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ON THE ASYMPTOTIC BEHAVIOR OF A SEQUENCE OF RANDOM
VARIABLES OF INTEREST IN THE CLASSICAL OCCUPANCY

PROBLEM
UDC 519.21

RITA GIULIANO AND CLAUDIO MACCI

Abstract. In the classical occupancy problem one puts balls in n boxes, and each ball is indepen-
dently assigned to any fixed box with probability 1

n
. It is well known that, if we consider the ran-

dom number Tn of balls required to have all the n boxes filled with at least one ball, the sequence
{Tn/(n log n) : n ≥ 2} converges to 1 in probability. Here we present the large deviation principle
associated to this convergence. We also discuss the use of the Gärtner Ellis Theorem for the proof of
some parts of this large deviation principle.
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1. Introduction

There is a wide literature on urn models (see e.g. [8] and [9] for a wide source of results):
we have closed formulas based on combinatorial methods, and asymptotic methods which
often give a good approximation with a modest effort. Some asymptotic methods are
based on Poisson approximation (see e.g. [1] as a general reference on this topic).

In the classical occupancy problem one puts balls in n boxes, and each ball is inde-
pendently assigned to any fixed box with probability 1

n ; then, if we consider the random
number Tn of balls required to have all the n boxes filled with at least one ball, it is
known that the sequence {Tn/(n log n) : n ≥ 2} converges to 1 in probability. We remark
that a different formulation of the same problem in the literature leads to the well known
coupon collector’s problem: a coupon collector chooses at random among n coupon types,
and let Tn be the number of coupons required to collect all the n coupon types.
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The theory of large deviations gives an asymptotic computation of small probabilities
on exponential scale (see e.g. [2, 3, 12] as references on this topic). The basic concept
of large deviation principle (see e.g. [2, pages 4–5]) consists of an upper bound for all
closed sets and a lower bound for all open sets. In this paper we present the large devi-
ation principle (LDP from now on) for the sequence {Tn/(n log n) : n ≥ 2}; in particular
the proof of the lower bound is more interesting because the upper bound is an easy
consequence of some results in the literature.

The interest of our LDP relies on the two following facts: (i) the speed function is
vn = log n instead of vn = n as it happens in other results on large deviations for
sequences of interest in some occupancy problems (see e.g. [4, 5, 6, 13]); (ii) we cannot
derive our LDP by using the Gärtner Ellis Theorem (see e.g. Theorem 2.3.6 in [2]), which
in this case provides only a trivial non-sharp lower bound for open sets in terms of the
exposed points of the rate function.

The outline of the paper is the following: in section 2 we present some preliminaries
and the main result (Proposition 2.1); in section 3 we discuss the use of the Gärtner Ellis
Theorem for the proof of some parts of the LDP of {Tn/(n log n) : n ≥ 2}. For the sake of
completeness, the statement of Gärtner Ellis Theorem is recalled in the final Appendix
A. Throughout the paper we write [x] := max{k ∈ Z : k ≤ x} for any x ∈ R, and xn ∼ yn

(as n → ∞) to mean limn→∞ xn/yn = 1.

2. Preliminaries and main result

In view of Propositions 2.1–3.1 below, we recall some preliminaries. Firstly (see e.g.
[7], Examples 6.5–6.6 and Theorem 6.6 in Chapter 2, pages 143–144) we have

P (Tn ≤ m) =
n∑

k=0

(−1)k

(
n

k

)(
1 − k

n

)m

for each integer m ≥ 1. (1)

Furthermore (see e.g. [7], Example 5.3 in Chapter 1, page 38) we have

Tn =
n∑

k=1

Xn,k (2)

where {Xn,k : k ∈ {1, . . . , n}} are independent random variables, and Xn,k is geometric
distributed with parameter pn,k = 1−(k−1)/n; moreover {Tn/(n log n) : n ≥ 2} converges
to 1 in probability as n → ∞.

