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ON THE ASYMPTOTIC BEHAVIOR OF A SEQUENCE OF RANDOM
VARIABLES OF INTEREST IN THE CLASSICAL OCCUPANCY
PROBLEM

UDC 519.21

RITA GIULIANO AND CLAUDIO MACCI

ABSTRACT. In the classical occupancy problem one puts balls in n boxes, and each ball is indepen-
dently assigned to any fixed box with probability % It is well known that, if we consider the ran-
dom number T, of balls required to have all the n boxes filled with at least one ball, the sequence
{T»/(nlogn): n > 2} converges to 1 in probability. Here we present the large deviation principle
associated to this convergence. We also discuss the use of the Gartner Ellis Theorem for the proof of
some parts of this large deviation principle.

AHOTALIA. VY KyACHUHIN 33/7a4i TPO PO3MIMIEHHST KyJi PO3MINIYIOTh B 1 YPH, i KOXKHA 3 KyJIb He3aje-
JKHUM YHHOM HOTpamise y dikcoBany ypHy 3 #MOBipHiCcTIO % Posrsnsimemo BuUnaakoBy Bequduny 1y —
KIJIBKICTb KyJb, KA MOTPiOHA AJg TOro, mob 3alOBHUTH KOXKHY 3 n YpH Xo4a 0 oxmiero Kymnerw. [lo-
Gpe Bigomo, mo nocaigoericrs {1y /(nlogn): n > 2} 36iraersca go 1 3a #mosipricTo. V nif crarri
MpeICTABIEHO MPUHITUI BEJUKHUX BiJAXWJIEHDb, MOB’s3aHUil 3 1i€r0 30i2KHICTIO, a TAK0K 0OrOBOPIOETHCS
KOpucHicTH Teopemu ['eprHep—Ejutica st JOBeJEHHS IesIKUX YaCTHH NPUHIUIY BEJUKUX BiIXUJIEHB Yy
IbOMY BHITQJKY.

AHHOTAIMS. B Kiaccmaeckoil 3agade 0 pa3MeINeHn: MAaPbl PA3MEIIAIOTCS B 1L yPH, U KAXK/IbIA U3 Ia-
POB He3ABMCHMBIM 06PA30M HABHAMAETCS B (PHKCHPOBAHHYIO yPHY C BEPOATHOCTEIO L. PaccMoTpuM C1y-
gafinyro Beaudauny 1), — KOJIHIECTBO IIAPOB, KOTOPOe TPeDyeTcs JJjis TOro, 9TO0BI 3AM0THATL KAXKIYIO
u3 n ypH XOTs Obl OJHUM INAapoM. XOPOLIO M3BECTHO, YTO IOcaenoBarensHocts {1y /(nlogn): n > 2}
cxoputTest K 1 mo BeposTHOCTH. B 3TO# cTaThe MBI HpEACTABIISAEM NPUHOUI OOJBINAX yKJIOHEHUH, CBI-
3aHHBIH € 9TOH CXOAMMOCTBIO, a TaKKe 06Cy’KJaeM MOJIe3HOCTh TeopeMbl LepTHep—iuiuca s JoKa-
3aTEeIbCTBA HEKOTOPBIX YACTeH NpUHIUNA OOJbIINX YKJIOHEHHHE B 3TOM CIIydae.

1. INTRODUCTION

There is a wide literature on urn models (see e.g. [8] and [9] for a wide source of results):
we have closed formulas based on combinatorial methods, and asymptotic methods which
often give a good approximation with a modest effort. Some asymptotic methods are
based on Poisson approximation (see e.g. [1] as a general reference on this topic).

In the classical occupancy problem one puts balls in n boxes, and each ball is inde-
pendently assigned to any fixed box with probability %; then, if we consider the random
number 7T, of balls required to have all the n boxes filled with at least one ball, it is
known that the sequence {T,/(nlogn): n > 2} converges to 1 in probability. We remark
that a different formulation of the same problem in the literature leads to the well known
coupon collector’s problem: a coupon collector chooses at random among n coupon types,
and let T}, be the number of coupons required to collect all the n coupon types.
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The theory of large deviations gives an asymptotic computation of small probabilities
on exponential scale (see e.g. [2, 3, 12] as references on this topic). The basic concept
of large deviation principle (see e.g. [2, pages 4-5]) consists of an upper bound for all
closed sets and a lower bound for all open sets. In this paper we present the large devi-
ation principle (LDP from now on) for the sequence {7},/(nlogn): n > 2}; in particular
the proof of the lower bound is more interesting because the upper bound is an easy
consequence of some results in the literature.

