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ASYMPTOTIC PROPERTIES OF CORRECTED SCORE ESTIMATOR

IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERRORS
UDC 519.21

D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

ABSTRACT. The autoregressive model with errors in variables with normally distributed control se-
quence is considered. For the main sequence, two cases are dealt with: (a) main sequence has station-
ary distribution, and (b) initial distribution is arbitrary, independent of the control sequence and has
finite fourth moment. Here the elements of the main sequence are not observed directly, but surrogate
data that include a normally distributed additive error are observed. Errors and main sequence are
assumed to be mutually independent.

We estimate unknown parameter using the Corrected Score method and in both cases prove strict
consistency and asymptotic normality of the estimator. To prove asymptotic normality we apply the
theory of strong mixing sequences. Finally, we compare the efficiency of the Least Squares (naive)
estimator and the Corrected Score estimator in the forecasting problem and conclude that the naive
estimator gives better forecast.

AHoTALIsA. Po3risiaerbest MOjeb aroperpeccii 3 noxubkaMu y 3MiHHUX | HOPMaJIbHO PO3IOIiJIEHOI0
KepYI90I0 MOCHA0BHICTIO. JI7151 TOJIOBHOT MOCIIZOBHOCTI MOJei PO3IJISIHYTO JBa BUIAJKH: &) TOJIOB-
HA IOCJIIJOBHOCTH MA€ CTaniOHapHUE po3noxin; 6) mOoYaTKOBUE PO3WOALN € JOBIIBHAM, HE 3AJIE€KUTH
BiZT Kepyroodoi mocmigoBHOCTI i Mae dyeTBepTuil MOMEHT. EjleMeHTH rosI0BHOI MOCTiIOBHOCTI He CHOCTe-
pirarorscst 6e3nocepeHbO, HATOMICTh CIOCTEPIralThCsi CyporarTHi jaHi, 0 BKJHYAKTh HOPMAaJbHO
po3moJiisieny aauTuBHy HOXuUOKyY. [ToxubKu i roJ0BHA MOCITOBHICTH € HE3aJeKHUMHU B CYKYITHOCTI.

KoedinienT aBroperpecii OniHOETHCS METOA0M BHUIPaBjeHOT oniHO9HOT (yHKIil. B 060x BHmaakax
JIOBEeJeHO CTPOTY KOH3UCTEHTHICTh | ACHMITOTUYHY HOPMAJIbHICTE ONiHKHU. /lOBegeHHs aCUMITOTHYIHOL
HOPMaJIbHOCTI CIIMPAETHCsI HA BJIACTUBOCTI KoedimienTa cuibHOrO nepemintyBanis. B 3a7a4i nporaosy
HOPIBHIOETHCs eheKTUBHICTE (HATBHOT) OIIHKK HAHMEHIINX KBAIPATIB i BUNIPABIEHO! OIIHKHA 1 pOGUTHCS
BUCHOBOK, III0 HalBHA OIiHKa 3abe3nedye Kpamuii TpOrHo3.

AHHOTAIMA. PaccmarpuBaercsi MOEJIb aTOPErpeccuu ¢ OmubKaMu B IMIEPEMEHHBIX W HOPMAJIbHO Pac-
MpeJIeJIeHHON YIPABJIISIONeH MOCaeI0BaATeIbHOCTRIO0. 71 IJIaBHOM MOCIeI0BATEeILHOCTH PACCMOTPEHBL
JiBa CIydasi: a) IJaBHAs IOCJEJ0BATEJbHOCTh HMEeT CTAMOHAPHOE pacupejesenue; 0) HA9aJIbHOE Da-
CIpesiesIeHNe SIBJISIETCS] TTPOU3BOJILHBIM, HE 3ABHCHT OT YIIPABJSIOMIEH [OCJIEIOBATEIHLHOCTH U HMEeT
9eTBEPTLIH MOMEHT. DJIEMEHTHI [JIABHOH IIOCIEJ0BATEJLHOCTH HE HAOIIOMAIOTCS HENOCPEJACTBEHHO, a
BMECTO HHX HADJIONAIOTCS CYyppPOTAaTHBIE JAHHBIE, BKIIOYAIOIINE HOPMAJILHO PACIPEIETEHHYIO aJTh-
TUBHYIO OIJ_II/I6Ky OH_II/I6KI/I U rJIaBHaAA IIOCJAEI0BATEIBHOCTE HE3ABUCAMBI B COBOKYITHOCTH.

