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MINIMAX-ROBUST FILTERING PROBLEM FOR STOCHASTIC
SEQUENCE WITH STATIONARY INCREMENTS

UDC 519.21

M. M. LUZ AND M. P. MOKLYACHUK

Abstract. The problem of optimal estimation of the linear functional Aξ =
�∞

k=0 a(k)ξ(−k) which
depends on unknown values of a stochastic sequence ξ(k) with stationary nth increments from ob-
servations of the sequence ξ(k) + η(k) at points of time k = 0,−1,−2, . . . is considered. Formulas
for calculation the mean-square error and spectral characteristic of the optimal linear estimate of the
functional are derived under the condition of spectral certainty, where spectral densities of the se-
quences ξ(k) and η(k) are exactly known. The minimax (robust) method of estimation is applied
in the case where spectral densities are not known exactly, but sets of admissible spectral densities
are given. Formulas that determine the least favorable spectral densities and the minimax spectral
characteristics are proposed for some special sets of admissible spectral densities.
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1. Introduction

Traditional methods of solution of extrapolation, interpolation and filtering prob-
lems for stationary stochastic processes and sequences were developed by A. N. Kol-
mogorov [11], N. Wiener [26], A. M. Yaglom [28] under the condition of spectral certainty
where spectral densities of the considered stochastic processes are exactly known. In the
case where spectral densities are not exactly known, but a set of admissible spectral den-
sities is given, we can apply the minimax method for solving extrapolation, interpolation
and filtering problems, which allows us to determine estimates that minimize the value
of the mean-square error for all densities from a given class.
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A survey of results in minimax (robust) methods of data processing is proposed by
S. A. Kassam and H. V. Poor [10]. The paper by Ulf Grenander [7] should be marked
as the first one where the minimax approach to extrapolation problem for stationary
processes was developed. J. Franke [8], J. Franke and H. V. Poor [9] investigated the mini-
max extrapolation and filtering problems for stationary sequences with the help of convex
optimization methods. In the works by M. P. Moklyachuk [14]–[17] problems of extrap-
olation, interpolation and filtering for stationary processes and sequences were studied.
Methods of solution the minimax-robust estimation problems for vector-valued stationary
sequences and processes were developed by M. P. Moklyachuk and O. Yu. Masyutka [19]–
[23]. Methods of solution the minimax-robust estimation problems (extrapolation, inter-
polation and filtering) for linear functionals which depend on unknown values of periodi-
cally correlated stochastic processes were proposed by I. I. Dubovets’ka and M. P. Mokly-
achuk [2]–[6]. M. M. Luz and M. P. Moklyachuk [12]–[13] investigated the minimax in-
terpolation problem for stochastic sequences ξ(m) with stationary n-th increments from
observations of the sequence with an additive noise and from observations without noise.

In this paper we investigate the problem of optimal linear filtering of a functional
Aξ =

∑∞
k=0 a(k)ξ(−k) which depends on unobserved values of a stochastic sequence ξ(m)

with nth stationary increments based on observations of the sequence ξ(k)+η(k) at points
k = 0,−1,−2, . . . , where η(k) is a stochastic sequence with stationary nth increments
which is uncorrelated with the sequence ξ(k). This filtering problem is solved in the case
of spectral certainty where spectral densities of sequences ξ(m) and η(m) are exactly
known as well as in the case of spectral uncertainty where spectral densities of sequences
are not exactly known, but a set of admissible spectral densities is given. Formulas that
determine the least favorable spectral densities and minimax (robust) spectral character-
istics of the optimal linear estimate of the functional are proposed in the case of spectral
uncertainty for concrete classes of admissible spectral densities.

2. Stochastic stationary increment sequence. Spectral representation

Stochastic processes with stationary n-th increments were introduced and investigated
by A. M. Yaglom [27], M. S. Pinsker [25], A. M. Yaglom and M. S. Pinsker [24].

Definition 2.1. For a given stochastic sequence {ξ(m),m ∈ Z} a sequence

ξ(n)(m,μ) = (1 −Bμ)nξ(m) =
n∑
l=0

(−1)lClnξ(m− lμ), (1)

where Bμ is a backward shift operator with step μ ∈ Z, such that Bμξ(m) = ξ(m − μ),
is called stochastic nth increment sequence with step μ ∈ Z.

For the stochastic nth increment sequence ξ(n)(m,μ) the following relations hold true:

ξ(n)(m,−μ) = (−1)nξ(n)(m+ nμ, μ), (2)

ξ(n)(m, kμ) =
∑(k−1)n

l=0
Alξ

(n)(m− lμ, μ), k ∈ N, (3)

where coefficients {Al, l = 0, 1, 2, . . . , (k − 1)n} are determined by the representation

(1 + x+ · · ·+ xk−1)n =
(k−1)n∑
l=0

Alx
l.

Definition 2.2. The stochastic nth increment sequence ξ(n)(m,μ) generated by stochas-
tic sequence {ξ(m),m ∈ Z} is wide sense stationary if the mathematical expectations

Eξ(n)(m0, μ) = c(n)(μ),

Eξ(n)(m0 +m,μ1)ξ(n)(m0, μ2) = D(n)(m,μ1, μ2)
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exist for all m0, μ, m, μ1, μ2 and do not depend on m0. The function c(n)(μ) is called the
mean value of the nth increment sequence and the function D(n)(m,μ1, μ2) is called the
structural function of the stationary nth increment sequence (or the structural function
of nth order of the stochastic sequence {ξ(m),m ∈ Z}).

