Ornstein–Uhlenbeck type processes

Based on the theory of non-Gaussian Ornstein–Uhlenbeck-based models (see [7], [10])
we can introduce the reciprocal gamma Ornstein–Uhlenbeck type processes.
The key result is known as the random integral representation (see [21, Theorem 3.9.3.]

and the bibliographic comments there and [10, formula (12)]).

Theorem 3.1. The random variable X has self-decomposable distribution if and only if
there exists a Lévy process Y (t) such that

E [log(1 + |Y (1)|] < +∞ and X
d=
∫ ∞

0

e−s dY (s). (8)

Then Y is unique in distribution. Moreover, if the cumulant transform κX(ζ) is differ-
entiable for ζ �= 0 and ζ · κX(ζ)→ 0 for 0 �= ζ → 0, then we have

κY (1)(ζ) = ζ · d
dζ
κX(ζ). (9)

Y (t) is referred to as the background driving Lévy process (BDLP) corresponding to X.

From (4), (9) and properties of Kβ(·) we obtain the following expression for the cu-
mulant transform of the BDLP Y (t) for the reciprocal gamma r.v. RG(α, β):

κY (1)(ζ) = logE exp {iζY (1)} = ζi√
−iζα−1 +

Kβ−1

(
2α

√
−iζ
α

)
Kβ

(
2α

√
−iζ
α

) ,

ζ ∈ R, ζ �= 0,

(10)

and κY (1)(0) = 0.
A stochastic process X(t) is said to be of OU type if it satisfies a stochastic differential

equation (SDE) of the form

dXt = −θXt dt+ dY (θt), (11)

where Y (t) is BDLP.
From Theorem 3.1 and [10, Theorem 1] using (10) we arrive to the following statement:

Theorem 3.2. There exists a strictly stationary stochastic process {Xt, t ∈ R} which has
marginal reciprocal gamma distribution RG(α, β) with density function (2) and BDLP
Y (t) with cumulant transform (10), such that:

(i) Xt satisfies the SDE

Xt = e−θtX0 + e−θt

∫ t

0

eθs dY (θs) =
∫ t

−∞
e−θ(t−s) dY (θs), θ > 0, t ∈ R, (12)

and
(ii) if β > 1 the expectation E {Xt} = α

β−1 and if β > 2 the autocorrelation function

ρ(τ) = Corr (Xt+τ , Xt) = e−θ|τ |, τ ∈ R, (13)

and the spectral density f(λ) of {Xt, t ∈ R} is of the form

f(λ) =
α2

π(β − 1)2(β − 2)
θ

(θ2 + λ2)
, λ ∈ R, β > 2, (14)

while the discretized version of the spectral density fd(λ), λ ∈ [−π, π), obtained through
the discretization Xd

t = Xth, t ∈ Z, h ∈ R, is of the form

f(λ) =
∑
k∈Z

α2

hπ(β − 1)2(β − 2)
θ(

θ2 + (λ+2kπ
h )2

) , λ ∈ [−π, π). (15)
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The stationary process {Xt, t ∈ R} is referred to as the reciprocal gamma OU (RGOU)
type process.

Remark 3.1. According to the general result [24, Theorem 4.3], RGOU type process is
strong or α-mixing with an exponentially decaying mixing coefficient. Furthermore, this
α-mixing property together with the stationarity of the process imply that the process is
ergodic. For properties of Lévy driven OU processes see also [28, Theorem 2.5].

Remark 3.2. The higher-order cumulant functions and spectral densities of the stochas-
tic process (12) can be obtained (see [2] for details). We present here the expressions for
the spectral densities. Under the assumption that E |Xt|p <∞ (that is, β > p in the case
of RGOU-type process Xt) the spectral density of order 2 ≤ m ≤ p can be represented as

fm(λ1, . . . , λm−1) =
θmkm,X

(2π)m−1
1

(θ + iλ1) · · · (θ + iλm−1)(θ − i(λ1 + . . .+ λm−1))
, (16)

where km,X is the m-th cumulant of the marginal reciprocal gamma distribution of Xt.

In the same manner the stationary autoregressive processes with marginal reciprocal
gamma distribution can be constructed based on the SD of the reciprocal gamma dis-
tribution. Let X0 = X be a r.v. with reciprocal gamma distribution and we define an
autoregressive sequence (Xn, n ≥ 1) of the first order by equality

Xn+1 = cXn + εn+1, n ≥ 1, 0 < c < 1, (17)

where {εn}∞n=0 are i.i.d.r.v. (a so called innovation process) and independent of {Xn}∞n=1.
If the expression (17) holds for all c ∈ (0, 1), then X0 is a SD r.v.
In other words, the self-decomposable reciprocal gamma distribution X0 ∼ RG(α, β)

can be realized as the marginal distribution of an autoregressive sequence. In fact,

ε1
d=
∫ − log c

0

e−s dY (s),

with the BDLP Y (t) of X0, and the cumulant transform of BDLP Y (t) is given by (10).
Thus, there exists a stationary (in strict sense) solution Xn of the autoregressive

equation (17) with the following properties: Xn ∼ RG(α, β) and

E{Xn} = α

β − 1
, Corr (Xn, Xn+τ ) = c|τ |, 0 < c < 1, τ = 0,±1, . . . , β > 2.

Remark 3.3. A stationary process with pdf (2) and the correlation function e−θ|τ |,
τ ∈ R, can be obtained as a unique Markovian weak solution of the following SDE:

dXt = −θ
(
Xt − α

β − 1

)
dt+

√
2θ

β − 1
X2

t dBt, t ≥ 0,

where {B(t), t ≥ 0} is a standard Brownian motion or Wiener process (see [17], [8]).

