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ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS
FOR UNSTABLE SOLUTIONS OF ONE-DIMENSIONAL ITÔ

STOCHASTIC DIFFERENTIAL EQUATIONS
UDC 519.21

G. L. KULINICH, S. V. KUSHNIRENKO, AND Y. S. MISHURA

Abstract. We consider the stochastic one-dimensional differential equations with homogeneous drift
and unit diffusion. The drift satisfies conditions supplying the unstable property of the unique strong
solution. The explicit form of normalizing factor for certain integral functionals of unstable solution is
established to provide the weak convergence to the limiting process. As a result we get the new class
of limiting processes that are the functionals of Bessel diffusion processes.
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1. Introduction

Let (Ω,�,P) be the complete probability space and W = {W (t), t ≥ 0} be one-
dimensional Wiener process on this space. Let the function a = a(x) : R → R be measur-
able and bounded. It is well-known (see, e.g. [15] and [14], Theorem 4) that the stochastic
differential equation with the homogeneous drift and the unit diffusion

dξ(t) = a(ξ(t)) dt+ dW (t), t ≥ 0, (1)

has the unique strong solution ξ = {ξ(t), t ≥ 0} for any initial condition ξ(0) = x0 ∈ R.

Definition 1.1. Solution ξ = {ξ(t), t ≥ 0} of equation (1) is called unstable if for any
constant N > 0

lim
t→∞

1
t

∫ t

0

P{|ξ(s)| < N} ds = 0.

Definition 1.2. Solution ξ = {ξ(t), t ≥ 0} of equation (1) has ergodic distribution G(x)
if for all x ∈ R

lim
t→∞P{ξ(t) < x} = G(x).
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Definition 1.3. The family {ζT (t), t ≥ 0} of stochastic processes is said to converge
weakly as T → ∞ to the process {ζ(t), t ≥ 0} if for any L > 0 measures μT [0, L] that
correspond to the processes ζT (·) on the interval [0, L] converge weakly to the measure
μ[0, L] that corresponds to the process ζ(·).

Throughout the paper we suppose that the drift coefficient a satisfies assumption
(A1) there exists such C > 0 that for any x ∈ R

|xa(x)| ≤ C.

In this case we can say that the class of equations (1) is located on the border between
the equations whose solutions have ergodic distribution, and the equations with unstable
solutions. To illustrate this observation, consider the drift coefficient of the form a(x) =
ax

1+x2 and introduce the function

f(x) = exp
{
−2
∫ x

0

a(v) dv
}
. (2)

Note that in our case f(x) = (1 + x2)−a. In the paper [11] two cases were considered,
namely, a < − 1

2 , a > − 1
2 . It was proved that in the case a < − 1

2 the solution ξ of
equation (1) has ergodic distribution, is transient and moreover

lim
t→∞P{ξ(t) < x} =

[∫
R

dv

f(v)

]−1 [∫ x

−∞

dv

f(v)

]
=
[∫

R

(1 + v2)adv
]−1 [∫ x

−∞
(1 + v2)adv

]
.

(3)
At the same time in the case a > − 1

2 the solution ξ of equation (1) is unstable and
recurrent and furthermore the process rT (t) = |ξ(tT )|√

T
with normalizing factor 1√

T
weakly

converges as T →∞ to the Bessel process r(t) that is the solution of the Itô’s equation

dr2(t) = (2a+ 1) dt+ 2r(t) dŴ (t) (4)

with some Wiener process {Ŵ = Ŵ (t), t ≥ 0}. Here the weak convergence is considered
in the uniform topology on the space of continuous functions. The case a = − 1

2 is
critical in the sense that for a = − 1

2 the process is recurrent, P{limt→∞ ξ(t) = +∞} =
P{limt→∞ ξ(t) = −∞} = 1, however, we do not know the normalizing factor that supplies
the weak convergence.