Proposition 2.1. The sequence {Tn/(n logn) : n ≥ 2} satisfies the LDP with speed
vn = log n and good rate function I defined by

I(x) =

{
x − 1, if x ≥ 1
∞, if x < 1.

This means that

lim sup
n→∞

1
log n

log P

(
Tn

n log n
∈ F

)
≤ − inf

x∈F
I(x) for all closed sets F, (3)

lim inf
n→∞

1
log n

log P

(
Tn

n log n
∈ G

)
≥ − inf

x∈G
I(x) for all open sets G, (4)

and the level sets {{x ∈ R : I(x) ≤ η} : η ≥ 0} are compact.

Proof. The proof is divided in two parts: the proof of (3) and the proof of (4). The
compactness of the level sets {{x ∈ R : I(x) ≤ η} : η ≥ 0} is immediate and we omit the
details.

Proof of (3). Firstly we remark that (3) trivially holds if 1 ∈ F and, from now on, we
assume that 1 /∈ F . We also assume that both F ∩ (−∞, 1) and F ∩ (1,∞) are nonempty
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(at least one of them is nonempty and, if one of them is empty, the proof can readily
adapted). Then we can define x1 := max(F ∩ (−∞, 1)) and x2 := min(F ∩ (1,∞)), and,
since F ⊂ (−∞, x1] ∪ [x2,∞), we have

lim sup
n→∞

1
log n

log P

(
Tn

n logn
∈ F

)

≤ max
{

lim sup
n→∞

1
log n

log P

(
Tn

n log n
≤ x1

)
, lim sup

n→∞
1

log n
log P

(
Tn

n logn
≥ x2

)}
by Lemma 1.2.15 in [2]. Thus we only have to check the upper bound (3) for F ∈
C1 ∪ C2 ∪ C3, where

C1 := {[x,∞) : x > 1}, C2 := {(−∞, x] : x ∈ (0, 1)}, C3 := {(−∞, x] : x ≤ 0},
and this will be a straightforward consequence of the following estimates.

• The case F ∈ C3 is trivial because P (Tn/(n logn) ≤ 0) = 0 (for all n ≥ 2).
• For F ∈ C1, we consider x > 1 and ε > 0 small enough to have x − ε > 1; then,

by a well known estimate (see e.g Exercise 3.10 in [11], page 58), we get (for all
n ≥ 2)

P

(
Tn

n log n
≥ x

)
≤ P(Tn > (x − ε)n log n) ≤ n1−x+ε,

and we let ε go to zero.
• For F ∈ C2, we consider x ∈ (0, 1) and, by a well known estimate on Poisson

approximation (see e.g. Theorem 5.10 and Corollary 5.11 in [10]), we get (for all
n ≥ 2)

P

(
Tn

n log n
≤ x

)
= P(Tn ≤ xn log n) ≤ 2

(
1 − exp

{
−xn log n

n

})n

= 2(1 − n−x)n.

Proof of (4). It is known (see e.g. condition (b) with eq. (1.2.8) in [2]) that it is enough
to prove that

lim inf
n→∞

1
log n

log P

(
Tn

n log n
∈ G

)
≥ 1 − x

for all x ≥ 1 and for all open set G such that x ∈ G; thus, if we find ε > 0 small enough
to have (x − ε, x + ε] ⊂ G, we get the above inequality if we prove that

lim inf
n→∞

1
log n

log P

(
x − ε <

Tn

n log n
≤ x + ε

)
≥ 1 − x. (5)

The latter condition holds trivially if x = 1 because of the convergence of

{Tn/(n logn) : n ≥ 2}
to 1 in probability; thus, in what follows, we prove (5) for x > 1 and ε > 0 small enough
to have

(x − ε, x + ε] ⊂ G ∩ (1,∞).
We also assume n ≥ 2 sufficiently large. We start noting that