Koadbdunuent aBroperpeccun oneHHBaeTCss METOAOM HUCIPABIEHHON oneHo4uHON dyHknun. B o6oux
CIIy9adaX JOKA3aHBI CTPOTrasA COCTOATEJIBbHOCTh U aCUMIITOTUYIECKAA HOPMAJIbHOCTE OIEHKHA. ,Z[OKaBaTe.TII:—
CTBO aCHMIITOTHYECKOH HOPMAJIBLHOCTH OMUPAETCS HA CBOHCTBA KO3(MDMUIMEHTA CHIBLHOTO IEePeMeIlu-
BaHus. B 3amade nporuosa cpaBHUBaeTCs 3bGEKTHBHOCTS (HAMBHON) OIEHKH HAMMEHBIINX KBAPATOB
u I/ICHpaB.TIeHHOI';i OIIEHKHU " JeJIa€TCA BBIBOI, YTO HAaWBHAA OIEHKA 06ecnqu/IBaeT J'Iy“II_LII/IIjI IIPOTHO3.

1. INTRODUCTION
Introduce an autoregressive (AR) sequence
Xn_M:a(Xn—l _H)+b5n7 n=>1, Xo NN(M7O'2) ) (1)

where
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o coefficients a, b and mean p are unknown parameters, such that |a] < 1 and
b>0,
e {Xo,en,n > 1} are independent random variables, €, ~ N(0,1), n > 1.

Properties and applications of such models were studied, e.g., in McQuarrie and
Tsai [10].

We are interested in estimators of the parameters a and u. In case where there is
no errors in variables, estimators of these parameters can be constructed by the Least
Squares (LS) method with elementary criterion function

qrs(Xi, Xp-150, 1) = (Xp — p) — (X1 — p))*.

Here we consider a situation where elements of the main sequence are not observed
directly, but surrogate data that include additive errors are observed. Control sequence
of the model is normally distributed and main sequence is stationary distributed, or as
a different case, initial distribution is arbitrary, independent of the control sequence and
has finite fourth moment.

Estimation of the parameters in autoregressive model with measurement error was
considered in Dedecker et al. [7]. They proposed an estimation procedure based on
modified least square criterion involving a suitably chosen weight function.

Other consistent estimators exist in this model. Letting ¢ — oo as the sample size is
increasing, Chanda [6] applies Yule-Walker ARMA(p, ¢) estimator for errors-in-variables
AR(p) model. The estimator does not use the error variance. Moreover, the errors are
allowed to be slightly autocorrelated. Under some conditions, Chanda’s estimator is
consistent and asymptotically normal, but it is not y/n-consistent.

In present paper we apply Corrected Score (CS) method (see Carroll et al. [4, Ch. 4]).
We observe Wy = Xy + Vi, k > 0, where V, ~ N(0,0%) and {Xo, Vi,ex, k > 0} are
mutually independent. Consider the elementary score function of LS estimator

10
Yo,05( Xk, Xp—15a, 1) = §%QLS(Xkanfl§aaﬂ)~
We construct a new score gos(Wi, Wi_1;a,p) as a solution to the deconvolution
equation

Eam//«o (wO,CS(ka kal; a, M) | ka kal) = 1Z)O,LS(AXIW kal; a, /L) a.s.,

for all a,n € R. Then the CS estimator (ay, fi,)? is defined as a solution to equation

Zwo,cs(Wk, Wi_1;a,p) =0, a, i € R.
k=1

The true parameter a satisfies |a| < 1, and it will be shown below that |a,| < 1, for all
n > no(w) a.s.

In this paper we construct the CS estimator explicitly and study its asymptotic prop-
erties as n — oo.

The paper is organized as follows. The CS is given explicitly in Section 2. The strict
consistency and asymptotic normality of the estimator are presented in Section 3, and
Section 4 concludes. Proofs of the main results are given in Appendix.