The stochastic sequence {ξ(m),m ∈ Z} which determines the stationary nth increment
sequence ξ(n)(m,μ) by formula (1) is called sequence with stationary nth increments.

Theorem 2.1. The mean value c(n)(μ) and the structural function D(n)(m,μ1, μ2) of
the stochastic stationary nth increment sequence ξ(n)(m,μ) can be represented in the
following forms:

c(n)(μ) = cμn, (4)

D(n)(m,μ1, μ2) =
∫ π

−π
eiλm

(
1− e−iμ1λ

)n (
1− eiμ2λ

)n 1
λ2n

dF (λ), (5)

where c is a constant, F (λ) is a left-continuous nondecreasing bounded function with
F (−π) = 0. The constant c and the function F (λ) are determined uniquely by the
increment sequence ξ(n)(m,μ).

From the other hand, a function c(n)(μ) which has the form (4) with a constant c and a
function D(n)(m,μ1, μ2) which has the form (5) with a function F (λ) which satisfies the
indicated conditions are the mean value and the structural function of some stationary
nth increment sequence ξ(n)(m,μ).

Using representation (5) of the structural function of a stationary nth increment se-
quence ξ(n)(m,μ) and the Karhunen theorem [1], we obtain the following spectral repre-
sentation of the stationary nth increment sequence ξ(n)(m,μ):

ξ(n)(m,μ) =
∫ π

−π
eimλ

(
1− e−iμλ)n 1

(iλ)n
dZ(λ), (6)

where Z(λ) is an orthogonal stochastic measure on [−π, π) connected with the spectral
function F (λ) by the relation

EZ(A1)Z(A2) = F (A1 ∩A2) <∞. (7)

Example 2.1. Consider an ARIMA(0,1,1) sequence defined by the equation

ξm = ξm−1 + εm + aεm−1,

where εm is a sequence of uncorrelated identically distributed random variables with
mean value 0 and variance σ2. If we take ηm = ξm − ξm−1 we obtain a moving average
sequence ηm = εm+aεm−1. Thus, ξm is a stochastic sequence with stationary increments
of the 1st order. The spectral function F (λ) of the sequence ξm can be calculated as
follows

F (λ) =
σ2

4π

∫ λ

−π

u2

1− cosu
(
1 + 2a cosu+ a2

)
du.

Here are some values of the structural function;

D(1)(0, 1, 1) = σ2
(
1 + a2

)
, D(1)(0, 1, 2) = σ2

(
1 + a+ a2

)
,

D(1)(0, 2, 2) = 2σ2(1 + a+ a2),

D(1)(m, 1, 1) =

⎧⎪⎨⎪⎩
σ2(1 + a2), m = 0,
σ2a, m = −1, 1,
0, otherwise,
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D(1)(m, 1, 2) =

⎧⎪⎨⎪⎩
σ2(1 + a+ a2), m = −1, 0,
σ2a2, m = −2, 1,
0, otherwise,

D(1)(m, 2, 2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2σ2(1 + a+ a2), m = 0,
σ2(1 + 2a+ a2), m = −1, 1,
σ2a2, m = −2, 2,
0, otherwise.

3. Filtering problem for the functional Aξ

Let a stochastic sequence {ξ(m),m ∈ Z} define a stationary nth increment ξ(n)(m,μ)
with an absolutely continuous spectral function F (λ) which has spectral density f(λ).
Let {η(m),m ∈ Z} be a stochastic sequence, uncorrelated with the sequence ξ(m), which
determines a stationary nth increment η(n)(m,μ) with an absolutely continuous spectral
function G(λ) whith has spectral density g(λ). Without loss of generality we will assume
that the mean values of the increment sequences ξ(n)(m,μ) and η(n)(m,μ) equal to 0. Let
us suppose that we know values of the sequence ξ(m)+η(m) at pointsm = 0,−1,−2, . . . .
Consider the problem of mean-square optimal linear estimation of the functional

Aξ =
∞∑
k=0

a(k)ξ(−k)

of unknown values of the sequence ξ(m) from observation of the sequence ξ(m) + η(m)
at points m = 0,−1,−2, . . . . We will consider the case where the step μ > 0.

From (1) we can obtain the formal equation

ξ(−k) =
1

(1 −Bμ)n ξ
(n)(−k, μ) =

∞∑
i=k

dμ(i− k)ξ(n)(−i, μ), (8)

where {dμ(i) : i ≥ 0} are coefficients from decomposition
∑∞
i=0 dμ(i)x

i =
(∑∞

l=0 x
μl
)n.

From equation (8) one can find the following relations:
∞∑
k=0

a(k)ξ(−k) =
∞∑
i=0

ξ(n)(−i, μ)
i∑

k=0

a(k)dμ(i− k),

∞∑
k=0

bμ(k)ξ(n)(−k, μ) =
∞∑
i=0

ξ(−i)
min{n,[ i

μ ]}∑
l=0

(−1)lClnbμ(i− lμ).