P

(
x − ε <

Tn

n log n
≤ x + ε

)
= P

(
(x − ε)n log n < Tn ≤ (x + ε)n log n

)
≥ FTn([(x + ε)n log n]) − FTn([(x − ε)n log n] + 1),

where, by (1),{
FTn([(x + ε)n log n]) =

∑n
k=0(−1)k

(
n
k

) (
1 − k

n

)[(x+ε)n log n]
,

FTn([(x − ε)n log n] + 1) =
∑n

k=0(−1)k
(
n
k

) (
1 − k

n

)[(x−ε)n log n]+1
.
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We recall that, for every fixed γ ≥ 0, for all n ≥ γ we have (1 − γ/n)n ≤ e−γ ≤
(1 − γ/n)n−γ . Then we obtain

FTn([(x + ε)n log n]) =
∑

even k

(
n

k

)(
1 − k

n

)[(x+ε)n log n]

−
∑

odd k

(
n

k

)(
1 − k

n

)[(x+ε)n log n]

=
∑

even k

(
n

k

)((
1 − k

n

)n−k (
1 − k

n

)k
) [(x+ε)n log n]

n

−
∑

odd k

(
n

k

)((
1 − k

n

)n) [(x+ε)n log n]
n

≥
∑

even k

(
n

k

)(
e−k

(
1 − k

n

)k
) [(x+ε)n log n]

n

−
∑

odd k

(
n

k

)(
e−k

) [(x+ε)n log n]
n

=

⎛
⎝ ∑

even k

(
n

k

)(
e−k

(
1 − k

n

)k
) [(x+ε)n log n]

n

−
∑

even k

(
n

k

)(
e−k

) [(x+ε)n log n]
n

⎞
⎠

+
n∑

k=0

(−1)k

(
n

k

)(
e−k

) [(x+ε)n log n]
n

= −A(+)
n +

(
1 − e−

[(x+ε)n log n]
n

)n

where

A(+)
n :=

∑
even k

(
n

k

)
e−k [(x+ε)n log n]

n

⎛
⎝1 −

(
1 − k

n

)k [(x+ε)n log n]
n

⎞
⎠ .

Similarly, we also obtain

FTn([(x − ε)n logn] + 1) ≤ A(−)
n +

(
1 − e−

[(x−ε)n log n]+1
n

)n

where

A(−)
n :=

∑
odd k

(
n

k

)
e−k [(x−ε)n log n]+1

n

⎛
⎝1 −

(
1 − k

n

)k [(x−ε)n log n]+1
n

⎞
⎠ .

Then, if we consider

An :=
(
1 − e−

[(x+ε)n log n]
n

)n

−
(
1 − e−

[(x−ε)n log n]+1
n

)n

,

we have

P

(
x − ε <

Tn

n log n
≤ x + ε

)

≥ −A(+)
n +

(
1 − e−

[(x+ε)n log n]
n

)n

−
(
A(−)

n +
(
1 − e−

[(x−ε)n log n]+1
n

)n)
= An −

(
A(+)

n + A(−)
n

)
,

where An, A
(+)
n , A

(−)
n ≥ 0. Thus we obtain

1
log n

log P

(
x − ε <

Tn

n log n
≤ x + ε

)
≥

log
(
An −

(
A

(+)
n + A

(−)
n

))
log n

=
log An

log n
+

log
(
1 − A(+)

n +A(−)
n

An

)
log n

,
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and we complete the proof of (4) by proving the following relations (actually we only
need the lower bound in the first one):

(i): 1 − x − ε ≤ lim infn→∞ log An

log n , lim supn→∞
log An

log n ≤ 1 − x + ε;

(ii): limn→∞
A(+)

n

An
= 0;

(iii): limn→∞
A(−)

n

An
= 0.