The assertion that value a = − 1
2 is critical can be illustrated by the following examples:

1) If a(x) = − 1
2

x
1+x2 − 2 x

(1+x2) ln(1+x2) then the solution ξ of equation (1) has the

ergodic distribution and moreover, we have in equality (3) f(x) =
√

1 + x2
[
ln(1 + x2)

]2.
2) If a(x) = − 1

2
x

1+x2 + x
(1+x2) ln(1+x2) then the solution ξ of equation (1) is unstable,

and stochastic process ξ(tT )√
T

converges to degenerate process r(t) ≡ 0 as T →∞.
The present paper is devoted to the asymptotic behavior of the integral functionals

β(t) =
∫ t
0
g(ξ(s)) ds as t → ∞. We suppose that g = g(x) : R → R is locally integrable

function, ξ is the solution of equation (1). Also, introduce some additional notations.
Denote Ψ the class of functions ψ = ψ(r) > 0, r ≥ 0, that are non-decreasing and
regularly varying (at infinity) with index α > 0, i.e., limT→∞

ψ(rT )
ψ(T ) = rα for all r > 0.

Now, take function f that is defined via the relation (2), some constant b ∈ R and
denote

q(x) =
f(x)
ψ(|x|)

∫ x

0

g(u)
f(u)

du− b̄(x), b̄(x) = b signx. (5)

Suppose additionally that the drift coefficient a and function g satisfy assumption
(A2) (i) with one of the additional restrictions (ii), (iii) or (iv) and also one of the
assumptions (A3) and (A4):
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(A2) (i) There exist the constants ci, i = 1, 2 such that

lim
|x|→∞

[
1
x

∫ x

0

va(v) dv − c̄(x)
]

= 0, (6)

where

c̄(x) =

{
c1, x > 0,
c2, x < 0,

and moreover, one of the following restrictions on the coefficients hold:

(ii) c1 = c2 = c0 > − 1
2 ;

(iii) c1 > 1
2 , c2 < 1

2 ;
(iv) c1 < 1

2 , c2 > 1
2 .

(A3) (i) there exists a constant C > 0 such that f(x) ≤ C for any x ∈ R and
(ii) there exist such b ∈ R and function ψ ∈ Ψ that

lim
|x|→∞

1
x

∫ x

0

q2(u)
f(u)

du = 0; (7)

(A4) (i) there exists a constant δ > 0 such that 0 < δ ≤ f(x) for any x ∈ R and
(ii) there exist such b ∈ R and function ψ ∈ Ψ that

lim
|x|→∞

f(x)
x

∫ x

0

q2(u) du = 0. (8)

In the present paper in order to proof that under the conditions (A1), (A2) and one of
the conditions (A3) and (A4) random variable β(t)√

tψ(
√
t)

with normalizing factor 1√
tψ(
√
t)

has the limit distribution as t→∞, we study the limit behavior as T →∞ of the process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds,

with parameter T > 0. Theorems 2.1 and 2.2 describe the limit behavior mentioned
above.

Remark 1.1. It is very easy to see that any of conditions (A3) and (A4) supply the
convergence

lim
|x|→∞

1
x

∫ x

0

q2(u) du = 0. (9)

If condition (A3) holds then

1
x

∫ x

0

q2(u) du ≤ C
1
x

∫ x

0

q2(u)
f(u)

du→ 0 as |x| → ∞.

If condition (A4) holds then

1
x

∫ x

0

q2(u) du ≤ 1
δ

f(x)
x

∫ x

0

q2(u) du→ 0 as |x| → ∞.

Moreover, if 0 < δ ≤ f(x) ≤ C then (9) is equivalent both to (A3), (ii) and (A4), (ii).
However, neither (A3), (ii) and (A4), (ii) nor (9) do not supply convergence q(x) → 0
as |x| → ∞. In other words, under any of these conditions function q can admit “explo-
sions”.

Remark 1.2. The function q(x) (see Example 2.1) satisfies the condition (9). Obviously,
q(x) � 0 as |x| → ∞.
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As to previous results in this direction, it was proved in [11] that under the condi-
tion (A2) solution ξ of equation (1) is unstable. Moreover, in the case when (A2), (ii)
holds then |ξ(tT )|√

T
weakly converges as T → ∞ to process r that is the solution of equa-

tion (4) with a = c0. In the case when (A2), (iii) holds then ξ(tT )√
T

weakly converges to

process r with a = c1, and in the case when (A2), (iv) holds then −ξ(tT )√
T

weakly converges
to process r with a = c2. Asymptotic behavior of the process βT (t) in the case when
conditions (A2), (i) and (ii) hold and additionally q(x) → 0 as |x| → ∞ were considered
in the papers [5] and [12]. The results of the paper [5] are generalized in the present
paper to the case of the functions q = q(x) with possible “explosions” (conditions (A3)
and (A4)) and are extended to the cases when (A2), (i) and (iii) or (A2), (i) and (iv)
hold. Moreover, the proofs from [5] are essentially simplified in the present paper due to
the representation (12). The paper [12] contains similar result for the functional βT (t)
of the solution ξ of equation (1) on the half-axis (0,+∞) with the instant reflection of
the solution at zero point, and in this case it was supposed that ψ(|x|) = |x|α, α ≥ 0,
q(x) → 0 as x→∞.