The interest of our LDP relies on the two following facts: (i) the speed function is
v, = logn instead of v,, = n as it happens in other results on large deviations for
sequences of interest in some occupancy problems (see e.g. [4, 5, 6, 13]); (ii) we cannot
derive our LDP by using the Gértner Ellis Theorem (see e.g. Theorem 2.3.6 in [2]), which
in this case provides only a trivial non-sharp lower bound for open sets in terms of the
exposed points of the rate function.

The outline of the paper is the following: in section 2 we present some preliminaries
and the main result (Proposition 2.1); in section 3 we discuss the use of the Gartner Ellis
Theorem for the proof of some parts of the LDP of {T},/(nlogn): n > 2}. For the sake of
completeness, the statement of Gértner Ellis Theorem is recalled in the final Appendix
A. Throughout the paper we write [z] := max{k € Z: k < x} for any € R, and x,, ~ yp,
(as n — 00) to mean lim,, oo Tp /yn = 1.

2. PRELIMINARIES AND MAIN RESULT

In view of Propositions 2.1-3.1 below, we recall some preliminaries. Firstly (see e.g.
[7], Examples 6.5-6.6 and Theorem 6.6 in Chapter 2, pages 143-144) we have

P(T, <m) = En:(—u’f (Z) (1 - 5>m for each integer m > 1. (1)

n
k=0

Furthermore (see e.g. [7], Example 5.3 in Chapter 1, page 38) we have

n
Tp=> Xnk (2)
k=1

where {X, ;: k € {1,...,n}} are independent random variables, and X, j, is geometric
distributed with parameter p,, = 1—(k—1)/n; moreover {T,,/(nlogn): n > 2} converges
to 1 in probability as n — oo.

Proposition 2.1. The sequence {T,,/(nlogn): n > 2} satisfies the LDP with speed
v, = logn and good rate function I defined by

-1, ifzx>1
- {0 022
0, if v < 1.

This means that

T, .
lim sup log P < € F) < —inf I(x) for all closed sets F, (3)
n—oo 10N n 10g n zcF
T
lim inf log P " €G|>—inf I(x) for all open sets G, (4)
n—oo logn nlogn zeG

and the level sets {{z € R: I(z) < n}:n >0} are compact.

Proof. The proof is divided in two parts: the proof of (3) and the proof of (4). The
compactness of the level sets {{z € R: I(x) < n}: n > 0} is immediate and we omit the
details.

Proof of (3). Firstly we remark that (3) trivially holds if 1 € F' and, from now on, we
assume that 1 ¢ F. We also assume that both F'N(—o0,1) and FN(1,00) are nonempty



30 RITA GIULIANO AND CLAUDIO MACCI

(at least one of them is nonempty and, if one of them is empty, the proof can readily
adapted). Then we can define x; := max(F N (—o0, 1)) and 3 := min(F N (1, 00)), and,
since F' C (—o0,21] U [z2, 00), we have

lim sup ! log P In eF
n—oo logmn nlogn

. 1 T, . 1 T,
< max < limsup —— log P <z |,limsup log P > g
n—oo logmn nlogn n—oo lOgmn nlogn
by Lemma 1.2.15 in [2]. Thus we only have to check the upper bound (3) for F' €
C1 UCy UCs, where

C1 i ={[z,00): > 1}, Co :={(—o00,z]: 2 € (0,1)}, Cs :={(—o0,z]: z <0},

and this will be a straightforward consequence of the following estimates.

e The case F' € C3 is trivial because P(T,/(nlogn) < 0) =0 (for all n > 2).