Indeed, since ε > 0 is arbitrary, for all K > 1 we have

lim inf
n→∞

1
log n

log P

(
x − ε <

Tn

n log n
≤ x + ε

)

≥ lim inf
n→∞

1
log n

log P

(
x − ε

K
<

Tn

n log n
≤ x +

ε

K

)

≥ 1 − x − ε

K

by the above conditions with ε/K in place of ε, and then we conclude letting K go to
infinity.

Proof of (i). Put f(y) = (1 − e−y)n. By Lagrange Theorem there exists

ξn ∈
[
[(x − ε)n log n] + 1

n
,
[(x + ε)n logn]

n

]

such that

An = f

(
[(x + ε)n log n]

n

)
− f

(
[(x − ε)n log n] + 1

n

)

= f ′(ξn)
(

[(x + ε)n log n]
n

−
(

[(x − ε)n log n] + 1
n

))

=
(
[(x + ε)n logn] − [(x − ε)n log n] − 1

) (
1 − e−ξn

)n−1
e−ξn ,

whence we obtain

log An

log n
=

log
(
[(x + ε)n log n] − [(x − ε)n log n] − 1

)
log n

+
(n − 1) log

(
1 − e−ξn

)
log n

− ξn

log n
.

We complete the proof of (i) by considering the following relations (as n → ∞):

log ([(x + ε)n log n] − [(x − ε)n logn] − 1)
log n

∼ log (2εn logn)
log n

→ 1;

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n − 1) log
(
1 − e−ξn

)
≤ (n − 1) log

(
1 − e−

[(x+ε)n log n]
n

)
∼ (n − 1) log

(
1 − n−(x+ε)

) ∼ − n−1
nx+ε → 0,

(n − 1) log
(
1 − e−ξn

)
≥ (n − 1) log

(
1 − e−

[(x−ε)n log n]−1
n

)
∼ (n − 1) log

(
1 − n−(x−ε)

) ∼ − n−1
nx−ε → 0,{

− ξn

log n ≤ − [(x−ε)n log n]+1
n log n → −x + ε,

− ξn

log n ≥ − [(x+ε)n log n]
n log n → −x − ε.

Proof of (ii). Put f(y) = y[(x+ε)n log n]/n. Then, for all k ∈ {0, . . . , n}, we have
1 − (1 − k/n)k ≤ k2/n and, by Lagrange Theorem, there exists ξn,k ∈ [

(1 − k/n)k, 1
]
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such that

0 ≤ A(+)
n =

∑
even k

(
n

k

)
e−k [(x+ε)n log n]

n

(
f(1) − f

((
1 − k

n

)k
))

=
∑

even k

(
n

k

)
e−k [(x+ε)n log n]

n f ′(ξn,k)

(
1 −

(
1 − k

n

)k
)

≤
∑

even k

(
n

k

)
e−k [(x+ε)n log n]

n

(
[(x + ε)n log n]

n
ξ

[(x+ε)n log n]
n −1

n,k

)
k2

n

≤ [(x + ε)n log n]
n2

n∑
k=0

k2

(
n

k

)
e−k [(x+ε)n log n]

n .

Now recall the known formula
∑n

k=0 k2
(
n
k

)
yk = ny(1 + ny)(1 + y)n−2 (for all y ∈ R);

since there exists C > 0 such that 0 < 1 + n exp{−[(x + ε)n logn]/n} < C for all n ≥ 1,
we get

0 ≤ A(+)
n ≤ C

[(x + ε)n log n]
n

e−
[(x+ε)n log n]

n

(
1 + e−

[(x+ε)n log n]
n

)n−2

.