4. Parameter estimation

4.1. Minimum contrast estimation. The minimum contrast estimation theory pro-
vided in Appendix A is applicable to the RGOU process, if we suppose β > 4. Namely,
we can use the Whittle functional (38) to estimate parameters α, β, θ, or the Ibragimov
functional (20) to estimate the parameter θ and the variance of the reciprocal gamma
marginal distribution of the process Xt.
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4.1.1. Whittle contrast. Basing on the observations {Xt, t ∈ DT } we consider the Whittle
objective function

UT (α, β, θ) =
1
4π

∫
R1

(
log f (λ;α, β, θ) +

IT (λ)
f (λ;α, β, θ)

)
w(λ) dλ, (18)

where IT (λ) is the periodogram (39) and we can choose the weight function w(λ) = 1
1+λ2 .

Assuming that the true value δ0 of the parameter vector δ = (α, β, θ) belongs to a
compact set Δ ⊂ (0,∞)× (4,∞)× (0,∞), we construct the estimate

δ̂T =
(
α̂T , β̂T , θ̂T

)
= argmin

δ∈Δ
UT (α, β, θ) , (19)

and according to Theorem A.1 this estimate is consistent.
Furthermore, according to Theorem A.2 the estimate (19) is asymptotically normal:

T 1/2
(
δ̂T − δ0

) D→ N (
0,W−1

1 (δ0) (W2 (δ0) + V (δ0))W−1
1 (δ0)

)
, T →∞,

where the elements of the matrices W1 (δ) = W1(α, β, θ), W2 (δ) = W2(α, β, θ) and
V (δ) = V (α, β, θ) participating in the limiting normal law are of the following form:

w
(1)
11 (α, β, θ) =

1
α2
; w

(1)
22 (α, β, θ) =

c2

4
; w

(1)
33 (α, β, θ) =

θ2 + 1
4(θ + 1)2

;

w
(1)
12 (α, β, θ) = w

(1)
21 (α, β, θ) =

c

2α
; w

(1)
13 (α, β, θ) = w

(1)
31 (α, β, θ) =

1− θ
2α(1 + θ)

;

w
(1)
23 (α, β, θ) = w

(1)
32 (α, β, θ) =

c(1− θ)
4(1 + θ)

;

w
(2)
11 (α, β, θ) =

1
2α2

; w
(2)
22 (α, β, θ) =

c2

8
; w

(2)
12 (α, β, θ) = w

(2)
21 (α, β, θ) =

c

4α
;

w
(2)
33 (α, β, θ) =

θ6 − 7θ4 + 12θ3 − 9θ2 + 4θ − 1
8(θ2 − 1)3

;

w
(2)
13 (α, β, θ) = w

(2)
31 (α, β, θ) =

θ6 − 7θ4 + 12θ3 − 9θ2 + 4θ − 1
4α(θ2 − 1)3

;

w
(2)
23 (α, β, θ) = w

(2)
32 (α, β, θ) = c · θ

6 − 7θ4 + 12θ3 − 9θ2 + 4θ − 1
8(θ2 − 1)3

;

v11(α, β, θ) = v
4π2

α2
; v22(α, β, θ) = vπ2c2;

v33(α, β, θ) = v
π2(1 − θ)2
(1 + θ)2

; v12(α, β, θ) = v21(α, β, θ) = v
πc

4α
;

v13(α, β, θ) = v31(α, β, θ) = v
π(1− θ)
4α(1 + θ)

; v23(α, β, θ) = v32(α, β, θ) = v
πc(1− θ)
8(1 + θ)

.

In the above formulas we have denoted

c =
5− 3β

(β − 1)(β − 2)
, v =

k4,X
θ(k2,X)2

.

4.1.2. Ibragimov contrast. To apply the Ibragimov objective function we calculate first

σ2(α, β, θ) :=
∫

R1
f(λ;α, β, θ)w(λ) dλ =

1
π

α2θ

(β − 1)2(β − 2)

∫
R1

1
θ2 + λ2

1
1 + λ2

dλ

=
α2

(β − 1)2(β − 2)(1 + θ)
,

and define

ψ(λ, θ) =
f(λ;α, β, θ)
σ2(α, β, θ)

=
θ(1 + θ)
π(θ2 + λ2)

,
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so that we have

f(λ;α, β, θ) = σ2(α, β, θ)ψ(λ, θ).

Basing on the observations {Xt, t ∈ DT } we consider the objective function

UT (θ) = −
∫

R

IT (λ)w(λ) log ψ(λ; θ) dλ, θ ∈ Θ. (20)

where IT (λ) is the periodogram (39) and the weight function w(λ) = 1
1+λ2 . (Note that

in this case we have that the objective function depends on the parameter θ only.)
Assuming that the true value θ0 of the parameter θ belongs to a compact set Θ ⊂

(0,∞), we construct the estimate

θ̂T = argmin
θ∈Θ

UT (θ) , (21)

and according to Theorem A.3 this estimator is a consistent estimator of the parameter
θ, as well as the estimator

σ̂2T =
∫

R1
IT (λ)w(λ) dλ

is a consistent estimator of the parameter σ2 (α, β, θ).
Note that σ2(α, β, θ) = Var(rα,β) · 1

1+θ , therefore, having the estimators θ̂T and σ̂2T
we can also obtain the estimator for the variance of the underlying reciprocal gamma
marginal distribution as v̂T = (1+ θ̂T )σ̂2T , and, as a result, we can obtain the expressions
(estimated) for the spectral density and covariance function of our process Xt, as for
these we need only to know θ and V ar(rα,β) (see, Theorem 3.2 (ii)).
Furthermore, according to Theorem A.2 the estimate (19) is asymptotically normal:

T 1/2
(
θ̂T − θ0

) D→ N (
0, a0s−20

)
, T →∞,

where a0 = a(α0, β0, θ0) and s0 = s(α0, β0, θ0) are given by the following formulas:

s (α, β, θ) = σ2 (α, β, θ)
∫

R

w(λ)

[
∂2

∂θ2
ψ (λ, θ)− 1

ψ (λ, θ)

(
∂

∂θ
ψ (λ, θ)

)2]
dλ,

a (α, β, θ) = 2π
(
σ2 (α, β, θ)

)2 [
2
∫

R

w2(λ)
(
∂

∂θ
ψ(λ; θ)

)2
dλ

+
k4,X

θ(k2,X)2

{∫
R

w (λ)
∂

∂θ
ψ (λ; θ) dλ

}2
]

and can be calculated in the closed form.
Here we have the situation where the spectral density is of the form

f(λ;α, β, θ) = h(α, β) θ g(λ; θ) (22)

and applying estimation procedure based on the Ibragimov contrast function we are able
to estimate the parameter θ only. The approach exists (see, [5]) to deal with such a type
of spectral densities, for which some parameters appear only in a multiplicative term
(as h(α, β) above), and the spectral densities of orders > 2 again have these parameters
involved only in multiplicative terms. Within this approach it is assumed that taking
into consideration the spectral densities of the 2-d and 3-d orders (in which parameters
of interest (α, β) appears in multiplicative term l(α, β), say), one can obtain first the
estimators for h(α, β) and l(α, β) and then from these estimators derive the estimators
for α and β. However in the case under consideration the functional expressions h(α, β)
and l(α, β) are not quite suitable to proceed with this method.
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4.1.3. Minimum contrast estimation procedure under discretization. In practical situa-
tions observations are often made at discrete intervals of time, even for continuous time
processes. Also, it is easier to make all necessary calculations basing on computationally
simpler discrete periodogram and corresponding contrast functionals.
Consider the discrete time process

Xd
t = Xt, t ∈ Z.

The corresponding spectral density can be defined as follows (see Theorem 3.2):

f̃(λ;α, β, θ) =
∞∑

k=−∞
f(λ+ 2kπ;α, β, θ) =

α2

π(β − 1)2(β − 2)

∞∑
k=−∞

θ

θ2 + (λ+ 2kπ)2
,

λ ∈ [−π, π). Define the discrete version of the Whittle functional

UN (α, β, θ) =
1
2N

N−1∑
k=1

(
log f̃ (λk;α, β, θ) +

IT (λk)
f̃ (λk;α, β, θ)

)
, (23)

where

N = [T ], λk =
2πk
N

, IN (λ) =
1

2πN

∣∣∣∣∣
N−1∑
t=1

Xte
−itλ

∣∣∣∣∣
2

, λ ∈ [−π, π).

Note that in practice we can use as an approximation for f̃(λ) the function

f̃M (λ) =
M∑

k=−M

f(λ+ 2kπ;α, β, θ), λ ∈ [−π, π)

for large enough M . As M → ∞, f̃M (λ) converges uniformly to f̃(λ) = f̃(λ;α, β, θ) for
λ �= 0, (α, β, θ) ∈ Δ.
The Whittle contrast estimator can be defined as

δ̂N =
(
α̂N , β̂N , θ̂N

)
= argmin

δ∈Δ
UN (α, β, θ) (24)

with UN (α, β, θ) given by (23). The estimate δ̂N can be used instead of δ̂T given by
(19). It can be shown that δ̂N is consistent and asymptotically normal, namely

N1/2
(
δ̂N − δ0

) D→ N
(
0, W̃−1 (δ0) (W̃ (δ0) + Ṽ (δ0))W̃−1 (δ0)

)
, N →∞,

where the matrices W̃ (δ) and Ṽ (δ) are of the following form

W̃ (δ) =
1
4π

∫ π

−π

(
∂

∂δ
log f̃(λ; δ)

)(
∂

∂δ
log f̃(λ; δ)

)t

dλ

and

Ṽ (δ) =
1
8π

∫ π

−π

∫ π

−π

f̃4(λ1,−λ1, λ2, ; δ)
f̃(λ1; δ)f̃(λ2; δ)

(
∂

∂δ
log f̃(λ; δ)

)(
∂

∂δ
log f̃(λ; δ)

)t

dλ1 dλ2.

The estimator δ̂N can be obtained in practice as the solution of

U ′N
(
δ̂N

)
= 0,

where

U ′N (δ) = U ′N (α, β, θ) =
(
∂

∂α
UN (α, β, θ) ,

∂

∂β
UN (α, β, θ) ,

∂

∂θ
UN (α, β, θ)

)
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and

∂

∂α
UN (α, β, θ) =

1
2N

N−1∑
k=1

(
1− IT (λk)

f̃ (λk;α, β, θ)

)
1

f̃ (λk;α, β, θ)
∂f̃ (λk;α, β, θ)

∂α
,

∂

∂β
UN (α, β, θ) =

1
2N

N−1∑
k=1

(
1− IT (λk)

f̃ (λk;α, β, θ)

)
1

f̃ (λk;α, β, θ)
∂f̃ (λk;α, β, θ)

∂β
,

∂

∂θ
UN (α, β, θ) =

1
2N

N−1∑
k=1

(
1− IT (λk)

f̃ (λk;α, β, θ)

)
1

f̃ (λk;α, β, θ)
∂f̃ (λk;α, β, θ)

∂θ
.