From the last two relations we obtain the following representation of the functional Aξ:

Aξ =
∞∑
k=0

a(k)ξ(−k) =
∞∑
k=0

bμ(k)ξ(n)(−k, μ) = Bξ,

bμ(k) =
k∑

m=0

a(m)dμ(k −m) = (Dμa)k, k ≥ 0, (9)

where Dμ is a linear operator with elements Dμ
k,j = dμ(k−j) if 0 ≤ j ≤ k and Dμ

k,j = 0 if
j > k; a = (a(0), a(1), a(2), . . . ). Let Âξ denote the mean-square optimal linear estimate
of the functional Aξ from observations of stochastic sequence ξ(m)+η(m) at points m =
0,−1,−2, . . . and let B̂ξ denote the mean-square optimal linear estimate of the functional
Bξ from observations of the stochastic nth increment sequence ξ(n)(m,μ) + η(n)(m,μ)
at points m = 0,−1,−2, . . . .
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Let Δ(f, g, Âξ) = E|Aξ − Âξ|2 be the mean-square error of the estimate Âξ of the
functional Aξ and let Δ(f, g, B̂ξ) = E|Bξ−B̂ξ|2 be the mean-square error of the estimate
B̂ξ of the functional Bξ. Since Aξ = Bξ, the following equality holds true:

Âξ = B̂ξ. (10)

Therefore, the following relations hold true

Δ(f, g, Âξ) = E|Aξ − Âξ|2 = E|Bξ − B̂ξ|2 = Δ(f, g, B̂ξ).

To find the mean-square optimal estimate of the functional Bξ we use the Hilbert space
orthogonal projection method proposed by A. M. Kolmogorov [11]. Suppose that condi-
tions

∞∑
k=0

|bμ(k)| <∞,
∞∑
k=0

(k + 1)|bμ(k)|2 <∞, (11)

∞∑
k=0

|(Dμa)k| <∞,
∞∑
k=0

(k + 1)|(Dμa)k|2 <∞ (12)

are satisfied.
Let H0

(
ξ
(n)
μ +η

(n)
μ

)
be the closed linear subspace of the Hilbert space H = L2(Ω,F,P)

of the second order random variables generated by values
{
ξ(n)(k, μ)+η(n)(k, μ) : k ≤ 0

}
,

μ > 0. Consider also a closed linear subspace L0
2(f + g) of the Hilbert space L2(f + g)

generated by functions {
eiλk

(
1− e−iλμ)n 1

(iλ)n
: k ≤ 0

}
.

From the formula

ξ(n)(k, μ) + η(n)(k, μ) =
∫ π

−π
eiλk

(
1− e−iλμ)n 1

(iλ)n
dZξ(n)+η(n)(λ)

one can verify the existence of one to one correspondence between element

eiλk(1− e−iλμ)n/(iλ)n

from the space L0
2(f+g) and element ξ(n)(k, μ)+η(n)(k, μ) from the spaceH0

(
ξ
(n)
μ +η(n)

μ

)
.

Every linear estimate B̂ξ of the functional Bξ admits representation

B̂ξ =
∫ π

−π
hμ(λ) dZξ(n)+η(n)(λ), (13)

where hμ(λ) is the spectral characteristic of the estimate B̂ξ. The optimal estimate B̂ξ
is a projection of the element Bξ on the subspace H0(ξ(n)

μ + η
(n)
μ ). This estimate B̂ξ is

determined by the following conditions:

1) B̂ξ ∈ H0
(
ξ
(n)
μ + η

(n)
μ

)
;

2) (Bξ − B̂ξ) ⊥ H0
(
ξ
(n)
μ + η

(n)
μ

)
.

It follows from condition 2) that for all k ≤ 0 the function hμ(λ) satisfies the relation

E(Bξ − B̂ξ)(ξ(n)(k, μ) + η(n)(k, μ))

=
1
2π

∫ π

−π

(
Bμ
(
eiλ
) (

1− e−iλμ)n 1
(iλ)n

− hμ(λ)
)
e−iλk

(
1− eiλμ)n 1

(−iλ)n f(λ) dλ

− 1
2π

∫ π

−π
hμ(λ)e−iλk

(
1− eiλμ)n 1

(−iλ)n g(λ) dλ

= 0.
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From the previous relation we derive the following relations∫ π

−π

(
Bμ
(
eiλ
) (

1− e−iλμ)n f(λ)
(iλ)n

− hμ(λ)(f(λ) + g(λ))
) (

1− eiλμ)n
(−iλ)n e−iλk dλ = 0,

k ≤ 0,

which yields

hμ(λ) = Bμ
(
eiλ
) (

1− e−iλμ)n 1
(iλ)n

f(λ)
f(λ) + g(λ)

− (−iλ)nCμ
(
eiλ
)

(1− eiλμ)n (f(λ) + g(λ))
,

Bμ(eiλ) =
∞∑
k=0

bμ(k)e−iλk, Cμ(eiλ) =
∞∑
k=1

cμ(k)eiλk.

It follows from condition 1) we conclude that the spectral characteristic hμ(λ) admits
the representation

hμ(λ) = h(λ)
(
1− e−iλμ)n 1

(iλ)n
, h(λ) =

0∑
k=−∞

s(k)eiλk,

where ∫ π

−π
|h(λ)|2 ∣∣1− eiλμ∣∣2n f(λ) + g(λ)

λ2n
dλ <∞,

(iλ)nhμ(λ)
(1− e−iλμ)n ∈ L

0
2,∫ π

−π

(
Bμ(eiλ)

f(λ)
f(λ) + g(λ)

− λ2nCμ
(
eiλ
)

(1− e−iλμ)n (1− eiλμ)n (f(λ) + g(λ))

)
e−iλl dλ = 0,

l ≥ 1.
(14)

Let the following conditions holds true:∫ π

−π

f(λ)
f(λ) + g(λ)

dλ <∞,
∫ π

−π

λ2n

|1− eiλμ|2n (f(λ) + g(λ))
dλ <∞. (15)

Set

Rk,j =
1
2π

∫ π

−π
e−iλ(j+k) f(λ)

f(λ) + g(λ)
dλ,

Pμk,j =
1
2π

∫ π

−π
eiλ(j−k) λ2n

|1− eiλμ|2n (f(λ) + g(λ))
dλ,

Qμk,j =
1
2π

∫ π

−π
eiλ(j−k)

∣∣1− eiλμ∣∣2n f(λ)g(λ)
λ2n(f(λ) + g(λ))

dλ.