As far as An is concerned, we have

An =
(
1 − e−

[(x−ε)n log n]+1
n

)n

⎛
⎝

(
1 − e−

[(x+ε)n log n]
n

)n

(
1 − e−

[(x−ε)n log n]+1
n

)n − 1

⎞
⎠

=
(
1 − e−

[(x−ε)n log n]+1
n

)n
(

exp

{
n log

(
1 − e−

[(x+ε)n log n]
n

1 − e−
[(x−ε)n log n]+1

n

)}
− 1

)

and, noting that

lim
n→∞

(
1 − e−

[(x−ε)n log n]+1
n

)n

= 1,

we obtain the following estimate with some tedious computations:

An ∼ exp

{
n log

(
1 +

e−
[(x−ε)n log n]+1

n − e−
[(x+ε)n log n]

n

1 − e−
[(x−ε)n log n]+1

n

)}
− 1

∼ n log(1 + n−(x−ε)) ∼ n1−x+ε.

(6)

Then, noting that limn→∞
(
1 + exp

{−[(x + ε)n logn]/n
})n−2 = 1, we complete the

proof of (ii) as follows:

0 ≤ A
(+)
n

An
≤

C [(x+ε)n log n]
n e−

[(x+ε)n log n]
n

(
1 + e−

[(x+ε)n log n]
n

)n−2

(
1 − e−

[(x+ε)n log n]
n

)n

−
(
1 − e−

[(x−ε)n log n]+1
n

)n

∼ C(x + ε) log n · n−(x+ε)

n1−x+ε
=

C(x + ε) log n

n1+2ε
→ 0 as n → ∞.

Proof of (iii). We follow the lines of the proof of (ii). Firstly, if we set f(y) =
y

[(x−ε)n log n]+1
n , we get

0 ≤ A(−)
n ≤ D

[(x − ε)n log n] + 1
n

e−
[(x−ε)n log n]+1

n

(
1 + e−

[(x−ε)n log n]+1
n

)n−2
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for a constant D > 0. Then, noting that limn→∞
(
1 + exp

{− [(x−ε)n log n]+1
n

})n−2
= 1,

by (6) we complete the proof of (iii) as follows:

0 ≤ A
(−)
n

An
≤

D [(x−ε)n log n]+1
n e−

[(x−ε)n log n]+1
n

(
1 + e−

[(x−ε)n log n]+1
n

)n−2

(
1 − e−

[(x+ε)n log n]
n

)n

−
(
1 − e−

[(x−ε)n log n]+1
n

)n

∼ D(x − ε) log n · n−(x−ε)

n1−x+ε
=

D(x − ε) log n

n
→ 0 as n → ∞. �

3. A discussion on the use of the Gärtner Ellis Theorem

In this section we discuss the use of the Gärtner Ellis Theorem for the proof of some
parts of the LDP in Proposition 2.1. The application of this theorem consists in checking
the existence of the function Λ: R → (−∞,∞] defined by

Λ(θ) := lim
n→∞

1
log n

log E
[
eθTn/n

]
; (7)

then, if 0 ∈ ({θ ∈ R : Λ(θ) < ∞})◦ and if we consider the function I defined by

I(x) := sup
θ∈R

{θx − Λ(θ)}, (8)

we have the following three results: the upper bound (3); the lower bound

lim inf
n→∞

1
log n

log P

(
Tn

n log n
∈ G

)
≥ − inf

x∈G∩F
I(x) for all open sets G, (9)

where F is the set of exposed points (see e.g. Definition 2.3.3 in [2]); if Λ is essentially
smooth (see e.g. Definition 2.3.5 in [2]) and lower semi-continuous, the LDP holds with
the good rate function I. See also Appendix A.

In the next Proposition 3.1 we prove the existence of the limit (7) showing that

Λ(θ) =

{
θ, if θ ≤ 1,

∞, if θ > 1;
(10)

therefore the function I in (8) meets the rate function in Proposition 2.1 because we have

I(x) = sup
θ≤1

{θx − θ} = sup
θ≤1

{θ(x − 1)} =

{
x − 1, if x − 1 ≥ 0,

∞, if x − 1 < 0.