(25)

We write down the derivatives used for calculation of the elements of the matrices W̃ (δ)
and Ṽ (δ) and the expressions (25):

∂f̃ (λ;α, β, θ)
∂α

=
2
α
f̃ (λ;α, β, θ) ,

∂f̃ (λ;α, β, θ)
∂β

=
5− 3β

(β − 1)(β − 2)
f̃ (λ;α, β, θ) ,

∂f̃ (λ;α, β, θ)
∂θ

=
∞∑

k=−∞

α2

π(β − 1)2(β − 2)
· θ

θ2 + (λ + 2kπ)2
· (λ + 2kπ)2 − θ2
θ (θ2 + (λ+ 2kπ)2)

=
∞∑

k=−∞
f(λ+ 2kπ;α, β, θ)

(λ + 2kπ)2 − θ2
θ (θ2 + (λ+ 2kπ)2)

.

Analogously the discrete version of the Ibragimov contrast can be considered.

4.2. Method of moments estimation.

4.2.1. Estimation of parameter θ. Parameter θ > 0 is estimated under the assumption
that parameters α and β of the RGOU process are known. Existence of the first two
moments of the marginal reciprocal gamma distribution is ensured by assuming β > 2.
Let us consider the sampleX1, . . . , XT from the stationary RGOU process and the cor-

responding sample of paired observations (X1, Xt+1), (X2, Xt+2), . . . , (XT−t, XT ), where
t < T . The consistent estimator of the autocorrelation function (13) is given by the
Pearson’s sample correlation coefficient

ρ̂T (t) =
1

T−t

∑T−t
i=1 XiXt+i − 1

T−t

∑T−t
i=1 Xi · 1

T−t

∑T−t
i=1 Xt+i√

1
T−t

∑T−t
i=1 X

2
i −

(
1

T−t

∑T−t
i=1 Xi

)2√
1

T−t

∑T−t
i=1 X

2
t+i −

(
1

T−t

∑T−t
i=1 Xt+i

)2 .
(26)

From the expression (13) we see that the autocorrelation function ρ(t) of the RGOU
process takes only positive values. However, according to [15, Theorem 2.1.] the sum of
the sample autocorrelation function at lag t ≥ 1 is always −1/2 for any stationary time
series with arbitrary length T ≥ 2, i.e.

Sacf =
T−1∑
t=1

ρ̂T (t) = −12 .

Therefore, instead of the Pearson’s sample correlation coefficient (26) we observe here its
absolute value |ρ̂T (t)|. Since |ρ̂T (t)| is the continuous transformation of the consistent
estimator (26), according to the continuity mapping theorem it is the consistent estimator
of the autocorrelation function (13) for any fixed t > 0, i.e.

|ρ̂T (t)| P→ ρ(t), T →∞, for any fixed t > 0. (27)

Therefore, here we observe the equation |ρ̂T (t)| = ρ(t), where ρ(t) = e−θt. Solving this
estimation equation in terms of the unknown parameter θ results in the estimator θ̂ of
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the autocorrelation parameter θ, i.e.

θ̂ = −1
t
log |ρ̂T (t)|. (28)

The continuity of the logarithmic function and the relation (27) imply that θ̂ is the
consistent estimator of the autocorrelation parameter θ, i.e. θ̂ P→ θ, T →∞.

4.2.2. Estimation of the parameters α and β. In this section we present method of mo-
ments estimators of parameters α and β of marginal distribution of stationary RGOU
process and analyze their asymptotic properties. We will suppose that the parameter θ
is known. Existence of the second moment of the marginal distribution and assumptions
of the central limit theorem for α-mixing processes is ensured by assuming β > 4.
Equating first two theoretical moments, E[Xt] and E[X2

t ], with corresponding empirical
counterparts

m1 =
1
n

n∑
t=1

Xt, m2 =
1
n

n∑
t=1

X2
t . (29)

and solving the resulting system of equations in terms of unknown parameters α and β
results in method of moments estimators of parameters α and β:

α̂ =
m1 ·m2

m2 −m2
1

= g1(m1,m2), β̂ = 1 +
m2

m2 −m2
1

= g2(m1,m2). (30)

From expressions (30) we see that estimators α̂ and β̂ are continuous transformations
of the empirical counterparts of the first and the second moment given by (29). In
particular, α̂ = g1(m1,m2) and β̂ = g2(m1,m2). Therefore, asymptotic properties of the
estimator (α̂, β̂) are implied by asymptotic properties of the estimator (m1,m2):

• RGOU process is strictly stationary and, according to [24, Theorem 4.3], α-
mixing with exponential decaying rate. These two properties imply ergodicity of
the RGOU process. Therefore, according to the ergodic theorem for stationary
sequences (see [22]), (m1,m2) is the consistent estimator of the

(
E[Xt],E[X2

t ]
)

• According to the functional central limit theorem for α-mixing sequences (see
[14]; for multidimensional version [13]), (m1,m2) is asymptotically normal, i.e.

Σ−1/2
√
n (m1 − E[m1],m2 − E[m2])

d→ N (0, I), (31)

where E[m1] = E[Xt] = α
β−1 , E[m2] = E[X2

t ] =
α2

(β−1)(β−2) .