The most complete results concerning the asymptotic behavior of the functionals βT (t)
are proved for the equations (1) with more restrictive assumption on the drift coefficient,
namely,

∣∣∫ x
0
a(u) du

∣∣ ≤ C (see [8] – [10]). The paper [8] contains the weak convergence of
distributions of βT (t) in the case when q(x) → 0 as |x| → ∞. In the paper [9] the weak
convergence of distributions of βT (t) was obtained under assumption (9) on function
q = q(x). In the paper [10] the necessary and sufficient conditions of weak convergence
were obtained that are connected, in some sense, to (9).

The asymptotic behavior of the integral functionals of the form
∫ t
0
gT (ξT (s)) dμT (s),

where ξT (t) are the solutions of stochastic differential equations and μT (t) is the family of
martingales that converge in probability, was considered in the paper [3, §5, Chapter IX]
under the assumption of locally uniform convergence of the coefficients of the equation.

The paper is organized as follows: principal results are proved in Section 2 while an
auxiliary lemma is relegated to Section 3. Section 4 concludes.

2. The main results

In what follows we denote C or C with some subscripts constants whose values are
not so important and can change from line to line.

Theorem 2.1. Let ξ be the solution of equation (1) with the drift coefficient a satisfying
assumptions (A1), (A2), (i) and one of the assumptions (A2), (ii), (iii) or (iv).

Then the stochastic process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds

converges as T →∞ weakly in the unform topology of the space of continuous functions
to the process

β(t) = 2b
[
rα+1(t)
α+ 1

−
∫ t

0

rα(s) dŴ (s)
]
,

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = (2a+ 1) dt+ 2r(t) dŴ (t).

Here a = c0 in the case when assumption (A2), (ii) is satisfied, a = c1 in the case when
assumption (A2), (iii) is satisfied and a = c2 in the case when assumption (A2), (iv) is
satisfied.
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Proof. Introduce parameter T > 0 and set

rT (t) =
|ξ(tT )|√

T
, WT (t) =

W (tT )√
T

, ŴT (t) =
∫ t

0

sign ξ(sT ) dWT (s),

PN = P

{
sup

0≤t≤L
rT (t) > N

}
, αT (t) =

1
T

∫ tT

0

[ξ(s)a(ξ(s)) − c̄(ξ(s))] ds,

where L and N are arbitrary positive constants. Evidently, for any fixed T > 0 process
WT = {WT (t), t ≥ 0} is a Wiener process. Furthermore, it follows, e.g., from [2, Chap-
ter 6, §3, Lemma 5] that ∫ t

0

P{ξ(s) = 0} ds = 0

for any t > 0. Therefore ŴT = {ŴT (t), t ≥ 0} for any T > 0 is continuous with
probability 1 square integrable martingale with the quadratic characteristics 〈ŴT 〉(t) = t.
It immediately follows from the Doob’s theorem that ŴT is a Wiener process for any
T > 0. Applying Itô’s formula to the process r2T , we get

r2T (t) =
x2

0

T
+
∫ t

0

[2c̄(ξ(sT )) + 1] ds+ 2
∫ t

0

rT (s) dŴT (s) + 2αT (t).

Consider the function

F (x) = 2
∫ x

0

f(u)
(∫ u

0

g(v)
f(v)

dv

)
du.