We use the following notations. z” is transposed vector z, E stands for expectation of

. P1 d e .
a random variable, — and — denote the convergence a.s. and in distribution respectively,

P1 P1
an ~ b, means that a,, — b, — 0, as n — oo.

2. CONSTRUCTION OF CORRECTED SCORE ESTIMATOR

Rewrite model (1) in a more convenient way.
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Lemma 2.1. For the model (1) it holds

Xn—u:bZa"*iai—f—a"(Xo—u), n>1. (2)
i=1
Proof. This statement is straightforward and can be proved by induction. O
From now on we suppose that {Wy,k =0,...,n} are observed instead of

{Xk,kao,...,n},

where the additive error Vj; ~ N(0,0%) and {Vj, X, k > 0} are mutually independent.
First, for the unknown AR coefficient ¢ and mean u we construct the LS estimators
(LSEs). To do that we introduce the objective function:

n

1
QLS(WO7 ey WTM C%H) - H Z((Wk - /’1/) - a(Wk—l - :U’))27
k=1
and minimize it with respect to a and p. Necessary and sufficient conditions for mini-
mizing are:
)
8915 — 230 (a(Wir — ) — (Wi = )(Wio1 — 1) =0,
)
0Gus — 2570 (a(Wko1 — ) — (Wi — p))(1 —a) = 0.
Solving this system of equations, we get the LSE of the mean p
iy — Dot WeWho1 205y Wit — 205, Wiy > Wi
" ”(22:1 WiWi—1 — 22:1 Wl?ﬂ) + (22:1 Wi-1)? - 22:1 Wi 22:1 Wi’
provided the denominator is nonzero, and the LSE of the parameter a is
ot — 2zt (Wi = fin) (Wi—1 — fin) 3)
" Zn=1(kal - ﬂn)Q
k
Because the LSE i is too complicated to be investigated, we use the sample mean
that provides a strict consistent estimator of the mean p,

1

n

n—1

P1
E Wi — p, asn— oo.
k=0

fin =

We prove that the i, is asymptotically normal using the Central Limit Theorem
(CLT) (see Billingsley [1, Th 27.4]) and results of Bosq and Blanke [3, p. 47-48] in order
to ensure that we deal with a geometrically strong mixing sequence.

Next we construct an estimator of the regression coefficient a by the CS method. We
introduce a function ¢1,s(Xo, ..., Xp;a, i) as

n

Yrs(Xo,. .., Xnja,p) = 100us _ %Z(kal —p)? - % Z(Xk — 1) (Xp—1 — p).
k=1

2 Oa
k=1
We search for a function ¥cg(Wo, ..., W,;a, 1) that satisfies the deconvolution equa-
tion
E(ves(Wo, ..., Wasa,p) | Xo, ..., Xn) =0¥rs(Xo, ..., Xnja, 1) a.s. (4)

To do that we obtain polinomial functions h(Wy;p) and g(Wy_1, Wy; p) that solve
equations
E(h(Wis ) | Xi) = (Xe — 1) as., (5)
E(gWh—1, Wis 1) | Xie—1, Xip) = (Xpp = p)(Xp—1 — 1) as. (6)
of the following form
h(Wi; 1) = (Wi, — p)? = ot
I Wi, Wi ) = (Wi—r — 1) (Wi — ).
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Hence we get a polynomial solution to (4)

3I'—‘

a n n
Yos(Wo, ..., Whia, ) = E; (Wi—1 — p)? —o%) Z::Wk 1— 1) (Wi — p).

Plugging-in the sample mean fi,, and equating Vs (Wo, ..., Wy;a, fin) to zero we get
the CS estimator of a,
G = ZZ:l(Wk - ﬂn)(Wk—l - /ln)
e (Wher = fin)? = no;

Remark 2.1. The denominator of (7) is nonzero starting from certain random number,
i.e., for alln > no(w) a.s.

(7)

Proof of Remark 2.1 is a part of proof of Theorem 3.2, see Appendix.

3. MAIN RESULTS

Asymptotic properties of CS estimator. We state the consistency and asymptotic
normality of the CS estimator (7) as n — oc.