Moreover, asymptotic covariance matrixΣ is explicitly calculated by using the cumulants
c2(s, t), c3(s, t, u) and c4(s, t, u, v) of the RGOU process defined in terms of the higher
order spectral densities. In particular, due to the stationarity of the process, expectations

E[Xs+tXs], E[Xs+tX
2
s ] and E[X2

s+tX
2
s ] (32)

needed for calculation of the asymptotic covariance matrix Σ are given by

E [XsXt] = c2(t− s, 0) + μ2,

E
[
X2

sXt

]
= c3(t− s, t− s, 0) + 2μc2(t− s, 0)− μE[X2

t ],

E
[
X2

sX
2
t

]
= c4(t− s, t− s, 0, 0) + 2μ

(
E[XsX

2
t ] + E[X2

sXt]
)− 8μ2 E[XsXt]

+ 2 (E[XsXt])
2 + 6μ4 − 4μ2 E[X2

t ] +
(
E[X2

t ]
)2
,
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where μ = E[Xt] = α/(β − 1) and for t > s

c2(t− s, 0) =
∫ π

−π

ei(t−s)λf2(λ) dλ,

c3(t− s, t− s, 0) =
∫ π

−π

∫ π

−π

ei(t−s)(λ1+λ2)f3(λ1, λ2) dλ1 dλ2,

c4(t− s, t− s, 0, 0) =
∫ π

−π

∫ π

−π

∫ π

−π

ei(t−s)(λ1+λ2)f4(λ1, λ2, λ3) dλ1 dλ2 dλ3.

Therefore

E [XsXt] =
∫ π

−π

cos (λ(t− s))f2(λ) dλ+ α2

(β − 1)2
,

E
[
X2

sXt

]
=
∫ π

−π

∫ π

−π

ei(t−s)(λ1+λ2)f3(λ1, λ2) dλ1 dλ2 +
2α
β − 1

∫ π

−π

cos (λ(t− s))f2(λ) dλ

− α3

(β − 1)2(β − 2)
= E

[
XsX

2
t

]
,

E
[
X2

sX
2
t

]
=

∫ π

−π

∫ π

−π

∫ π

−π

ei(t−s)(λ1+λ2)f4(λ1, λ2, λ3) dλ1 dλ2 dλ3

+
2α
β − 1

∫ π

−π

∫ π

−π

(
ei(t−s)(λ1+λ2) + ei(s−t)(λ1+λ2)

)
f3(λ1, λ2) dλ1 dλ2

+
4α2

(β − 1)2

∫ π

−π

ei(s−t)λf2(λ) dλ + 2
(∫ π

−π

ei(s−t)λf2(λ) dλ
)2

+
α4

(β − 1)2(β − 2)2
.

Now we calculate the following covariances:

Cov
(√
nm1,

√
nm1

)
= 2π

∫ π

−π

Φn(λ)f2(λ) dλ,

Cov
(√
nm1,

√
nm2

)
= (2π)2

∫ π

−π

∫ π

−π

Ψ(2)
n (λ1, λ2)f3(λ1, λ2) dλ1 dλ2

+
4απ
β − 1

∫ π

−π

Φn(λ)f2(λ) dλ,

Cov
(√
nm2,

√
nm2

)
= (2π)3

∫ π

−π

∫ π

−π

∫ π

−π

Ψ(3)
n (λ1, λ2, λ3)f4(λ1, λ2, λ3) dλ1 dλ2 dλ3

+
16απ2

β − 1

∫ π

−π

∫ π

−π

Ψ(2)
n (λ1, λ2)f3(λ1, λ2) dλ1 dλ2

+
8α2π

(β − 1)2

∫ π

−π

Φn(λ)f2(λ) dλ

+ 8π2
∫ π

−π

∫ π

−π

Ψ(2)
n (λ1, λ2)f2(λ1)f2(λ2) dλ1 dλ2,

where

Φn(λ) =
1
2πn

sin2
(

λn
2

)
sin2

(
λ
2

)
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is the one-dimensional Féjer kernel and

Ψ(2)
n (λ1, λ2) =

1
(2π)2n

sin2
(
(λ1+λ2)n

2

)
sin2

(
λ1+λ2
2

) , Ψ(3)
n (λ1, λ2, λ3) =

1
(2π)3n

sin2
(
(λ1+λ2)n

2

)
sin2

(
λ1+λ2
2

)
are two-dimensional and three-dimensional kernels (but not Féjer kernels), respectively.
Finally, according to [4, Proposition 1] it follows that as n tends to infinity

Cov
(√
nm1,

√
nm1

)→ α2

(β − 1)2(β − 2)
f2(0),

Cov
(√
nm1,

√
nm2

)→ 4π2f3(0, 0) +
2α3

(β − 1)3(β − 2)
f2(0),

Cov
(√
nm2,

√
nm2

)→ 8π3f4(0, 0, 0) +
16απ2

β − 1
f3(0, 0) +

4α4

(β − 1)4(β − 2)
f2(0)

+
2α4

(β − 1)4(β − 2)2
f22 (0).

Therefore the elements of the asymptotic covariance matrix Σ are given by expressions

σ211 =
α2 ctgh (hθ/2)
(β − 1)2(β − 2)

, σ212 = 4π2f3(0, 0) +
2α3 ctgh (hθ/2)
(β − 1)3(β − 2)

= σ221,

σ222 = 8π3f4(0, 0, 0) +
16απ2

β − 1
f3(0, 0) +

4α4 ctgh (hθ/2)
(β − 1)4(β − 2)

+
2α4 ctgh (hθ/2)
(β − 1)4(β − 2)2

,

where f3(0, 0) and f4(0, 0, 0) can be calculated from the expression (16).
Since α > 0, β > 4 and since θ > 0 is known, the matrix Σ is positive definite and

therefore it is a well defined covariance matrix. This concludes the analysis of asymptotic
properties of the estimator (m1,m2). Asymptotic properties of the estimator (α̂, β̂) are
given in the following theorem.

Theorem 4.1. Let {Xt, t ≥ 0} be the RGOU process with the unknown parameter (α, β),
where α > 0 and β > 4.

(i) (α̂, β̂) P→ (α, β), i.e. (α̂, β̂) is the consistent estimator of the unknown parameter
(α, β).