Obviously, function F has a continuous derivative F ′ and a.e. w.r.t. to the Lebesgue
measure on R has a second derivative F ′′ that is locally integrable. Therefore we can
apply an Itô’s formula from [6, Chapter 2, §10] to F (ξ(t)) and get the equality

F (ξ(t))− F (x0) =
∫ t

0

[
F ′(ξ(s))a(ξ(s)) +

1
2
F ′′(ξ(s))

]
ds+

∫ t

0

F ′(ξ(s)) dW (s) (10)

with probability 1 for any t ≥ 0. It is easy to see that a.e. w.r.t. to the Lebesgue measure
on R the following equality holds

F ′(x)a(x) +
1
2
F ′′(x) = g(x). (11)

Applying (11) to (10) we get that

F (ξ(t)) − F (x0) =
∫ t

0

g(ξ(s)) ds+
∫ t

0

F ′(ξ(s)) dW (s)

with probability 1 for any t ≥ 0. After some evident transformations we get from the
last equality that

βT (t) =
1√

Tψ(
√
T )

[
F (ξ(tT ))− F (x0)−

∫ tT

0

F ′(ξ(s)) dW (s)

]
.
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Let us consider the first term

F (ξ(tT ))√
Tψ(

√
T )

=
2√

Tψ(
√
T )

∫ ξ(tT )

0

f(u)
(∫ u

0

g(v)
f(v)

dv

)
du

=
2√

Tψ(
√
T )

∫ ξ(tT )

0

(
f(u)
ψ(|u|)

∫ u

0

g(v)
f(v)

dv ± b̄(u)
)
ψ(|u|) du

=
2√

Tψ(
√
T )

(∫ ξ(tT )

0

b̄(u)ψ(|u|) du +
∫ ξ(tT )

0

q(u)ψ(|u|) du
)

= 2b
∫ |ξ(tT )|√

T

0

ψ
(
|u|√T

)
ψ(
√
T )

du+
2√

Tψ(
√
T )

∫ ξ(tT )

0

q(u)ψ (|u|) du

= 2b
∫ |ξ(tT )|√

T

0

|u|α du+ 2b
∫ |ξ(tT )|√

T

0

⎛⎝ψ
(
|u|√T

)
ψ(
√
T )

− |u|α
⎞⎠ du

+
2√

Tψ(
√
T )

∫ ξ(tT )

0

q(u)ψ (|u|) du,

and transform the last term

1√
Tψ(

√
T )

∫ tT

0

F ′(ξ(s)) dW (s) =
2√

Tψ(
√
T )

∫ tT

0

f(ξ(s))

(∫ ξ(s)

0

g(u)
f(u)

du

)
dW (s)

=
2√

Tψ(
√
T )

[∫ tT

0

b̄(ξ(s))ψ(|ξ(s)|) dW (s) +
∫ tT

0

q(ξ(s))ψ(|ξ(s)|) dW (s)

]

=
2

ψ(
√
T )

∫ t

0

b̄(ξ(sT ))ψ(|ξ(sT )|) dW (sT )√
T

+ 2
∫ t

0

q(ξ(sT ))
ψ(|ξ(sT )|)
ψ(
√
T )

dWT (s)

= 2b
∫ t

0

ψ(|ξ(sT )|)
ψ(
√
T )

dŴT (s) + 2
∫ t

0

q(ξ(sT ))
ψ(|ξ(sT )|)
ψ(
√
T )

dWT (s)

= 2b
∫ t

0

rαT (s) dŴT (s) + 2b
∫ t

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rαT (s)

]
dŴT (s)

+ 2
∫ t

0

q(ξ(sT ))
ψ(rT (s)

√
T )

ψ(
√
T )

dWT (s).

Therefore

βT (t) = − F (x0)√
Tψ(

√
T )

+ 2b
∫ rT (t)

0

uαdu− 2b
∫ t

0

rαT (s) dŴT (s) + 2
4∑

k=1

S
(k)
T (t), (12)

where

S
(1)
T (t) = b

∫ rT (t)

0

[
ψ(u

√
T )

ψ(
√
T )

− uα
]
du,

S
(2)
T (t) =

1√
Tψ(

√
T )

∫ ξ(tT )

0

q(u)ψ(|u|) du,

S
(3)
T (t) = −b

∫ t

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rαT (s)

]
dŴT (s),

S
(4)
T (t) = −

∫ t

0

q(ξ(sT ))
ψ(rT (s)

√
T )

ψ(
√
T )

dWT (s).
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It is known from [11] that under condition (A1) the process {rT (t), t ≥ 0} converges
weakly as T → ∞ to the process {r(t), t ≥ 0} that is the solution of equation (4) with
a = c0 in the case (A2),(ii), with a = c1 in the case (A2), (iii) and with a = c2 in the
case (A2), (iv). Furthermore, for any L > 0 and ε > 0 we have that

lim
N→∞

lim
T→∞

PN = 0,

lim
h→0

lim
T→∞

sup
|t1−t2|≤h; ti≤L

P {|rT (t2)− rT (t1)| > ε} = 0. (13)