Then (14) is equivalent to the following linear system:
∞∑
m=0

Rl,mbμ(m) =
∞∑
k=1

Pμl,kcμ(k), l ≥ 1.

These system can be rewritten as

Rbμ = Pμcμ, (16)

where cμ = (cμ(1), cμ(2), cμ(3), . . . ), bμ = (bμ(0), bμ(1), bμ(2), . . . ), Pμ, R are linear
operators in the space �2 defined by (Pμ)l,k = Pμl,k, l, k ≥ 1, (R)l,m = Rl,m, l ≥ 1, m ≥ 0.
A solution cμ of the last equation defines the linear estimate B̂ξ which is a projection
of the element Bξ from the Hilbert space H on the subspace H0

(
ξ
(n)
μ + η

(n)
μ

)
. Since the

space H0
(
ξ
(n)
μ + η

(n)
μ

)
is closed and convex, the projection Bξ is uniquely determined for
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arbitrary sequence bμ(0), bμ(1), bμ(2), . . . satisfying conditions (11). Thus equation (16)
has a unique solution for an arbitrary bμ �= 0 and the linear operator Pμ : �2 → X ,
X = {xμ ∈ �2 : xμ = Rbμ, wherebμ satisfies (11)}, has the inverse (Pμ)−1.

Consequently, the unknown coefficients can be calculated by the formula

cμ(k) =
(
P−1
μ Rbμ

)
k
,

where (P−1
μ Rbμ)k is the kth element of the vector P−1

μ Rbμ. Thus, spectral characteris-
tics hμ(λ) of the optimal estimate B̂ξ of the functional Bξ is calculated by the formula

hμ(λ) = Bμ
(
eiλ
) (

1− e−iλμ)n 1
(iλ)n

f(λ)
f(λ) + g(λ)

− (−iλ)n∑∞
k=1

(
P−1
μ Rbμ

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
. (17)

The mean-square error of the estimate is calculated by the formula

Δ(f, g; B̂ξ) = E|Bξ − B̂ξ|2

=
1
2π

∫ π

−π

∣∣∣Bμ (eiλ) ∣∣1− eiλμ∣∣2n g(λ) + λ2n
∑∞

k=1

(
P−1
μ Rbμ

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Bμ (eiλ) ∣∣1− eiλμ∣∣2n f(λ)− λ2n
∑∞
k=1

(
P−1
μ Rbμ

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ

=
〈
Rbμ,P−1

μ Rbμ
〉

+ 〈Qμbμ,bμ〉,
(18)

where Qμ is a linear operator in the space �2 defined by elements (Qμ)l,k = Qμl,k, l, k ≥ 0.
Let us summarize our reasoning and present the results in the form of theorem.

Theorem 3.1. Let stochastic sequences {ξ(m),m ∈ Z} and {η(m),m ∈ Z} determine
stationary nth increment sequences ξ(n)(m,μ) and η(n)(m,μ) with absolutely continuous
spectral functions F (λ) and G(λ) which have spectral densities f(λ) and g(λ) satisfying
conditions (15). Let coefficients {bμ(k) : k ≥ 0} satisfy conditions (11). The optimal
linear estimate B̂ξ of the functional Bξ of known elements ξ(n)(m,μ), m ≤ 0, μ > 0
from observations of the sequence ξ(n)(m,μ) + η(n)(m,μ) at points m = 0,−1,−2, . . .
is calculated by formula (13). The spectral characteristic hμ(λ) of the optimal estimate
B̂ξ is calculated by formula (17). The value of the mean-square error Δ(f, g; B̂ξ) is
calculated by formula (18).

As a corollary from theorem 3.1 we can obtain the optimal estimate of the unknown
value of the increment ξ(n)(m,μ), m ≤ 0, from observations of the sequence ξ(k)+η(k) at
points k = 0,−1,−2, . . . . Let us take a vector bμ with element 1 at the (−m)th position
and elements 0 at the remaining positions in (17). Then the spectral characteristic
ϕm(λ, μ) of the estimate

ξ̂(n)(m,μ) =
∫ π

−π
ϕm(λ, μ) dZξ(n)+η(n)(λ) (19)

is calculated by the formula

ϕm(λ, μ) = eiλm
(
1− e−iλμ)n 1

(iλ)n
f(λ)

f(λ) + g(λ)
− (−iλ)n∑∞

k=1

(
P−1
μ rm

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
, (20)
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where rm = (R1,−m, R2,−m, . . . ). The mean-square error of the estimate is calculated by
the formula

Δ
(
f, g; ξ̂(n)(m,μ)

)
=

1
2π

∫ π

−π

∣∣∣eiλm ∣∣1− eiλμ∣∣2n g(λ) + λ2n
∑∞
k=1

(
P−1
μ rm

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣eiλm ∣∣1− eiλμ∣∣2n f(λ)− λ2n
∑∞
k=1

(
P−1
μ rm

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ.

(21)

Thus, we have the following statement.

Corollary 3.1. The optimal linear estimate ξ̂(n)(m,μ) of the unknown value of the sto-
chastic increment sequence ξ(n)(m,μ), m ≤ 0, μ > 0, from observations of the sequence
ξ(k) + η(k) at points k = 0,−1,−2, . . . can be calculated by formula (19). The spectral
characteristic ϕm(λ, μ) of the optimal estimate ξ̂(n)(m,μ) is calculated by formula (20).
The value of mean-square error Δ(f, g; ξ̂(n)(m,μ)) is calculated formula (21).