e For F' € Cy, we consider z > 1 and € > 0 small enough to have z — e > 1; then,
by a well known estimate (see e.g Exercise 3.10 in [11], page 58), we get (for all
n>2)

T,
P ( > x) < P(T, > (z —e)nlogn) < n'~ote
nlogn
and we let € go to zero.
e For F € Cy, we consider z € (0,1) and, by a well known estimate on Poisson
approximation (see e.g. Theorem 5.10 and Corollary 5.11 in [10]), we get (for all

n>2)
T, znlogn 1 \" _
P <z | =P, <znlogn) <2(1—expq— =2(1—-n"")".
nlogn n

Proof of (4). It is known (see e.g. condition (b) with eq. (1.2.8) in [2]) that it is enough
to prove that

1 T,
lim inf log P " _cG)>1-z
n—oo logn nlogn
for all x > 1 and for all open set G such that x € G; thus, if we find € > 0 small enough
to have (x —e,2 + ] C G, we get the above inequality if we prove that

lim inf L
n—oo logn

T,
log P — < >1—ux.
og (a: E<nlogn_x+€> > T (5)

The latter condition holds trivially if z = 1 because of the convergence of
{T,/(nlogn): n > 2}
to 1 in probability; thus, in what follows, we prove (5) for z > 1 and £ > 0 small enough
to have
(x—e,x+e] CGN(1,00).

We also assume n > 2 sufficiently large. We start noting that

T,
P(x—5< - §x+z—:) =P((z —e)nlogn < T, < (z+¢)nlogn)
nlogn

> Fr, ([(x +e)nlogn]) — Fr, ([(x — e)nlogn] + 1),

where, by (1),

{FT,,L([(IE +e)nlogn]) = S p_o(—1F(7) (1 - %)[(IJrE)nlogn] 7
Fr, ([(x = e)nlogn] +1) = Sp_o(~1)F () (1 - &)7=miesmit,
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We recall that, for every fixed v > 0, for all n > v we have (1 —y/n)" < e <
(I —=~/n)"~7. Then we obtain

n k [(z+e)nlogn] n L [(z+4e)n logn]
Fr.(a+ o) = Y (1) (1-7) - (1) (-5
odd k

even k
[(z+e)n log n]

- (-5 0y

S (-2))
odd k
Nl WP C LIRS
> % () (-3) -3 (e
odd k

even k
[(x+e)nlogn]
§ : n (e_k) e
k

[(z+&)n log n]

[(z+e)nlogn]

(ZOEeD) -

even k even k
n
[(z+&)n log n]
A kN
+ 2D ) (™)
k
k=0
_ [(z=4e)nlogn] \ T
:_Ag%+0_e‘4ﬁ74j
where
i @ te)nlogn]
A(+) — z : n e,k[(fﬂ‘f'E):/ log n] 1— 1_F
n k n

even k

Similarly, we also obtain
Fr, —e)nlo + 4(7) Lz—e)nlogn]+1\ "
n([(x )nl gn] 1) sdAn’+ (1 —€ n )

where
L@=enlognl+1

-y N\ _plz=omlogn+1 - _E
AT =y (k>e 1= {1-—

odd k
Then, if we consider

_ [(z=4e)nlogn] \ T _ [(m—e)nlogn]+1\ "
R I (R

we have
T,
P(x—5< - §x+e)
nlogn
> A 4 (1 _e_w>" B (A(_) n (1 _e_w)yv

—A, — (Agf) i Aﬁj)) 7

where A,,, Agf), A;‘) > (0. Thus we obtain
T, log (An - (A%Jr) + ASﬂ))
logP |z —¢< <z+e| >
nlogn logn
AP A
A

s, lop(1-A5)
~ logn logn

1
logn

V
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and we complete the proof of (4) by proving the following relations (actually we only
need the lower bound in the first one):

- o log Ay 1; log Ay
(i): 1 -2 —e <liminf, o FET2, limsup,, 252 <1—-2+¢;
L1 AGP

(ii): limy— oo = =0;

oL T AD)

(iii): limg, oo =— = 0.