Now we are in position to establish that S(k)
T , k = 1, . . . , 4, uniformly converge to zero

in probability. In particular, it means that they satisfy equalities (13) as well. To start
with, note that it follows from Lemma 3.1, evident inequalities

P {|η + ζ| > ε} ≤ P
{
|η| > ε

2

}
+ P

{
|ζ| > ε

2

}
, P {|η| > ε} ≤ Eh(|η|)

h(ε)

with h = x and h = x2 and the properties of Itô’s integrals that for any ε > 0, L > 0 and
T ≥ TN , where TN are introduced in Lemma 3.1, the following inequalities hold true:

P

{
sup

0≤t≤L
|S(1)
T (t)| > ε

}
≤ PN +

2
ε

E sup
0≤t≤L

|S(1)
T (t)|χ{rT (t)≤N}

≤ PN +
2
ε
|b|
∫ N

0

∣∣∣∣∣ψ(u
√
T )

ψ(
√
T )

− uα
∣∣∣∣∣ du,

(14)

P

{
sup

0≤t≤L

∣∣∣S(2)
T (t)

∣∣∣ > ε

}
≤ P

{
sup

0≤t≤L

∣∣∣∣∣
∫ ξ(tT )√

T

0

q(u
√
T )
ψ(|u|√T )
ψ(
√
T )

du

∣∣∣∣∣ > ε

}

≤ PN +
2
ε

E sup
0≤t≤L

∣∣∣∣∣
∫ ξ(tT )√

T

0

q(u
√
T )
ψ(|u|√T )
ψ(
√
T )

du

∣∣∣∣∣χ{rT (t)≤N}

≤ PN +
2
ε
CN

∫ N

−N
|q(u

√
T )| du ≤ PN +

2
ε
CN (2N)

1
2

(
1√
T

∫ N
√
T

−N√T
q2(u) du

) 1
2

,

(15)

P

{
sup

0≤t≤L
|S(3)
T (t)| > ε

}
≤ PN + 4

(
2
ε

)2

b2 E

∫ L

0

∣∣∣∣∣ψ(rT (s)
√
T )

ψ(
√
T )

− rαT (s)

∣∣∣∣∣
2

χ{rT (s)≤N} ds,

(16)

P

{
sup

0≤t≤L
|S(4)
T (t)| > ε

}
≤ PN + 4

(
2
ε

)2

E

∫ L

0

q2(ξ(sT ))

[
ψ(rT (s)

√
T )

ψ(
√
T )

]2

χ{rT (s)≤N} ds

≤ PN + 4
(

2
ε

)2

C2
N E

∫ L

0

q2(ξ(sT ))χ{rT (s)≤N} ds.

(17)
Taking into account the convergence ψ(|x|√T )

ψ(
√
T )

− |x|α → 0 as T →∞, boundedness on
the interval |x| ≤ N and relation (9), we let in inequalities (14) and (15) T → ∞ and
after that N →∞ and get

sup
0≤t≤L

∣∣∣S(k)
T (t)

∣∣∣ P→ 0 (18)

as T →∞ and for k = 1, 2.
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Now we shall establish similar convergence for k = 3, 4. It is known from [4] that for
any 0 < δ < N <∞ the following convergence holds:

sup
0<δ≤|x|≤N

∣∣∣∣∣ψ(|x|√T )
ψ(
√
T )

− |x|α
∣∣∣∣∣→ 0

as T →∞. Therefore, taking into account monotonicity of function ψ(r), r ≥ 0, we get
the following convergence for any 0 < δ < N :

E

∫ L

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rT (s)

]2

χ{rT (s)≤N} ds

≤ L sup
δ≤|x|≤N

∣∣∣∣∣ψ(|x|√T )
ψ(
√
T )

− |x|α
∣∣∣∣∣
2

+ 2
∫ L

0

⎛⎝[ψ(δ
√
T )

ψ(
√
T )

]2

+ δ2

⎞⎠ ds→ 0,

if to tend at first T →∞ and after that δ → 0.
So, taking into account inequality (16) we get that convergence (18) holds for S(3)

T (t)
as well. At last, in order to prove convergence (18) for S(4)

T (t), we apply Itô formula and
get

E

∫ L

0

q2(ξ(sT ))χ{|ξ(sT )|≤N√T} ds = E [ΦT (ξ(LT ))− ΦT (x0)] ,

where

ΦT (x) =
1
T

∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

χ{|v|≤N√T} dv
)
du.