(ii)
√
n [Σ(α, β, θ)]−1/2 (α̂− α, β̂ − β) d→ N (0, I), where Σ(α, β, θ) is the asymptotic

covariance matrix.

(iii)
√
n
[
Σ(α̂, β̂, θ)

]−1/2
(α̂− α, β̂ − β) d→ N (0, I), where θ is the known value of the

autocorrelation parameter.

(iv)
√
n
[
Σ(α̂, β̂, θ̂)

]−1/2
(α̂−α, β̂−β) d→ N (0, I), where θ̂ is the consistent estimator

(28) of the autocorrelation parameter θ.

Proof. Part(i). Estimators m1 and m2 given by (29) are consistent estimators of the
first and the second moment, respectively. Since estimators α̂ and β̂ are their contin-
uous transformations, i.e. (α̂, β̂) = (g1(m1,m2), g2(m1,m2)), according to the continu-
ity mapping theorem it follows that α̂ = g1(m1,m2)

P→ g1 (E[m1,m2]) = α, and β̂ =
g2(m1,m2)

P→ g2 (E[m1,m2]) = β, as n→∞. From here it follows that (α̂, β̂) P→ (α, β),
n→∞, i.e. (α̂, β̂) is the consistent estimator of the unknown parameter (α, β).
Part (ii). Since α̂ and β̂ are the continuous transformations of m1 and m2, according

to the multivariate delta method (see Serfling [27], Theorem 3.3.A.), the estimator (α̂, β̂)
is asymptotically normal, i.e.

√
n
(
α̂− α, β̂ − β) d→ N (0, DΣDτ ) , (33)
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where α = g1 (E[m1,m2]), β = g2 (E[m1,m2]) and (2× 2) matrix

D =

[
(β − 1)(2β − 3) − (β−1)(β−2)2

α
2(β−1)2(β−2)

α − (β−1)2(β−2)2
α2

]
.

Explicit forms of the elements σ2ij(α, β, θ) of the covariance matrix DΣDτ = Σ(α, β, θ)
are omitted in this proof due to their complicated form.
Part(iii). Part (ii) of this theorem and the positive definiteness of the covariance

matrix Σ(α, β, θ) imply that

[Σ(α, β, θ)]−1/2
√
n
(
α̂− α, β̂ − β) d→ N (0, I), (34)

where I is the (2 × 2) identity matrix. Since (α̂, β̂) is the consistent estimator of the
parameter (α, β), it follows that[

Σ
(
α̂, β̂, θ

)]−1/2[Σ(α, β, θ)]1/2 P→ I. (35)

If we multiply
[
Σ
(
α, β, θ

)]−1/2√
n(α̂− α, β̂ − β) from the left by the matrix[

Σ
(
α̂, β̂, θ

)]−1/2 [Σ(α, β, θ)]1/2,
then (34), (35) and the Slutsky Lemma (see Serfling [27], Theorem 1.5.4.1.) imply that[

Σ
(
α̂, β̂, θ

)]−1/2 [Σ(α, β, θ)]1/2[Σ(α, β, θ)]−1/2√n(α̂− α, β̂ − β) d→ N (0, I).
Since [Σ(α, β, θ)]1/2 [Σ(α, β, θ)]−1/2 = I, it follows that[

Σ
(
α̂, β̂, θ

)]−1/2√
n
(
α̂− α, β̂ − β) d→ N (0, I).

Part (iv). Since θ̂ given by (28) is the consistent estimator of the unknown autocor-
relation parameter θ, the proof follows by the same argument as the proof of (iii). �

Appendix A. Minimum contrast estimation of linear processes

We present here some parameter estimation theory for stationary linear processes

Xt =
∫

u∈R

â(t− u) ξ(du), t ∈ R
d, (36)

where ξ(A) is a set indexed Lévy process with finite second moments and stationary
intensity proportional to the Lebesgue measure. For conditions which ensure that (36)
is well-defined, see, e.g. [2, 6] and references therein. With the choice of an appropriate
“Green function” â(t), this very general class includes the solutions of many interesting
differential equations with random noise ξ(du), e.g., generalized OU processes in R [2].
Under the assumption that E |Xt|p < ∞, the spectral density of order 2 ≤ k ≤ p of

the process (36) can be written down in the closed form as

fk(λ1, . . . , λk−1) = dka

(
−

k−1∑
i=1

λi

) k−1∏
i=1

a(λi) = dk

k∏
i=1

a(λi)δ
( k∑

j=1

λj

)
(37)

(if this complex-valued function belongs to L1(Rk−1)), where λi ∈ R, 1 ≤ i ≤ k − 1, dk

is the k’th cumulant of ξ([0, 1]). We will denote f(λ) = f2(λ) = d2a(λ)a(−λ).
A.1. Minimum contrast estimation based on the Whittle contrast function.
The class of Whittle estimators is the most popular in applications (see, e.g. [16], [23]
and references therein). We begin with the following assumption.
A.I. Let Xt, t ∈ DT =

[−T
2 ,

T
2

]
, be observations of a real-valued measurable zero

mean stationary linear process Xt, t ∈ R
1, with the spectral density f (λ, θ), λ ∈ R

1,
θ ∈ Θ ⊂ R

m, Θ is a compact, the true value of the parameter θ0 ∈ intΘ, the interior of Θ.
Suppose that f (λ; θ1) �≡ f (λ; θ2) for θ1 �= θ2, a.e. in R

1 w.r.t. the Lebesgue measure.
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Consider the Whittle contrast process (or objective function)

UT (θ) =
1
4π

∫
R1

(
log f(λ; θ) +

IT (λ)
f (λ; θ)

)
w(λ) dλ, (38)

where IT (λ) is the periodogram of the second order

IT (λ) =
1

2πT

∣∣∣∣∫
DT

Xte
−itλ dt

∣∣∣∣2 , λ ∈ R
1, (39)

w(λ) is an even function such that all considered integrals are well defined and which
will satisfy some conditions given below; in some cases we can choose w(λ) = (1+λ2)−1.
To state the result on consistency of the minimum contrast estimator based on the

contrast process (38) we will need the following conditions.
A.II. f (λ; θ0)w(λ) 1

f(λ;θ) ∈ L1
(
R
1
) ∩ L2 (R1

)
, for all θ ∈ Θ.