Indeed, since € > 0 is arbitrary, for all K > 1 we have

Ty
logP(x—e< §x+e>
nlogn

1 € T, €
> lim inf log P R — < —
- lnniloré logn i) (a: K < nlogn _m+K>

1
lim inf
n—oo logn

g
>1—2— —
=z T K

by the above conditions with /K in place of €, and then we conclude letting K go to
infinity.
Proof of (i). Put f(y) = (1 — e~ ¥)". By Lagrange Theorem there exists

)

€ c {[(x — a)n;og nl+1 [(x+ 62Ln log n]]

such that

A= f (W) iy ([u—g)mognm)

— P& <[($ + 82710%71] B <[($ - €)nnlogn] + 1))
= ([(= + e)nlogn] — [(z — e)nlogn] — 1) (1 — 6_5”)n_1 e 5,

whence we obtain

log A, _ log([(z +¢)nlogn] — [(z — e)nlogn] — 1) L (n=1Dlog (1—e&) g,
logn logn logn logn’

We complete the proof of (i) by considering the following relations (as n — oco):

log ([(x + e)nlogn] — [(x — e)nlogn] — 1) _ log (2enlogn) ~

logn logn L
(n—1)log (1 —e )
< (n—1)log (1 — e—w) ~(n—1)log (1 —n~(+)) ~ 2=l
(n—1)log (1 —e )
> (n—1)log (1 - e’w) ~(n—-1log(1—n"@9)) ~-—2=L
{—5— < llemonoenltl g te,
iz Loy

Proof of (ii). Put f(y) = yltenlesnl/n  Then, for all k € {0,...,n}, we have
1 —(1—k/n)* < k2/n and, by Lagrange Theorem, there exists &, € (1= k/n)*, 1]
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such that

(+) n (J3+6)7Llogn] k k
0< A = () F) - f (1_H>
even k
k
n) k“w”“g“f’(gnk>< (1—§>>

o

<k:
even k
n o latedn tog n) nlogn] [@4e)ntogn] Y\ k2
< L gn,k " —
even k

\ /\

[(z +e)nlogn] 5 plleternonn)
et S |

Now recall the known formula Y7 k2(})y* = ny(1 + ny)(1 + y)" 2 (for all y € R);
since there exists C' > 0 such that 0 < 1 +nexp{—[(z + ¢)nlogn]/n} < C for all n > 1,
we get

[(z +e)nlogn] _letemiosn

(z+&)nlogn] \ M2
0§A$L+)§C [(z+ g ])
n

(]_ + e n
As far as A, is concerned, we have

_ [=te)nlogn] \ T
(€ ; n l—e B
_ [(z—e)nlogn]+1
A, =(1—-e¢ = —1
_ [(z—e)nlogn]+1

_ [z+e)nlogn)]
1 _ [m—e)nlogn]+1\ " 1 1—e —n 1
= —€ " eXp | nlog - [(z—c)n log n]+1 -

and, noting that

. _ [(z—e)nlogn]+1 n
lim (1 —e z ) =1,

n—00

we obtain the following estimate with some tedious computations:

B [(:E—E)n log nlt1 _ [(z+e)nlogn]
€ —e n
An ~ exp nlog 1 + [(x—e)nlog n]+1 -1
l—e (6)

~nlog(l+n~E=9)) ~ nl_“'e.

Then, noting that lim,, . (1—|—exp{—[(m+€)nlogn]/n})n72 = 1, we complete the
proof of (ii) as follows:

n

) ) —2
1 _ [z+e)nlogn] _ [=te)nlogn] \ T
() cllzrenlogn] - B (1 A — )

0< <
- - [(z+e)nlogn] \ T [(z—e)nlogn]+1\ "™
R e B (e

Clz +e)logn-n @+ C(z+¢e)logn
~ nl-c+e - nitae

— 0 asn— oo.