Thus Gärtner Ellis Theorem provides an alternative proof of the upper bound (3) based
on the sums in (2) expressed in terms of the random variables of a triangular array, and
we do not need to consider the Poisson approximation. However we cannot derive the
LDP from a complete application of Gärtner Ellis Theorem because the non-sharp lower
bound (9) with F = {1} coincides with the sharp lower bound (4) if and only if 1 ∈ G.
Thus the LDP in Proposition 2.1 provides an example in which we can improve the
consequences of Gärtner Ellis Theorem because we can prove the sharp lower bound (4)
in place of the lower bound (9) in terms of the exposed points. Other two examples of
the same situation can be found in Remark (d) after the statement of Theorem 2.3.6
in [2] and in Exercise 2.3.24 in [2]; in the first case the rate function J (say) is similar to
the rate function I in Proposition 2.1 in this paper because we have J(x) = I(x− 1) for
all x ∈ R.

Proposition 3.1. For all θ ∈ R, the limit (7) exists and Λ is given by (10).
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Proof. Firstly, by (2) and the hypotheses on the random variables {Xn,k : k ∈ {1, . . . , n}},
we have

1
log n

log E
[
eθTn/n

]
=

log E
[
exp{ θ

n

∑n
k=1 Xn,k}

]
log n

=
∑n

k=1 log E
[
exp{ θ

nXn,k}
]

log n

and

log E
[
e

θ
n Xn,k

]
= log

⎛
⎝ ∞∑

j=1

e
θ
n j

(
k − 1

n

)j−1 (
1 − k − 1

n

)⎞⎠

=

⎧⎨
⎩log

(
(1− k−1

n )eθ/n

1− k−1
n eθ/n

)
, if k−1

n eθ/n < 1,

∞, if k−1
n eθ/n ≥ 1.

Therefore (we recall that n ≥ 2)

log E
[
eθTn/n

]
=

⎧⎨
⎩
∑n

k=1 log
(

(1− k−1
n )eθ/n

1− k−1
n eθ/n

)
, if k−1

n eθ/n < 1 for all k ∈ {1, . . . , n},
∞, otherwise

=

⎧⎨
⎩
∑n

k=1 log
(

(1− k−1
n )eθ/n

1− k−1
n eθ/n

)
, if n−1

n eθ/n < 1,

∞, otherwise

=

⎧⎨
⎩
∑n

k=1 log
(

(1− k−1
n )eθ/n

1− k−1
n eθ/n

)
, if θ < n log n

n−1 ,

∞, if θ ≥ n log n
n−1 .

Then, since n log n
n−1 ↓ 1 as n ↑ ∞, the proof for θ > 1 is completed because θ ≥ n log n

n−1

holds eventually, and therefore log E
[
eθTn/n

]
= ∞ eventually.

Hence, from now on, we restrict our attention to the case θ ≤ 1 and we can neglect
the case θ = 0 because the equality Λ(0) = 0 is trivial. Let us consider the function
hn,θ : [0, n) → R defined by hn,θ(x) := (n − xeθ/n)/(n − x); hn,θ is increasing if θ < 0
and is decreasing if θ ∈ (0, 1]. Then we have

log E
[
eθTn/n

]
=

n∑
k=1

log

((
1 − k−1

n

)
eθ/n

1 − k−1
n eθ/n

)
=

n∑
k=1

{
log

(
1 − k−1

n

1 − k−1
n eθ/n

)
+

θ

n

}

= θ −
n∑

k=1

log

(
1 − k−1

n eθ/n

1 − k−1
n

)
= θ −

n∑
k=1

log
(

n − (k − 1)eθ/n

n − (k − 1)

)

= θ −
n−1∑
k=0

log
(

n − keθ/n

n − k

)
= θ −

n−1∑
k=0

log hn,θ(k),

whence we obtain

1
log n

log E
[
elog n·θ Tn

n log n

]
=

log E
[
eθTn/n

]
log n

=
θ

log n
−

∑n−1
k=0 log hn,θ(k)

log n
.