Theorem 3.1. In model (1), let {Xp,k > 1} be a stationary process. Assume that
variables {Xo, ek, Vik—1,k > 1} are mutually independent, then the CS estimator (7) is
strictly consistent.

For Theorems 3.2 and 3.4, do not assume that X, has a stationary distribution of
underlying AR sequence. In particular, assume (1) without requirement that X, ~

N(p,?).

Theorem 3.2. Assume that {Xy, k> 1} in AR (1) has an arbitrary initial distribution
with finite fourth moment and variables {Xo, ek, Vi—1,k > 1} are mutually independent.
Then CS' estimator (7) is strictly consistent.

Theorem 3.3. In AR (1) let {Xj,k > 1} be a stationary process. Assume that vari-
ables {Xo, ek, Vik—1,k > 1} are mutually independent. Then the CS estimator (7) is
asymptotically normal with positive asymptotic variance

2 2 2\ OF 2 %
2=1-a +2(1—a);+(2a +1)?. (8)

Theorem 3.4. Assume that {Xy,k > 1} in AR (1) has arbitrary initial distribution
with finite fourth moment and variables {Xo, ek, Vi—1,k > 1} are mutually independent.
Then the CS the estimator (7) is asymptotically normal with positive asymptotic variance

4
2 20

o2 =1-a*+2(1—a?) b2+(2a2+1)(1—a2) e (9)

Remark 3.1. In case of known parameter u, the CS estimator of a is defined by (7)

setting fi, = p. Then the estimator remains strictly consistent and asymptotically normal
with unchanged asymptotic variance (8).

Proofs of Theorems 3.1 to 3.4 can be found in Appendix.

Comparison of the LS and CS estimators. We compare the efficiency of the LS
estimator (3) and CS estimator (7) in the forecasting problem.
As two forecasts of the forthcoming observation W, 11 we take the values

Wiy = fin +a> (W — fin), W = fin + a5 Wy — fin).
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To find an optimal forecast E(W,,11|W,,) first we calculate the correlation coefficient
between W,, and W, 1,

a02

o2+ 0%’
Then we use a theorem from Kartashov [8] which states that for jointly Gaussian random
variables (&1, &2) ~ N(p1, pi2, 01,042, p), the conditional expectation can be calculated as

p:

E|&=y)=pm + p?(y — p2).
2

Thus, the optimal forecast is

a02

EWhir [ Wh) = p+ p(Wn — ) = p+ m(

Wy — 1).

But the parameters of the model are unknown, and instead one can use two forecasts

CS

. . . . . .cs P1
constructed above. Because the CS estimator is strictly consistent, i.e. a,,> — a, as

n — oo, and
d,LZSP—>1a20722 as n — 0o,
o+ oy,
we have:
W, — = (a+o(1)(Wo —p1) as.
and for the LS forecast,
2

. o
W'r%il —u = a%S(Wn — /,L) = (am + O(l)) (Wn — /,L) a.s.,
where o(1) is a sequence of random variables that converges to 0 a.s.
Hence like in the example from Cheng and Van Ness [5, p. 70], we conclude that the
naive LS estimator yields better forecast.

4. CONCLUSION

In this paper we considered the autoregressive model with measurement error. We
proved the strict consistency and asymptotic normality of the CS estimator. Also we
compared the efficiency of the LS (naive) estimator and CS estimator in the forecasting
problem and showed that the naive estimator gives better forecast, though the naive
estimator is inconsistent as n — oo.