A.III. There exists a function v(λ), λ ∈ R
1, such that the function h(λ; θ) = v(λ) 1

f(λ;θ)

is uniformly continuous in R
1 ×Θ and f (λ; θ0)

w(λ)
v(λ) ∈ L1

(
R
1
) ∩ L2 (R1

)
.

Theorem A.1. Let the assumptions A.I to A.III be satisfied. Then the minimum con-
trast estimator θ̂T defined as

θ̂T = argmin
θ∈Θ

UT (θ) (40)

is a consistent estimator of the parameter θ, that is, θ̂T → θ0 in P0-probability as T →∞.

For asymptotic normality of the estimator (40) we need, in addition:
A.IV. The function 1

f(λ;θ) is twice differentiable in a neighborhood of the point θ0 and

(i) f (λ; θ0)w(λ) ∂2

∂θi∂θj

1
f(λ;θ) ∈ L1

(
R
1
) ∩ L2 (R1

)
, i, j = 1, . . . ,m, θ ∈ Θ;

(ii) the limiting normal law holds for T 1/2(JT (φi)− EJT (φi)), where

JT (φ) =
∫

R1
IT (λ)φ(λ) dλ

and φi(λ) = w (λ) ∂
∂θi

1
f(λ;θ) ;

(iii) T 1/2
∫

R1(E IT (λ)−f (λ; θ0))w(λ) ∂
∂θi

1
f(λ;θ)dλ→ 0 as T →∞, i = 1, . . . ,m, θ ∈ Θ;

(iv) the second order derivatives ∂2

∂θi∂θj

1
f(λ;θ) , i = 1, . . . ,m, are continuous in θ.

A.V. The matrices W1(θ) =
(
w
(1)
ij (θ)

)
i,j=1,...,m

, W2(θ) =
(
w
(2)
ij (θ)

)
i,j=1,...,m

, V (θ) =
(vij(θ))i,j=1,...,m are positive definite, where

w
(1)
ij (θ) =

1
4π

∫
R1
w(λ)

∂

∂θi
log f(λ; θ)

∂

∂θj
log f(λ; θ) dλ,

w
(2)
ij (θ) =

1
4π

∫
R1
w2(λ)

∂

∂θi
log f(λ; θ)

∂

∂θj
log f(λ; θ) dλ.

vij(θ) =
1
8π

d4
d22

∫
R1
w(λ)

∂

∂θi
log f(λ; θ)dλ

∫
R1
w (λ)

∂

∂θj
log f (λ; θ) dλ.

Theorem A.2. Let the assumptions A.I to A.V be satisfied. Then as T →∞

T 1/2
(
θ̂T − θ0

) D→ Nm

(
0,W−1

1 (θ0) (W2 (θ0) + V (θ0))W−1
1 (θ0)

)
,

where Nm(·, ·) denotes the m-dimensional Gaussian law.
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A.2. Minimum contrast estimation based on the Ibragimov contrast function.
Consider the minimum contrast functional motivated by the paper [18], see also [3, 5].
We assume condition A.I and introduce the following condition

B. I. There exists a nonnegative even function w(λ), λ ∈ R, such that w(λ)f(λ; θ) is in
L1 (R) for ∀θ ∈ Θ.
Under the condition B.I, we set σ2(θ) =

∫
R
f(λ; θ)w(λ) dλ and consider the factor-

ization of the spectral density f(λ; θ) = σ2(θ)ψ(λ; θ), λ ∈ R, θ ∈ Θ. For the function
ψ(λ, θ), λ ∈ R, θ ∈ Θ, we have ∫

R
ψ(λ; θ)w(λ) dλ = 1 and we additionally suppose

B. II. The derivatives ∇θψ (λ; θ) exist and

∇θ

∫
R

ψ(λ; θ)w(λ) dλ =
∫

R

∇θψ(λ; θ)w(λ) dλ = 0,

that is we can differentiate under the integral sign in the above integral.
Consider the following contrast process (or objective function):

UT (θ) = −
∫

R

IT (λ)w(λ) log ψ(λ; θ) dλ, θ ∈ Θ. (41)

B. III. f (λ; θ0)w (λ) logψ(λ; θ) ∈ L1
(
R
1
) ∩ L2 (R1

)
, ∀θ ∈ Θ.

B. IV. There exists a function v(λ), λ ∈ R
1, such that h(λ; θ) := v(λ) logψ(λ; θ) is

uniformly continuous in R
1 ×Θ; f (λ; θ0)

w(λ)
v(λ) ∈ L1

(
R
1
) ∩ L2 (R1

)
.

Theorem A.3. Let conditions AI, B.I - B.IV be satisfied. Then the minimum contrast
estimator θ̂T defined as

θ̂T = argmin
θ∈Θ

UT (θ) , (42)

is a consistent estimator of the parameter θ, that is, θ̂T → θ0 in P0-probability as T →∞,
and the estimator σ̂2T =

∫
Rn IT (λ)w(λ)dλ is a consistent estimator of the parameter σ2(θ),

that is, σ̂2T → σ2 (θ0) in P0-probability as T →∞.