Consider now the smoothing problem for the stationary nth increment sequence
ξ(n)(m,μ) which consists of finding the mean-square optimal linear estimate ξ̂(n)(0, μ) of
the unknown value of the increment ξ(n)(0, μ), μ > 0, from observations of the stochastic
sequence ξ(k) + η(k) at points k = 0,−1,−2, . . . .

Let r(k) = Rk,0, k ∈ Z. Then {r(k) : k ∈ Z} are the Fourier coefficients of the function
f(λ)

f(λ)+g(λ) which have the property r(k) = r(−k), k ∈ Z, where r(k) denotes a conjugate
element to r(k). Let {V μk,j : k, j ≥ 1} be the coefficients which determine a linear operator
Vμ = (Pμ)−1. Then we have relations∑

l≥1

V μl,jPk,l = δk,j , k, j ≥ 1, (22)

where δk,j is the Kronecker symbol. Using formulas (20) and (22) we obtain the spectral
characteristic of the optimal estimate ξ̂(n)(0, μ) of the unknown value of the increment
ξ(n)(0, μ):

ϕ(λ, μ) =
(1− e−iλμ)n

(iλ)n

∞∑
k=0

r(k)e−iλk.

The optimal estimate of the increment ξ(n)(0, μ) is calculated by the formula

ξ̂(n)(0, μ) =
∞∑
k=0

r(k)ξ(n)(−k, μ) =
∞∑
j=0

(ξ(−j) + η(−j))
min{n,[ j

μ ]}∑
l=0

(−1)lClnr(j − lμ). (23)

The mean-square error of the estimate ξ̂(n)(0, μ) is calculated by the formula

Δ
(
f, g; ξ̂(n)(0, μ)

)
=

∞∑
j=1

∞∑
k=1

V
μ

k,jr(j)r(k) +
∑
l∈Z

r(l)gμ(−l), (24)

where {gμ(k) : k ∈ Z} are the Fourier coefficients of the function |1− eiλμ|2ng(λ)λ−2n.

Corollary 3.2. The optimal estimate ξ̂(n)(0, μ) of the unknown value ξ(n)(0, μ) of the
stationary nth increment sequence ξ(n)(m,μ), μ > 0, from observations of the sequence
ξ(k) + η(k) at points k = 0,−1,−2, . . . is calculated by formula (23). The value of
the mean-square error Δ(f, g; ξ̂(n)(0, μ)) of the estimate ξ̂(n)(0, μ) is calculated by for-
mula (24).
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Theorem 3.1 and corollaries 3.1, 3.2 determine solutions of the filtering problems for
the nth increment sequence ξ̂(n)(m,μ) and the linear functional Bξ which are based on
the Fourier coefficients of functions

λ2n

|1− eiλμ|2n(f(λ) + g(λ))
,

f(λ)
f(λ) + g(λ)

,
|1− eiλμ|2nf(λ)g(λ)
λ2n(f(λ) + g(λ))

.

However, the problem of finding the inverse operator (Pμ)−1 to the operator Pμ

determined by the Fourier coefficients of the function λ2n

|1−eiλμ|2n(f(λ)+g(λ)) is a complicated
problem in most cases. Therefore, we propose a method of finding the operator (Pμ)−1

under the condition that the functions

|1− eiλμ|2n(f(λ) + g(λ))
λ2n

,
λ2n

|1− eiλμ|2n(f(λ) + g(λ))
(25)

admit the canonical factorizations

|1− eiλμ|2n(f(λ) + g(λ))
λ2n

=

∣∣∣∣∣
∞∑
k=0

ϕμ(k)e−iλk
∣∣∣∣∣
2

, (26)

λ2n

|1− eiλμ|2n(f(λ) + g(λ))
=

∣∣∣∣∣
∞∑
k=0

ψμ(k)e−iλk
∣∣∣∣∣
2

. (27)

Using the coefficients ϕμ(k), ψμ(k), k ≥ 0, from factorizations (26), (27), we define
linear operators Φμ and Ψμ in the space �2. Let (Φμ)k,j = ϕμ(k − j) and (Ψμ)k,j =
ψμ(k − j) if 1 ≤ j ≤ k, (Φμ)k,j = 0 and (Ψμ)k,j = 0 if j > k and k, j ≥ 1. The
defined operators admit the following relation: ΨμΦμ = ΦμΨμ = I, where I is the
identity operator. Moreover, the operator Pμ allows the factorization Pμ = Ψ

′
μΨμ.

Thus, (Pμ)−1 = ΦμΦ
′
μ and the coefficients of the operator Vμ = (Pμ)−1 are calculated

by the formula

V μk,j =
min(k,j)∑
p=1

ϕμ(k − p)ϕμ(j − p), k, j ≥ 1.

These observations can be summarized in the form of the following theorem.

Theorem 3.2. Let functions (25) admit the canonical factorizations (26) and (27) re-
spectively. Then the inverse operator P−1

μ to the operator Pμ is calculated by the formula
P−1
μ = ΦμΦ

′
μ, where the linear operator Φμ in �2 space is determined by the coefficients

(Φμ)k,j = ϕμ(k − j) if 1 ≤ j ≤ k and (Φμ)k,j = 0 if j < k, k, j ≥ 1.