APPENDIX

Proof of Theorem 3.1. We suppose that the main sequence of AR (1) has stationary

distribution. Initial distribution is Xo ~ N(u,0?), therefore using stationarity of the

2 _ _b?
process we get that 0 = 17—

To show the strict consistency rewrite the estimator (7):
i = - a2y ViVt + 3 Dy (X — fin) (X1 — fin)
et (Xhoa = n)? 4 5 300 Vil + 2 200 (X — fin) Vi1 — o,
+ - _ %ZZ:} (Xk —1ﬂn)g/k—1 ;' %222:1Xk (Xk—l - ﬂAn) -
2ot (Xm1 = fin)? + 5 30 Vil + 2 2t (X1 — i) Vi1 — o
We find the limits as n — oo for all terms in (10) separately.
First consider the sequence

(10)

1< o
EZ(XICA = fin)”.
k=1
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Rewriting it as

n n

—Z Xt = fin)? = = (K = o (= fin) > S (Xt = ) + (= i)’

k=1 k=1

and using strict consistency of sample mean fi,, we get that the last two terms are
vanishing as n — oo, hence

1 & 9 P1
Z(Xk 1_,Ufn ~
n

k=1

3|H

n
> (Xt —p)?
k=1

To get the limit of the sequence

1 n
H Z(Xk—l - lu’)27
k=1

we use the ergodic theorem for stationary processes (see Korolyuk et al. [9]). Conditions
of the ergodic theorem can be verified, and we get a limit of the first term in denominator

of (10),

1 « 1
—Z Xp—1— fin) ian(Xk 1— )2§E(Xo—u)2202 as n — 00. (11)
k=1 k=1

3

To get a limit for the second term we use the strong law of large numbers (SLLN):

1 n
—ZVﬁ_lﬂEVg:a‘Q/ as n — 00. (12)
n
=1
By similar technique we get limits of all terms in (10) as n — oo:
1 — X P
— Z(qu — fin)Vie1 530, (13)
"=
1 n
— Z ViVie—1 it 0, (14)
"=
- P1
Z X = jin) (X1 = fin) = a0®, (15)
k:
. P
- Z(Xk — fin)Vir = 0, (16)
1< . P1
= (X1 — fin) Vi = 0. (17)
"=
Plugging limits (11)—(17) in expression (10), we get that a, Plaasn— oo O

Proofs of Remark 2.1 and Theorem 3.2. We denote stationary distributed random vari-
ables satisfying (1) as { X3, k > 1}, with initial distribution X§* ~ N(u,0?). We assume
that {Xo, X5 ek, Vi—1, k > 1} are mutually independent.

Equality (2) implies that

Xy —p= (X3 —p)+a" (X0 — X3, (18)

hence X, — X3¢ 25 0 as n — oo,
Now we have to find a limit of (10) as n — oo.
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First consider
p1 1l
- X o~ )2 ~ _ 2.
Z k=1 = fin) nZ(Xk 1= 1)
"= k=1
We plug expression (18) in the latter sequence, hence
n

lz:(Xk—l —n)?= Z +ad" (X —XSt))Q
k=1

n

k:l
LS K ) (Ko - X)) Yo (K ) (19)
"= k=1
+ % (Xo _ th)Q ZGQ(k_l)'
k=1

In the proof of Theorem 3.1, we have shown convergence of the first term in expres-
sion (19):

—Z (X3, - *Plo? asn — .
Since |a| < 1, we get that

(XO—XSt Z 2= Pl a5 n - 0.
k=1

For the second term of (19) we proceed as follows. Denote corresponding random

sequence as
n

2 — s
Yn:E;ak 1(X,;t_1—,u):

e First using Chebyshev’s inequality

ZP|Y|>C giHY'Q
n=1 n=1

we show that for each C' > 0, it holds Y_>7 | P(|Y,]| > C) < oc.
e Then Borel-Cantelli lemma implies that VC’ >03ng Yn > ng: |V, < C as.

Therefore, to prove that Y, Ploasn — 00, it is enough to show > >° | E|Y,|? < cc.
After quite cumbersome calculations, we can show that

(23 don )
n=1 k=1

converges.