Now we consider separately conditions (A3) and (A4). It is easy to see that under
condition (A3) we have the following relations

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ C

x2

∣∣∣∣∫ x

0

(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣
=

C

x2

∣∣∣∣∫ x

0

u

(
1
u

∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣→ 0 as |x| → ∞.

In turn, under condition (A4) we have the following relations

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ 1
δ

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v) dv
)
du

∣∣∣∣
=

1
δ

1
x2

∣∣∣∣∫ x

0

u

(
f(u)
u

∫ u

0

q2(v) dv
)
du

∣∣∣∣→ 0 as |x| → ∞.

Therefore, any of conditions (A3) and (A4) supply the following convergence

1
x2

∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du→ 0

as |x| → ∞. Therefore for any ε > 0 there exists such Lε that for |x| > Lε we have
inequality

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ < ε. (19)

Furthermore, since function 1
x2

∫ x
0
f(u)

(∫ u
0
q2(v)
f(v) dv

)
du is bounded at zero, there exists

such Cε > 0 that

sup
|x|≤Lε

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ Cε. (20)
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Besides this,

E
|ξ(tT )|2

T
≤ C + C1t. (21)

Relations (19) and (20) together with (21) provide that

E |ΦT (ξ(LT ))| ≤ E
|ξ(tT )|2

T
· 1
|ξ(LT )|2

∣∣∣∣∣
∫ ξ(LT )

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣∣
≤ Cε

T
+ ε(C + C1t),

whence E |ΦT (ξ(LT ))| → 0 as T →∞. Evidently, |ΦT (x0)| ≤ C
T . Therefore,

E

∫ L

0

q2(ξ(sT ))χ{|ξ(sT )|≤N√T} ds→ 0

as T → ∞. Together with (17) it means that the convergence (18) holds for S(4)
T (t) as

well. Evidently, relation (13) holds for processes ŴT (t).
It means that we can apply Skorokhod representation theorem [13] and for any se-

quence Tn → ∞ to choose the subsequence T ′n → ∞, probability space (Ω̃, �̃, P̃) and
processes (r̃T ′n(t), W̃T ′n(t), S̃(i)

T ′n
(t), i = 1, . . . , 4) on this space so that the couple of processes

will be stochastically equivalent to the process (rT ′n(t), ŴT ′n(t), S(i)
T ′n

(t), i = 1, . . . , 4) and
moreover,

r̃T ′n(t) P̃→ r̃(t), W̃T ′n(t) P̃→ W̃ (t), S̃
(i)
T ′n

(t) P̃→ S̃(i)(t), i = 1, . . . , 4,

as T ′n →∞. In our case, according to (18), S̃(i)(t) = 0, i = 1, . . . , 4, and the processes r̃(t),
W̃ (t) satisfy equations (4) with a = c0 in the case (A2), (ii), a = c1 in the case (A2), (iii)
and a = c2 in the case (A2), (iv), see [11].

According to equality (12) we have that the functional βT ′n(t) is stochastically equiv-
alent to the functional β̃T ′n(t) for which we have similar equality

β̃T ′n(t) = − F (x0)√
T ′nψ(

√
T ′n)

+ 2b
∫ r̃T ′n (t)

0

uα du− 2b
∫ t

0

r̃αT ′n(s) dW̃T ′n(s)+ 2
4∑
i=1

S̃
(i)
T ′n

(t). (22)

It is possible to get the limit as T ′n → ∞ [13] in this equality and get that β̃T ′n(t) P̃→
β̃(t), where

β̃(t) = 2b

[∫ r̃(t)

0

uαdu −
∫ t

0

r̃α(s) dW̃ (s)

]
. (23)