For asymptotic normality of the estimator (42) further conditions are needed.
B. V. The function ψ(λ; θ) is twice differentiable in a neighborhood of the point θ0 and
(i) f(λ; θ)w(λ) ∂2

∂θi∂θj
logψ (λ, θ) ∈ L1 (R) ∩ L2 (R), i, j = 1, . . . ,m, θ ∈ Θ;

(ii) the limiting normal law holds for T 1/2(JT (φi)− E JT (φi)),
where JT (φ) =

∫
R1 IT (λ)φ(λ) dλ and φi(λ) = w (λ) ∂

∂θi
logψ (λ, θ);

(iii) T 1/2
∫

R1(EIT (λ) − f (λ; θ0))w (λ) ∂
∂θi

logψ (λ; θ) dλ → 0 as T → ∞, for all i =
1, . . . ,m, θ ∈ Θ;
(iv) the second order derivatives ∂2

∂θi∂θj
logψ(λ; θ), i = 1, . . . ,m, are continuous in θ.

B. VI. The matrices S(θ) = (sij(θ))i,j=1,...,m and A(θ) = (aij(θ))i,j=1,...,m are positive
definite, where

sij(θ) = σ2(θ)
∫

R

w(λ)
[

∂2

∂θi∂θj
ψ (λ, θ)− 1

ψ (λ, θ)
∂

∂θi
ψ (λ, θ)

∂

∂θj
ψ (λ, θ)

]
dλ,

aij(θ) = 4π
(
σ2(θ)

)2 ∫
R

w2(λ)
∂

∂θi
ψ(λ; θ)

∂

∂θj
ψ(λ; θ) dλ

+ 2π
d4
d22

(
σ2 (θ)

)2 ∫
R

w(λ)
∂

∂θi
ψ(λ; θ) dλ

∫
R

w(λ)
∂

∂θj
ψ(λ; θ) dλ.

Theorem A.4. Let the conditions AI, B.I–B.VI be satisfied. Then as T →∞
T 1/2

(
θ̂T − θ0

) D→ Nm

(
0, S−1 (θ0)A (θ0)S−1 (θ0)

)
,

where Nm(·, ·) denotes the m-dimensional Gaussian law.
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A.3. Conditions on asymptotic normality of the estimates: more details. The
results on consistency of estimators (Theorems A.1 and A.3) are consequences of corre-
sponding theorems stated for the general case in [23] for the Whittle functional and in [3]
for the case of Ibragimov functional.
The set of conditions for asymptotic normality formulated in the previous two sections

are also based on the results of the mentioned above papers (with corresponding simpli-
fications for the case of linear processes). However, one of the conditions (see, A.IV(ii)
in the case of Whittle functional and B.V(ii) for the case of Ibragimov functional) we
presented here in a more general form, exactly what is needed in the corresponding chain
of (rather standard) arguments in the proof.
Note that conditions for the asymptotic normal law for spectral functionals of the

second order
∫

R IT (λ)φ(λ) dλ, where IT is the periodogram (39), have been investigated
by many authors, in particular, in the context of of quasi-likelihood estimation.
For the processes all of whose moments exist one can apply the methods of moments

or cumulants to prove the convergence to the normal law.
Another approach is to reduce the problem of convergence of the spectral functionals∫

R
IT (λ)φ(λ) dλ to the convergence of the empirical covariance function (and its inte-

grals), which, in its own turn can be reduced to the problem of validity of a central limit
theorem for the process Yu = Xt+uXt, and at this point one can apply the results on
the central limit theorem for stationary processes. Thus, assuming the process to be
weakly dependent (spectral density to be square integrable) we can demand instead of
the assumptions A.IV(ii) and B.V(ii) the asymptotic normality of empirical covariance
function and its weighted integrals, and we note that sufficient conditions for this can
be given, for example, for strongly mixing processes via conditions on mixing coefficients
(demanding, e.g., the exponential decay for the Rosenblatt mixing coefficient α).
As a result, conditions guaranteeing A.IV(ii) and B.V(ii) can be formulated as follows.

(1) In the case when all moments of the process Xt exist we demand (see, e.g., [6])
f (λ; θ0) ∈ Lp

(
R
1
)
, φ ∈ Lq

(
R
1
)
, for some p, q such that 1

p +
1
q =

1
2 , i = 1, . . . ,m,

θ ∈ Θ, where φ = w(λ) ∂
∂θi

1
f(λ;θ) for the case of Whittle functional (A.IV(ii) con-

dition) and φ = w(λ) ∂
∂θi

logψ (λ, θ) for the case of Ibragimov functional (B.V(ii)
condition).

(2) In the case when q moments of the process Xt exist, for some q ≥ 4, and the
process is strongly mixing, we can demand

∫
α
1/2
X (t) dt <∞.

Next important conditions for the asymptotic normality of our estimates are A.IV(iii)
and B.V(iii), more details on these can be found, e.g., in [3, 5].
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Lévy-driven Ornstein–Uhlenbeck processes, Bernoulli 11 (2005), 759–791.
20. Z. J. Jurek, Remarks on the self-decomposability and new examples, Demonstr. Mathematica

34 (2001), no. 2, 241–250.
21. Z. J. Jurek and J. D. Mason, Operator-Limit Distributions in Probability Theory, John Wiley

and Sons, New York, 1993.
22. S. Karlin and H. M. Taylor, A First Course in Stochastic Processes, Academic Press, New

York, 1981.
23. N. N. Leonenko and L. M. Sakhno, On the Whittle estimators for some classes of continuous

parameter random processes and fields, Stat. Probability Letters 76 (2006), 781–795.
24. H. Masuda, On multidimensional Ornstein–Uhlenbeck process driven by a general Lévy process,
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