Hence
n

% (X0 — X3 a" Tt (X, — ) B0 asn— .
k=1

Therefore, plugging all limits found above in (19), we obtain

1 n
- Z(Xk,l — fin)? Blo? asn— oo (20)
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Similarly we get limits of all terms in (10) as n — oo:

ZXk 1= fin) Vi 1—>0 (21)
1 < P1
- Z(Xk—l - ﬂn)(Xk - ﬂn) - GUQ, (22)
=

1 — P1

= (X = fin) Vi1 = 0, (23)

et

1 & . P1

- D (X1 = fin) Vi = 0. (24)

k=1

We plug (12), (14), (20)—(24) in expression (10) and get that a, it a, as n — 00, hence
the estimator (7) is strictly consistent. A limit of the denominator in (10) is nonzero,
therefore, the statement of Remark 2.1 holds true. O

Now, we state lemmas for mixing coefficients and mixing sequences.
First note that for two o-algebras G and H on a probability space (2, F, P), the strong
mixing coefficient is defined as follows:

a(G,H) = sup |P(ANB)—P(A)P(B)|.
AeG,BEH

For a random sequence { X}, k > 0}, denote

X(m) = ili[ga(a(Xo, coy X1)y 0 (Xt Xketmeats---))-

«

The sequence { X}, k > 0} is called a strong mizing process if lim,, .. o (m) = 0. It is
called a geometrically strong mizing (GSM) process if
aX(m) <br™, om0,

for some 0 <7 < 1 and b > 0.
Now, we state a helpful lemma which is a direct consequence of the definition of strong
mixing sequences (see Billingsley [2]).

Lemma 4.1. Let {X,,,n > 0} be a random sequence and Z, = (Xpn_1,..., Xn)T, n>1.
Then for a-mizing coefficients associated to sequences {X,,,n > 0} and {Z,,n > 1}, the
following relation holds true:

X(m) =a?(m+1), m >0

Corollary 4.1. Let {X,,,n > 0} be a random sequence and Z, = (X,—i,..., Xn)7T,
n > 1. For a Borel measurable vector function f, consider a sequence

F(Z) ={f(Zn);n = 1}.

o

Then

aX(m) > af @ (m +1), m > 0.
If {X,,n > 0} is a strong mizing sequence then {f(Z,),n > l} is a strong mizing
sequence as well. If {X,,n >0} is a GSM sequence then so is {f(Z,),n > 1}.

Lemma 4.2. Let (21, F1,P1) and (Qa, Fa, P2) be two probability spaces. Let Gy and Hy
be two sub-o-algebras of F1 and let Go and Ha be two independent sub-c-algebras of F.
Then

a(o(G1 x G2),0(H1 x Ha)) = a1(G1, Ha),
Here for the calculating mizing coefficient a; we use measure P1; and for a product
measure P = Py x Py is used.



164 D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

Proof. Denote G = 0(G1 x Ga2), H = o(H1 x Ha). Expectation in (Qg, Fa, P2) is denoted
as Ey. For A € o(F x Fa), denote the section Ay, := {w1 € O | (w1,w2) € A} € Fi.

Let A € G and B € H. Then Py(A,,) and Py(B,,,) are independent random variables.
Hence

P(A) P (B) = E2(P1(Au,)) E2(P1(Aw,)) = E2(P1(Bu,) P1(Bu,))-
We have
|P1(Aw, N By,) — P1(Aw,) P1(Aw,)| < a1(G1,H1) Pa-as.,
|P(ANB) = P(A)P(B)| = [E2(P1((AN B)w,)) — E2(P1(Au,) P1(Bu,))|
= |E2(P1(Aw, N Bu,) — P1(Aw,) P1(Bu,))| < a1(G1, Ha).
Varying A and B, we get
a(G, H) < a1(G1, Hy). (25)
From the other hand

a(G,H)= sup |P(ANB)—P(A)P(B)|
A€g,BeEH
> sup [P((A1 x Q2) N (B1 X Q2)) — P(A1 x Q2) P(B1 x Q9)] (26)
A1€6G1, BieHa
= sup |P1(A1 ﬂBl)— Pl(Al) Pl(Bl)| :Oél(gl,Hl).
A1€6G1, BieHa

Inequalities (25) and (26) imply the statement of Lemma. O

Under conditions of Lemma 4.2, a similar relation holds true for ¢-mixing coefficients:

#(0(G1 x G2),0(H1 x H2)) = ¢1(G1, Ha),
where
$(G,H) = sup |P(A] B) —P(4)].