Proof of (iii). We follow the lines of the proof of (ii). Firstly, if we set f(y) =
[(x—e)nlog n]+1
, we get

0< ASL_) <D [(z —e)nlogn] + 1@‘ (e—c)n log n]+1 (1 Yo [(x—e>nn}ogn]+1>n*2
n
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W})"—Q -1

n

for a constant D > 0. Then, noting that lim,,_, (1 + exp{—
by (6) we complete the proof of (iii) as follows:

n

_ _ l(m—e)nlogn]+1 _ [m—e)nlogn]+1\ "2
A(_) D[(x 6)nlogn]+16 B Tl () I
n n

0< <
— — [(z+e)nlogn] \ T [(z—e)nlogn]+1\ T
An (1— e ) o (1o e e

D(xz —¢)logn-n~®=¢)  D(x—¢)l
~ (z—-¢) 1O_gx7::6 n = (x = ¢)logn — 0 asn— oo. ]
n n

3. A DISCUSSION ON THE USE OF THE GARTNER ELLIS THEOREM

In this section we discuss the use of the Gartner Ellis Theorem for the proof of some
parts of the LDP in Proposition 2.1. The application of this theorem consists in checking
the existence of the function A: R — (—o0, 00| defined by

[ 1 eTn/n .
A(B) := nlLII;O oz logE [e ] ; (7)
then, if 0 € ({# € R: A(f) < 00})° and if we consider the function I defined by
1(2) = sup{0z — AO)}, ®)
0ER

we have the following three results: the upper bound (3); the lower bound

lim inf
n—oo logn

T
log P n >— inf T for all
og (nlogn € G) 2~ f (z) for all open sets G, 9)
where F is the set of exposed points (see e.g. Definition 2.3.3 in [2]); if A is essentially
smooth (see e.g. Definition 2.3.5 in [2]) and lower semi-continuous, the LDP holds with
the good rate function I. See also Appendix A.

In the next Proposition 3.1 we prove the existence of the limit (7) showing that

9, ifo<1
AO) =" = 10
©) {w,ﬁ0>h (10)

therefore the function I in (8) meets the rate function in Proposition 2.1 because we have

I(z) = sup{fz — 0} = sup{0(z — 1)} = {a: -b %f v-120,

0<1 0<1 0, ifz—1<0.
Thus Gértner Ellis Theorem provides an alternative proof of the upper bound (3) based
on the sums in (2) expressed in terms of the random variables of a triangular array, and
we do not need to consider the Poisson approximation. However we cannot derive the
LDP from a complete application of Gartner Ellis Theorem because the non-sharp lower
bound (9) with F = {1} coincides with the sharp lower bound (4) if and only if 1 € G.
Thus the LDP in Proposition 2.1 provides an example in which we can improve the
consequences of Gértner Ellis Theorem because we can prove the sharp lower bound (4)
in place of the lower bound (9) in terms of the exposed points. Other two examples of
the same situation can be found in Remark (d) after the statement of Theorem 2.3.6
in [2] and in Exercise 2.3.24 in [2]; in the first case the rate function .J (say) is similar to
the rate function I in Proposition 2.1 in this paper because we have J(z) = I(x — 1) for
all x € R.

Proposition 3.1. For all 0 € R, the limit (7) exists and A is given by (10).
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Proof. Firstly, by (2) and the hypotheses on the random variables {X,, 1 k € {1,...,n}},
we have
1 log E [eGT"/n} _ log E [exp{% 22:1 Xn,k}] N EZ:I lOg E [exp{%ka}]

¢ a logn - logn

oy (k=1\! k-1
logE [G%X"’k} = log ewd < > <1 — >
n n

Jj=1
1_k=1)0/n b1
e k=10
log <7(1_,c_129/n , if —e /m < 1,

, if k=1e0/m > 1.

Therefore (we recall that n > 2)

e/n
lgE[ 0T /n} S 11og( — 9/” ) if ==Lef/m <1 for all k € {1,...,n},
0, e n = €

otherwise
e/n
) 11og( —= 1ee/n ) if 2=Lef/n < 1,
otherwise
(1__) 0/n ) N
_ Zk 1 log e ) if & < nlog "5,
0, if & > nlog 5.
Then, since nlog =5 | 1asn | oo, the proof for # > 1is completed because 6 > nlog "+

holds eventually, and therefore log E [ 0Tn/ ”] = oo eventually.