Using theorem 3.1 we can find the optimal estimate

Âξ =
∫ π

−π
h(a)
μ (λ) dZξ(n)+η(n)(λ) (28)

of the functional Aξ. The spectral characteristic of the estimate Âξ is calculated by the
formula

h(a)
μ (λ) = Aμ

(
eiλ
) (

1− e−iλμ)n 1
(iλ)n

f(λ)
f(λ) + g(λ)

− (−iλ)n∑∞
k=1

(
P−1
μ RDμa

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
,

(29)
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where Aμ(eiλ) =
∑∞

k=0(D
μa)ke−iλk. The mean-square error can be calculated by for-

mula

Δ
(
f, g; Âξ

)
=

1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n g(λ) + λ2n
∑∞

k=1

(
P−1
μ RDμa

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n f(λ)− λ2n
∑∞

k=1

(
P−1
μ RDμa

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ

=
〈
RDμa,P−1

μ RDμa
〉

+ 〈QμDμa,Dμa〉.
(30)

Theorem 3.3. Let uncorrelated stochastic sequences {ξ(m),m ∈ Z} and {η(m),m ∈ Z}
define stationary nth increment sequences ξ(n)(m,μ) and η(n)(m,μ) with absolutely con-
tinuous spectral functions F (λ) and G(λ) which have spectral densities f(λ) and g(λ)
satisfying conditions (15). Let conditions (12) be satisfied. The optimal linear estimate
Âξ of the functional Aξ of unknown elements ξ(m), m ≤ 0, from observations of the
sequence ξ(m) + η(m) at points m = 0,−1,−2 . . . is calculated by formula (28). The
spectral characteristic h(a)

μ (λ) of the optimal estimate Âξ is calculated by formula (29).
The value of the mean-square error Δ(f, g; Âξ) is calculated by formula (30). If the func-
tion |1− eiλμ|2nλ−2n(f(λ) + g(λ)) admits the canonical factorization (26), the operator
P−1
μ from formulas (29) and (30) can be represented as P−1

μ = ΦμΦ
′
μ.

Example 3.1. Consider an ARIMA(0,1,2) sequence {ξ(m),m ∈ Z}. The first order
increments of the sequence ξ(m) are stationary and the increments with step μ = 1 form
a one-sided moving average sequence of order 2. Let the sequence ξ(m) have the spectral
density

f(λ) =
λ2
∣∣1− φe−iλ∣∣2 ∣∣1− ψe−iλ∣∣2

|1− e−iλ|2 .

Consider an other stochastic sequence {η(m),m ∈ Z} with stationary increments of or-
der 1 uncorrelated with ξ(m) such that increments of the sequence {ξ(m)+η(m),m ∈ Z}
with step 1 form a moving average sequence of order 1 and the spectral density has the
form

f(λ) + g(λ) =
λ2
∣∣1− φe−iλ∣∣2
|1− e−iλ|2 .

Consider a real number sequence {a(k) : k ≥ 0} which is defined as follows: a(0) = 1,
a(k) = −2−k for k ≥ 1. This sequence satisfies conditions (12). The problem is to
find the optimal mean-square linear estimate Âξ of the functional Aξ =

∑∞
k=0 a(k)ξ(−k)

of unknown values ξ(k), k ≤ 0, of the sequence ξ(m) from observations ξ(k) + η(k),
k = 0,−1,−2, . . . . To calculate the spectral characteristic of the optimal estimate Âξ
of the functional Aξ we use formula (29). The operator Pμ = P is determined by
coefficients (P)l,k = ψp

1−ψ2 , |k− l| = p, l, k ≥ 1. The inverse operator V = P−1 is defined
by coefficients (V)1,1 = 1, (V)l,l = 1 + φ2 if l ≥ 2, (V)l,k = −φ if |l − k| = 1, l, k ≥ 1,
and (V)l,k = 0 otherwise. The operator R is defined by coefficients (R)1,0 = 1 and
(R)l,k = 0 if l ≥ 1, k ≥ 0, (l, k) �= (1, 0). The operator Dμ = D is defined by coefficients
dμ(k) = 1, k ≥ 0. The spectral characteristic h1(λ) of the estimate Âξ is calculated
by the formula h1(λ) =

∑∞
k=0 s(k)e

−iλk 1−e−iλ

iλ , where s(0) = 1 − 1
2ψ + ψ2 + φψ 2−φ2

1−φ2 ,
s(k) = 2−k−1(2− 5ψ + 2ψ2) + φk+1ψ, k ≥ 1.
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Denote A(j) = min {n, [j/μ]}, j ≥ 0. Then the estimate Âξ of the functional Aξ is
calculated by the formula

Âξ =
∞∑
k=0

s(k)
(
ξ(n)(−k, μ) + η(n)(−k, μ)

)
=

∞∑
j=0

(ξ(−j) + η(−j))
A(j)∑
l=0

(−1)lClns(j − lμ).

4. Minimax-robust method of filtering

The value of the mean-square error Δ(h(a)
μ (f, g); f, g) := Δ(f, g; Âξ) and the spectral

characteristic h(a)
μ (f, g) of the optimal linear estimate Âξ of the functional Aξ of unknown

values ξ(m) based on observations of the stochastic sequence ξ(k) + η(k) are determined
by formulas (29) and (30) under the condition that spectral densities f(λ) and g(λ) of
stochastic sequences ξ(m) and η(m) are known. In the case where spectral densities are
not exactly known, but a set D = Df × Dg of admissible spectral densities is given, the
minimax (robust) approach to estimation of functionals of the unknown values of stochas-
tic sequence with stationary increments is reasonable. In other words we are interesting
in finding an estimate that minimizes the maximum of the mean-square error for all
spectral densities from a given class D of admissible spectral densities simultaneously.