A€g,BEH,P(B)#0

Proof of Theorem 3.3. Now, the process { X,k > 0} is stationary, Xo ~ N(u,0?) and
2

0? =

1—a?"
From expression (7) for estimator &, we get

% D et (Wit = fin) (Wi = fin — a(Wi—1 — fin)) + Vnaoi, A,

Vnla, —a) = Y2 - - = —.
! % D k1 My (Whot — 1) — oy By,
From the proof of Theorem 3.1 we get a limit of the denominator:
B, L 2. (27)

Now, rewrite the numerator. Because Y ;_;(Wi_1 — fi,) = 0, we have

1 n
A, = 7 zzj(vv,H — i) (Wi, — aWg_1) + V/naoy,

= % Z(kal — W) (Wi = pp = a(Wi—1 = p)) + v/naoy,

ZWk_ —aWk 1— MU ))

By the classical CLT,
1 < 1 <
%Z(Wk —p—a(Wi—1 = p) = —= ) (Vi — aVi—1 + bey)
k=1

n
=1
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converges in distribution. Remember that /i, is a consistent estimator of p. Then by
Slutsky lemma,

fin = 1~

P
N kzl(Wk —p—a(Wi_1 —p)) =0 asn— oo.

Denote
Zk = (Wit — p) (Wi, — pp — a(Wi—1 — p)) + aoyy
= (Wk71 — ,LL)(Vk —aVi_1 + b&k) + GU‘Q/.
With this notation, A, Li= ﬁ Sori Z.
The AR process { X —pu, k > 0} is a GSM sequence, see Bosq, Blanke [3, Ex. 1.5, p. 47].
By Lemma 4.2 {(Xx — p, Vi)T,k > 0} is a GSM sequence too. Then by Corollary 4.1

{Zi,k > 1} is a GSM sequence. Also {Zi,k > 1} is a strictly stationary process with
EZ, =0 and E Z}? < co. Applying CLT, we get

1 — d 9
ﬁ;Zk — N(O,UA)
with 0% = EZ? + 2> 12, EZ1Z),. After some calculations we have
EZ: = (1 - a2) ot +20%0% + (2a2 + 1) oy,
EZ1Zy = —ad*0?0?,

EZiZ,=0, k>3

Therefore
o4 = (1 — a2) ot 42 (1 — a2) o?od + (2a2 + 1) o
Finally,
A, L N(0,07), (28)
A
Vn(a —a) = B—” < N(0,02)
with
2 o3 2 2\ OF 2 oy
awzﬁzl—a +2(1-a )?—F(Za +1)?'
Obviously 02, > 0. Thus, d, is an asymptotically normal estimator of a. O

Proof of Theorem 5.4. Proof of this theorem differs from the proof of Theorem 3.3 only
when we deal with numerator A,,. For the case of stationary initial distribution we denote
it as A%, Then using relation (18) we rewrite A,, for an arbitrary distribution as follows:

n

~ 1 — 1 1 &
Ay = —= Z ViVieer + — Z(Xk — ) (Xpo1 —p) + —= Z(Xk — 1) Vi1
Vi i V= ni=

1 « a 5 a & 5
t D VilXio1 —p) - 7 kZ(Xk_l W)= > Vi
2a
n

=1 k=1

- = (Xk1 — Vi1 + ay/noy,

(Xo— X" > a" (Vi — aVioy + bey).
k=1

1
n
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Because A%' converges in distribution, it remains to prove only that the last term

1 n
—=(Xo = X5 > aF N (Vi — aVioy + bey)
\/ﬁ k=1

converges to 0 in probability. We have

3

ED 1a" M (IVil + laVio| + [bex])

k=1

\/_Zak 1 (Vie — aVi—1 + beg)| <

§\H

g—z F=1(E |Vi| + E|aVi_1| + E |bex]).
Vi i

Because the sum (E |Vi| 4+ E |aVi_1|+ E |bei|) can be bounded by some constant ¢ and
la| < 1, we have:

n

c 1—la|”
E YV —aVi—1 +bep)| € —=———— — 0 asn — oo.
il vn 1—la|

Hence we obtain that A, 2 As* and from (27), (28) with Slutsky lemma for all |a| < 1

we get:
An
\/ﬁ(dn—a):B—ing(O,ago) as n — o0o. O
n
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