It follows from the strong uniqueness of the solution of equation (4) (see, e.g., [7]) that
the distributions of the limit process β̃(t) are unique as well. Therefore, it follows from
arbitrary choice of Tn → ∞ that the finite-dimensional distributions of the processes
βT (t) tend as T → ∞ to the corresponding distributions of the process β̃(t) that is
defined by equality (23). In order to establish the weak convergence of the processes
βT (t) to the process β̃(t), it is sufficient to prove tightness, i.e., to prove that for any
L > 0

lim
h→0

lim
T→∞

P

{
sup

|t1−t2|≤h; ti≤L
|βT (t2)− βT (t1)| > ε

}
= 0. (24)

Tightness of the processes rT (t) was established in [11] and it was mentioned that
tightness of S(i)

T (t) = 0, i = 1, . . . , 4, follows from (18). Furthermore, taking into account
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the properties of stochastic Itô integrals, we get the following bounds for any ε > 0,
L > 0 and N > 0:

P

{
sup

|t1−t2|≤h;ti≤L

∣∣∣∣∣
∫ rT (t2)

0

uαdu−
∫ rT (t1)

0

uαdu

∣∣∣∣∣ > ε

}

≤ PN + P

{
Nα sup

|t1−t2|≤h; ti≤L
|rT (t2)− rT (t1)| > ε

2

} (25)

and

P

{
sup

|t1−t2|≤h;ti≤L

∣∣∣∣ ∫ t2

t1

rαT (s) dŴT (s)
∣∣∣∣ > ε

}

≤ PN + P

{
4 sup
kh≤L

sup
kh≤t≤(k+1)h

∣∣∣∣∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
∣∣∣∣ > ε

2

}

≤ PN +
∑
kh<L

P

{
sup

kh≤t≤(k+1)h

∣∣∣∣∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
∣∣∣∣ > ε

8

}

≤ PN +
∑
kh<L

(
8
ε

)4

E sup
kh≤t≤(k+1)h

[∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
]4

≤ PN +
∑
kh≤L

(
8
ε

)4(4
3

)4

E

[∫ (k+1)h

kh

rαT (s)χ{rT (s)≤N} dŴT (s)

]4

≤ PN +
(

8
ε

)4(4
3

)4

· 36N4α
∑
kh≤L

h2

≤ PN +
ChN4α

ε4
.

(26)

In the last inequality the following upper bound for the fourth moment of the Itô’s
integral w.r.t. the Wiener process from [1] or [13] was used:

E

(∫ b

a

f(t) dW (t)

)4

≤ 36(b− a)
∫ b

a

E |f(t)|4 dt.

It follows from (25) and (26) that the right-hand side of (12) is tight, i.e., satisfies (24).
So, we have tightness (24) and consequently βT (t) weakly converges as T → ∞ to the
process β(t) whence the proof follows. �

Example 2.1. Consider equation (1) with the drift coefficient of the form a(x) = x
1+x2 .

In this case f(x) = (1 + x2)−1 and the function q(x) from (5) can be rewritten as

q(x) =
1

ψ(|x|)(1 + x2)

∫ x

0

g(u)
(
1 + u2

)
du− b signx.

Let ψ(|x|) = |x| is slowly varying (at infinity) function (α = 1), then∫ x

0

g(u)
(
1 + u2

)
du = bx

(
1 + x2

)
+ q(x)|x| (1 + x2

)
= x

(
1 + x2

)
[b+ q(x) sign x] ,

whence

g(x) =
1

1 + x2

[
x
(
1 + x2

)
(b+ q(x) sign x)

]′
a.e. w.r.t. to the Lebesgue measure on R.
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Consider the continuous function with “explosions”

q(x) =

{
q1(x), x ∈ Δn,

0, x /∈ Δn,

where q1(x) > 0, maxx∈Δn q1(x) = 1, Δn =
(
n;n+ 1

n3

)
, n ∈ N. Continuing q(x) in

a symmetric way to (−∞, 0), we obtain that the function q(x), x ∈ R, satisfies the
condition (7) with the function f(x) = (1 + x2)−1 ≤ C.

If we put q(x) in the last allocated equality we get g(x) such that the stochastic process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds =
1
T

∫ tT

0

g(ξ(s)) ds

converges as T →∞ weakly to the process

β(t) = 2b
[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = 3 dt+ 2r(t) dŴ (t).

In this case β(t) = 3bt.

Remark 2.1. Analyzing the proof of Theorem 2.1 it is easy to see that it is true even
in the case when we establish just the weak convergence of the processes rT (t) to the
process r(t) and the representation (12) in which sup0≤t≤L

∣∣S(k)
T (t)

∣∣ P→ 0, k = 1, . . . , 4 as
T →∞ for any L > 0.