Definition 4.1. For a given class of spectral densities D = Df × Dg spectral densities
f0(λ) ∈ Df , g0(λ) ∈ Dg are called least favorable in the class D for the optimal linear
filtering of the functional Aξ if

Δ(f0, g0) = Δ(h(f0, g0); f0, g0) = max
(f,g)∈Df×Dg

Δ(h(f, g); f, g).

Definition 4.2. For a given class of spectral densities D = Df×Dg a spectral character-
istic h0(eiλ) of the optimal linear estimate of the functional Aξ is called minimax-robust
if there are satisfied conditions

h0
(
eiλ
) ∈ HD =

⋂
(f,g)∈Df×Dg

L0
2(f + g),

min
h∈HD

max
(f,g)∈Df×Dg

Δ(h; f, g) = max
(f,g)∈Df×Dg

Δ
(
h0; f, g

)
.

Using the derived formulas and the introduced definitions we can conclude that the
following statement holds true.

Lemma 4.1. Spectral densities f0
μ ∈ Df (λ), g0

μ ∈ Dg(λ) which satisfy conditions (15) are
least favorable in the class D = Df ×Dg for the optimal linear filtering of the functional
Aξ if operators P0

μ, R0, Q0
μ constructed with the help of the Fourier coefficients of the

functions

λ2n

|1− eiλμ|2n(f0
μ(λ) + g0

μ(λ))
,

f0
μ(λ)

f0
μ(λ) + g0

μ(λ)
,

∣∣1− eiλμ∣∣2n f0
μ(λ)g0

μ(λ)
λ2n(f0

μ(λ) + g0
μ(λ))

determine a solution of the conditional extremum problem

max
f∈D

(〈
RDμa,P−1

μ RDμa
〉

+ 〈QμDμa,Dμa〉)
=
〈
R0Dμa,

(
P0
μ

)−1
R0Dμa

〉
+
〈
Q0
μD

μa,Dμa
〉
.

(31)

The minimax spectral characteristic is determined as h0 = hμ(f0
μ, g

0
μ) if hμ(f0

μ, g
0
μ) ∈ HD.

The function h0 and the pair (f0
μ, g

0
μ) form a saddle point of the function Δ(h; f, g)

on the set HD ×D. The saddle point inequalities

Δ
(
h; f0

μ, g
0
μ

) ≥ Δ
(
h0; f0

μ, g
0
μ

) ≥ Δ
(
h0; f, g

) ∀f ∈ Df , ∀g ∈ Dg, ∀h ∈ HD
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hold true if h0 = hμ(f0
μ, g

0
μ) and hμ(f0

μ, g
0
μ) ∈ HD, where (f0

μ, g
0
μ) is a solution of the

following conditional extremum problem

Δ̃(f, g) = −Δ(hμ(f0
μ, g

0
μ); f, g)→ inf, (f, g) ∈ D,

Δ
(
hμ
(
f0
μ, g

0
μ

)
; f, g

)
=

1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g0

μ(λ) + λ2n
∑∞

k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f0
μ(λ) + g0

μ(λ)
)2 f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Aμ(eiλ)∣∣1− eiλμ∣∣2n f0
μ(λ)− λ2n

∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f0
μ(λ) + g0

μ(λ)
)2 g(λ) dλ.

This conditional extremum problem is equivalent to the unconditional extremum problem

ΔD(f, g) = Δ̃(f, g) + δ(f, g | Df ×Dg) → inf,

δ(f, g|Df × Dg) is the indicator function of the set Df × Dg. Solution (f0
μ, g

0
μ) to this

unconditional extremum problem is characterized by the condition 0 ∈ ∂ΔD(f0
μ, g

0
μ) [18].

5. Least favorable spectral densities in the class Df ×Dg
Consider the problem of optimal linear filtering of the functional Aξ for the set of

spectral densities D = Df ×Dg, where

D0
f =

{
f(λ)

∣∣∣∣ 1
2π

∫ π

−π
f(λ)dλ ≤ P1

}
, D0

g =
{
g(λ)

∣∣∣∣ 1
2π

∫ π

−π
g(λ)dλ ≤ P2

}
.

Let us assume that densities f0
μ ∈ Df , g0

μ ∈ Dg and functions

hμ,f
(
f0
μ, g

0
μ

)
=

∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n g0
μ(λ) + λ2n

∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n |1− eiλμ|n (f0
μ(λ) + g0

μ(λ)
) , (32)

hμ,g
(
f0
μ, g

0
μ

)
=

∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n f0
μ(λ)− λ2n

∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n |1− eiλμ|n (f0
μ(λ) + g0

μ(λ)
) (33)

are bounded. In this case the functional Δ(hμ(f0
μ, g

0
μ); f, g) is continuous and bounded

in L1 × L1 space. It comes from the condition 0 ∈ ∂ΔD(f0
μ, g

0
μ) that the least favorable

densities f0
μ(λ) ∈ Df , g0

μ(λ) ∈ Dg satisfy the equations∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n g0
μ(λ) + λ2n

∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α1|λ|n

∣∣1− eiλμ∣∣n (f0
μ(λ) + g0

μ(λ)
)
,

(34)

∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n f0
μ(λ)− λ2n

∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α2|λ|n

∣∣1− eiλμ∣∣n (f0
μ(λ) + g0

μ(λ)
)
,

(35)

where α1 ≥ 0 and α2 ≥ 0 are constants such that α1 �= 0 if 1
2π

∫ π
−π f

0
μ(λ) dλ = P1 and

α2 �= 0 if 1
2π

∫ π
−π g

0
μ(λ) dλ = P2. Thus, the following statements hold true.