Moreover we have the following bounds: for θ < 0,∫ n−1

0

log hn,θ(x) dx+log hn,θ(0) ≤
n−1∑
k=0

log hn,θ(k) ≤
∫ n−1

0

log hn,θ(x) dx+log hn,θ(n−1);

for θ ∈ (0, 1],∫ n−1

0

log hn,θ(x) dx+log hn,θ(n−1) ≤
n−1∑
k=0

log hn,θ(k) ≤
∫ n−1

0

log hn,θ(x) dx+log hn,θ(0).
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Hence, noting that log hn,θ(0) = 0 and

log hn,θ(n − 1) = log
(
n − (n − 1)eθ/n

)
= log

(
eθ/n + n(1 − eθ/n)

)
→ log(1 − θ) as n → ∞,

we complete the proof for θ ≤ 1 by checking that

lim
n→∞

∫ n−1

0 log hn,θ(x) dx

log n
= −θ. (11)

To this aim we note that∫ n−1

0 log hn,θ(x)dx

log n
=

1
log n

[
eθ/nx − n

eθ/n
log

(
n − eθ/nx

)
+ (n − x) log(n − x)

]x=n−1

x=0

=
1

log n

((
n − 1 − ne−θ/n

)
log

(
n − (n − 1)eθ/n

)
−
{
−ne−θ/n log n + n log n

})
=

1
log n

((
n
(
1 − e−θ/n

)
− 1

)
log

(
n
(
1 − eθ/n

)
+ eθ/n

)
+ n

(
e−θ/n − 1

)
log n

)
;

thus (11) can be checked by observing that

lim
n→∞

(
n
(
1 − e−θ/n

)
− 1

)
log

(
n
(
1 − eθ/n

)
+ eθ/n

)
= (θ − 1) log(1 − θ)

and limn→∞ n(e−θ/n − 1) = −θ. �

Appendix A. Statement of Gärtner Ellis Theorem

In this Appendix we recall the statement of Gärtner Ellis Theorem. We refer to
Theorem 2.3.6 in [2] with some changes: we prefer to give a presentation for a sequence
of real valued random variables {Zn : n ≥ 1} (instead of R

d-valued random variables for
some d ≥ 1) and a general speed function {vn : n ≥ 1} (it is a sequence that tends to
infinity); in our results we consider the case Zn = Tn/(n logn) and vn = log n.

We start with Assumption 2.3.2 in [2]: for each θ ∈ R, there exists

Λ(θ) := lim
n→∞

1
vn

log E
[
eθvnZn

]
as an extended real number; further 0 belongs to the interior of

DΛ := {θ ∈ R : Λ(θ) < ∞}.
In this setting, we consider the Legendre transform I of Λ, i.e. the function I is defined

by (8) above. Moreover we recall the definitions of exposed point (of I) and essentially
smooth function.

Definition A.1. We say that y ∈ R is an exposed point of I if, for some θ ∈ R, we have
θy − I(y) > θx − I(x) for all x = y.

Definition A.2. A convex function Λ: R → (−∞,∞] is essentially smooth if D◦Λ is
non-empty, Λ is essentially smooth throughout D◦Λ and Λ is steep (namely

lim
n→∞ |Λ′(θn)| → ∞

whenever {θn : n ≥ 1} is a sequence in D◦Λ converging to a boundary point of D◦Λ).

Now we are ready to give the statement of Gärtner Ellis Theorem.
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Theorem A.3. Let Assumption 2.3.2 in [2] hold. Then:

lim sup
n→∞

1
vn

log P (Zn ∈ F ) ≤ − inf
x∈F

I(x) for all closed sets F ;

lim inf
n→∞

1
vn

log P (Zn ∈ G) ≥ − inf
x∈G∩F

I(x) for all open sets G,

where F is the set of exposed points; if Λ is essentially smooth and lower semi-continuous,
the LDP holds with the good rate function I.
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I-56127 Pisa, Italy

E-mail address: giuliano@dm.unipi.it
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