Hence, from now on, we restrict our attention to the case # < 1 and we can neglect
the case § = 0 because the equality A(0) = 0 is trivial. Let us consider the function
Bng: [0,n) — R defined by hy, g(x) := (n — 2e?/™)/(n — z); hy g is increasing if § < 0
and is decreasing if § € (0,1]. Then we have

1 _ k-1 G/n n k-1
o 7] - S (U} S g (A )

k=1
- k Leo/n - n—(k—1)e/"
- 1 =0-S log [ —— L
=0 ZOg( = ) ’ Zg( W= (k1) >
n—1 n—1
n — ke?/n
:9—;_01og( — )zG—%loghnﬂ(lﬂ),

whence we obtain

logE [e?T/"] 9 30T loghy (k)
logn ~logn logn ’

logE [ehen o] =
1og

Moreover we have the following bounds: for 6 < 0,

n—1 n n—1
/ log hn,¢(x) dz+log hy, 0(0) < Zlog hno(k) < / log hp,¢(x) de+log hy g(n—1);
0 o 0

for 0 € (0,1],
n—1

n—1 n—1
/ log hp,¢(x) de+log hy g(n—1) < Z log hng(k) < / log hp,¢(x) dz+log by, 0(0).
0 —o 0
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Hence, noting that loghy,, (0) = 0 and
log hpg(n — 1) =log (n —(n— 1)69/”)
= log (ee/" +n(l— ee/")) —log(1—0) asn — oo,
we complete the proof for § < 1 by checking that

n—1
i Jo loghpg(x)dx

n—0o0 logn

) (11)

To this aim we note that

n—1
Iy log b (a)de [6 " log (n - e‘)/%) + (n — ) log(n — x)}
e n

rz=n—1

logn ~logn 50

= Togn ((n -1- nefe/") log (n —(n— 1)@0/n) _ {_nefe/n logn + nlogn})

B 1o;n ((n (=) =1)10g (n (1= ") +e”") 4n (7"~ 1) 1ogn) ;

thus (11) can be checked by observing that

lim (n (1 — e_e/") — 1) log (n (1 - 69/"> + ea/”> =(0—1)log(1—-0)

n—00

and lim,, oo n(e=?" —1) = —4. O

APPENDIX A. STATEMENT OF GARTNER ELLIS THEOREM

In this Appendix we recall the statement of Géartner Ellis Theorem. We refer to
Theorem 2.3.6 in [2] with some changes: we prefer to give a presentation for a sequence
of real valued random variables {Z,,: n > 1} (instead of R?-valued random variables for
some d > 1) and a general speed function {v,: n > 1} (it is a sequence that tends to
infinity); in our results we consider the case Z,, = T,,/(nlogn) and v,, = logn.

We start with Assumption 2.3.2 in [2]: for each § € R, there exists

A(@) = lim i log E [eevnzn]

n—00 Uy,
as an extended real number; further 0 belongs to the interior of
Dy :={0 € R: A(0) < o0}.

In this setting, we consider the Legendre transform I of A, i.e. the function I is defined
by (8) above. Moreover we recall the definitions of exposed point (of I) and essentially
smooth function.

Definition A.1. We say that y € R is an exposed point of I if, for some 0 € R, we have
Oy — I(y) > 0z — I(z) for all x # y.

Definition A.2. A convez function A: R — (—o0,00] is essentially smooth if DY is
non-empty, A is essentially smooth throughout DY and A is steep (namely

lim |A(6,)] — oo
n—oo
whenever {0,,: n > 1} is a sequence in Dy converging to a boundary point of DY ).

Now we are ready to give the statement of Gartner Ellis Theorem.



ASYMPTOTIC BEHAVIOR OF A SEQUENCE OF RANDOM VARIABLES OF INTEREST 37

Theorem A.3. Let Assumption 2.3.2 in [2] hold. Then:

1
limsup —logP (Z, € F) < — nelgl(x) for all closed sets F

n—oo Un

1iminfilogP (Z,eq@)>—

inf T 1l t
im inf 7= L (x) for all open sets G,

where F is the set of exposed points; if A is essentially smooth and lower semi-continuous,
the LDP holds with the good rate function I.
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