In this connection, we can deduce the following statement as a corollary of Theo-
rem 2.1.

Theorem 2.2. Let ξ be a solution of equation (1) and let convergence relation (6) holds.
Also, let locally integrable real-valued function g is such that there exists non-decreasing
function ψ(r), r ≥ 0 that is regularly varying at infinity of order α > 0 and q(x) → 0 as
|x| → ∞. Here q is defined in (5). Then Theorem 2.1 holds.

Proof. Indeed, apply the representation (12). Similarly to proof of Theorem 2.1 we get
that sup0≤t≤L

∣∣S(k)
T (t)

∣∣ P→ 0 as T → ∞, k = 1, 2, 3. Convergence sup0≤t≤L
∣∣S(4)
T (t)

∣∣ P→ 0
as T →∞ follows directly from inequality (17) and convergence q(x) → 0 as |x| → ∞. In
order to finish the proof of the present theorem, it is sufficient to apply Remark 2.1. �

Example 2.2. Consider the class of equations (1) with the drift coefficient of the form

a(x) =
xc̄(x)
1 + x2

,

where

c̄(x) =

{
c1, x > 0,
c2, x < 0,

c1 = c2 = c0, 2c0 + 1 > 0.

1) Let c0 = 1. In this case f(x) = (1 + x2)−1 and in order to satisfy the assumptions
of Theorem 2.2 the function q(x) can be rewritten as

q(x) =
1

|x|(1 + x2)

∫ x

0

g0(1 + u2) du− b signx.
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If b = g0
3 , g(x) = g0, ψ(|x|) = |x| is slowly varying (at infinity) function (α = 1), then

q(x) → 0 as |x| → ∞ and the stochastic process βT (t) = 1√
Tψ(

√
T )

∫ tT
0
g0 ds = 1

T g0
∫ tT
0

ds

converges as T →∞ weakly to the process

β(t) = 2b
[
rα+1(t)
α+ 1

−
∫ t

0

rα(s) dŴ (s)
]

=
2
3
g0

[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = 3 dt+ 2r(t) dŴ (t).

In this case β(t) = g0t.
2) Let c0 = 1

2 , so f(x) = (1 + x2)
−1
2 . If g(x) = g0, ψ(|x|) = |x|, b = g0

2 and

q(x) =
1

|x|√1 + x2
g0

∫ x

0

√
1 + u2 du− g0

2
signx→ 0 as |x| → ∞,

then the stochastic process βT (t) converges as T →∞ weakly to the process β(t) = g0t.
3) If c0 = 1, g(x) = sin2 x, ψ(|x|) = |x|, b = 1

6 , then

q(x) =
1

|x|(1 + x2)

∫ x

0

(
1 + u2

)
sin2 u du− 1

6
signx→ 0 as |x| → ∞.

The stochastic process βT (t) = 1√
Tψ(

√
T )

∫ tT
0 sin2(ξ(s)) ds = 1

T

∫ tT
0 sin2(ξ(s)) ds con-

verges as T →∞ weakly to the process

β(t) =
1
3

[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

=
t

2
.

3. Auxiliary result

Now we prove an auxiliary result concerning regularly varying functions ψ(r), r ≥ 0,
that was applied in the proof of Theorem 2.1.

Lemma 3.1. Let the function ψ(r), r ≥ 0 be positive, non-decreasing and regularly
varying (at infinity) with index α ≥ 0. Then for an arbitrary N > 0 there exist constants
CN <∞, 0 < TN <∞ such that uniformly on T ≥ TN

sup
0≤r≤N

ψ(r
√
T )

ψ(
√
T )

≤ CN .

Proof. It is clear that

sup
0≤r≤N

ψ(r
√
T )

ψ(
√
T )

≤ ψ(N
√
T )

ψ(
√
T )

.

Since for regularly varying function ψ(r) we have convergence

ψ(N
√
T )

ψ(
√
T )

→ Nα,

as T →∞, then for ε = 1 there exists a constant TN <∞ such that for all T ≥ TN the
following inequality holds true

ψ(N
√
T )

ψ(
√
T )

≤ Nα + 1.

Hence the statement of Lemma 3.1 is proved for CN = Nα + 1. �
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