Theorem 5.1. Let spectral densities f0
μ(λ) ∈ Df and g0

μ(λ) ∈ Dg satisfy conditions (15)
and let functions hμ,f (f0

μ, g
0
μ), hμ,g(f

0
μ, g

0
μ) determined by equations (32), (33) be bounded.

The spectral densities f0
μ(λ) and g0

μ(λ) determined by relations (34), (35) are least favor-
able in the class D = Df × Dg for the optimal linear filtering problem for the functional
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Aξ if they determine a solution of the extremum problem (31). The function hμ(f0
μ, g

0
μ)

determined by (29) is the minimax spectral characteristic of the optimal estimate of the
functional Aξ.

Theorem 5.2. Let the spectral density f(λ) be known, the spectral density g0
μ(λ) ∈ Dg

and let conditions (15) be satisfied. Let the function hμ,g(f, g0
μ) be bounded. The spectral

density g0
μ(λ) is least favorable in the class Dg for the optimal linear filtering of the

functional Aξ if it is of the form

g0
μ(λ) = max

⎧⎨⎩0,

∣∣∣Aμ(eiλ)∣∣1− eiλμ∣∣2n f(λ)− λ2n
∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

α2|λ|n|1− eiλμ|n − f(λ)

⎫⎬⎭
and the pair (f, g0

μ) determines a solution of the extremum problem (31). The func-
tion hμ(f, g0

μ) determined by (29) is the minimax spectral characteristic of the optimal
estimate of the functional Aξ.

6. Least favorable spectral densities in the class D = Dvu ×Dε
Consider the problem of the optimal linear filtering of the functional Aξ for the set of

spectral densities D = Dvu ×Dε, where

Dvu =
{
f(λ)

∣∣∣∣ v(λ) ≤ f(λ) ≤ u(λ),
1
2π

∫ π

−π
f(λ)dλ ≤ P1

}
,

Dε =
{
g(λ)

∣∣∣∣ g(λ) = (1− ε)g1(λ) + εw(λ),
1
2π

∫ π

−π
g(λ)dλ ≤ P2

}
.

Here spectral densities u(λ), v(λ), g1(λ) are known and fixed, and spectral densities u(λ),
v(λ) are bounded.

Let f0
μ(λ) ∈ Dvu, g0

μ(λ) ∈ Dε be spectral densities such that functions hμ,f (f0
μ, g

0
μ),

hμ,g(f0
μ, g

0
μ) determined by (32), (33) are bounded. From the condition 0 ∈ ∂ΔD(f0

μ, g
0
μ)

we find the following equations that determine the least favorable densities∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n g0
μ(λ) + λ2n

∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α1|λ|n

∣∣1− eiλμ∣∣n (f0
μ(λ) + g0

μ(λ)
) (
γ1(λ) + γ2(λ) + α−1

1

)
,

(36)

∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n f0
μ(λ)− λ2n

∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α2|λ|n

∣∣1− eiλμ∣∣n (f0
μ(λ) + g0

μ(λ)
) (
ϕ(λ) + α−1

2

)
,

(37)

where γ1 ≤ 0 and γ1 = 0 if f0
μ(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2 = 0 if f0

μ(λ) ≤ u(λ); ϕ(λ) ≤ 0
and ϕ(λ) = 0 when g0

μ(λ) ≥ (1− ε)g1(λ). The following statements hold true.

Theorem 6.1. Let spectral densities f0
μ(λ) ∈ Dvu, g0

μ(λ) ∈ Dε satisfy conditions (15).
Let functions hμ,f (f0

μ, g
0
μ) and hμ,g(f0

μ, g
0
μ) determined by (32), (33) be bounded. Spectral

densities f0
μ(λ) and g0

μ(λ) determined by equations (36), (37) are least favorable in the
class D = Dvu ×Dε for the optimal linear filtering of the functional Aξ if they determine
a solution of extremum problem (31). The minimax spectral characteristic hμ(f0

μ, g
0
μ) of

the optimal estimate of the functional Aξ is determined by (29).

Theorem 6.2. Let the spectral density f(λ) be known, the spectral density g0
μ(λ) ∈ Dε

and let conditions (15) be satisfied. Let the function hμ,g(f, g0
μ) determined by (29) be
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bounded. The spectral density g0
μ(λ) is least favorable in the class Dε for the optimal

linear filtering of the functional Aξ if it is of the form

g0
μ(λ) = max {(1− ε)g1(λ), f1(λ)} ,

f1(λ) =
α2

∣∣∣Aμ (eiλ) ∣∣1− eiλμ∣∣2n f(λ)− λ2n
∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n|1− eiλμ|n − f(λ),

and the pair (f, g0
μ) determines a solution of the extremum problem (31). The function

hμ(f, g0
μ) determined by (29) is minimax spectral characteristic of the optimal estimate

of the functional Aξ.

7. Conclusions

In this article we found a solution of the filtering problem for linear functionals
Aξ =

∑∞
k=0 a(k)ξ(−k) which depend on unobserved values of a stochastic sequence ξ(m)

with stationary nth increments at points m = 0,−1,−2, . . . . Estimate is based on ob-
servations of a sequence ξ(m) + η(m) at points m = 0,−1,−2, . . . , where η(m) is an
uncorrelated with ξ(m) sequence with stationary nth increments. We derived formulas
for computing the value of the mean-square error and the spectral characteristic of the
optimal linear estimate of the functional in the case where spectral densities of sequences
are exactly known. In the case of spectral uncertainty, where spectral densities are not
exactly known, but a set of admissible spectral densities is specified, the minimax-robust
method is applied. Formulas that determine the least favorable spectral densities and
minimax (robust) spectral characteristics are derived for some special sets of admissible
spectral densities.
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