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ASYMPTOTIC PROPERTIES OF CORRECTED SCORE ESTIMATOR
IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERRORS

UDC 519.21

D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

Abstract. The autoregressive model with errors in variables with normally distributed control se-
quence is considered. For the main sequence, two cases are dealt with: (a) main sequence has station-
ary distribution, and (b) initial distribution is arbitrary, independent of the control sequence and has
finite fourth moment. Here the elements of the main sequence are not observed directly, but surrogate
data that include a normally distributed additive error are observed. Errors and main sequence are
assumed to be mutually independent.

We estimate unknown parameter using the Corrected Score method and in both cases prove strict
consistency and asymptotic normality of the estimator. To prove asymptotic normality we apply the
theory of strong mixing sequences. Finally, we compare the efficiency of the Least Squares (naive)
estimator and the Corrected Score estimator in the forecasting problem and conclude that the naive
estimator gives better forecast.

��������	 ��������	
��� 
����� �
���������� � �������
� � �
����� � ���
����� ������������
�������� �����������
�� ��� �������� �����������
� 
����� ��������
� ��� �������� �� ����� 
�� �����������
� 
�	 �
�!�������" ��������# �� ����
����" �������� 	 ��������
$ �� ����%�
�
��� �������� �����������
� � 
�	 ��
���
�" 
�
��
� &��
��
� �������� �����������
� �� ����
� 
�����
��� �������������$ ��
�
��
� ����
������
��� ������
�� ����$ '� �������
� ���
�����
����������� ���
���� �������� (������ � ������� �����������
� 	 ������%��
� � ��������
��

)��*�!�	�
 ��
��������� �!���	
��� 
�
���
 ����������� �!������� *���!��� + ���� ��������
�������� �
���� ������
��
���
� � ���
�
�
���� ���
������
� �!����� ��������� ���
�
�
�����
���
������
� �����	
��� �� ����
����
� ���*�!�	�
� �������� ����
�,������� + ������ ��������
�������	
��� �*��
�����
� -�������� �!���� ��"
��,�� ������
�� � ����������� �!���� � ����
���
��������$ '� ������ �!���� ���������	 ���'�" ��������

�������
�	 ����
�
�����
�� 
����� �
���������� � �,����
� � ����
���.� � ���
����� ��� 
����������" ��������'�" ���������
������
��� ��� ������" ���������
������
� ����
�
���.
��� ������� �� ������� ���������
������
� �
��
 �
�!�������� �������������# �� ��������� �� 
����������� �����
�� ����������.
$ �� ������
 �
 ��������'�" ���������
������
� � �
��

��
���
." 
�
��
� /��
��
. ������" ���������
������
� �� ��������
�� ���������
�����$ �
�
��
� ��� ��������
�� �������
�.� ����.�$ �������'�� ���
����� �������������� ���� 

����� �,����� 0,���� � ������� ���������
������
� ��������
. � ����������
��

)�1**�!���
 ��
���������� �!������
�� 
�
���
 �����������" �!������" *���!��� + �����
������� �������. �
����� ���
��
������
� � ���
�
�
������� ���
������
� �!����� ������
��� 
�
�� ���
�
�
������" ���
������
� ������
�� �� ���"�
�� ��1**�!���
� �������� ����
�,� 

������ + ������ �������� ���������
�� 1**��
�����
� -������"� �!���� ���
���,�� ������
��
� �����������" �!���� � �����
�� �.���$ �
� ������� �!���� �����������
 ���,�" ��������

1. Introduction

Introduce an autoregressive (AR) sequence

Xn − μ = a(Xn−1 − μ) + bεn, n ≥ 1, X0 ∼ N
(
μ, σ2

)
, (1)

where
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• coefficients a, b and mean μ are unknown parameters, such that |a| < 1 and
b > 0,

• {X0, εn, n ≥ 1} are independent random variables, εn ∼ N(0, 1), n ≥ 1.
Properties and applications of such models were studied, e.g., in McQuarrie and

Tsai [10].
We are interested in estimators of the parameters a and μ. In case where there is

no errors in variables, estimators of these parameters can be constructed by the Least
Squares (LS) method with elementary criterion function

qLS(Xk, Xk−1; a, μ) = ((Xk − μ)− a(Xk−1 − μ))2.

Here we consider a situation where elements of the main sequence are not observed
directly, but surrogate data that include additive errors are observed. Control sequence
of the model is normally distributed and main sequence is stationary distributed, or as
a different case, initial distribution is arbitrary, independent of the control sequence and
has finite fourth moment.

Estimation of the parameters in autoregressive model with measurement error was
considered in Dedecker et al. [7]. They proposed an estimation procedure based on
modified least square criterion involving a suitably chosen weight function.

Other consistent estimators exist in this model. Letting q → ∞ as the sample size is
increasing, Chanda [6] applies Yule–Walker ARMA(p, q) estimator for errors-in-variables
AR(p) model. The estimator does not use the error variance. Moreover, the errors are
allowed to be slightly autocorrelated. Under some conditions, Chanda’s estimator is
consistent and asymptotically normal, but it is not

√
n-consistent.

In present paper we apply Corrected Score (CS) method (see Carroll et al. [4, Ch. 4]).
We observe Wk = Xk + Vk, k ≥ 0, where Vk ∼ N(0, σ2

V ) and {X0, Vk, εk, k ≥ 0} are
mutually independent. Consider the elementary score function of LS estimator

ψ0,LS(Xk, Xk−1; a, μ) =
1
2
∂

∂a
qLS(Xk, Xk−1; a, μ).

We construct a new score qCS(Wk,Wk−1; a, μ) as a solution to the deconvolution
equation

Ea0,μ0(ψ0,CS(Wk,Wk−1; a, μ) | Xk, Xk−1) = ψ0,LS(Xk, Xk−1; a, μ) a.s.,

for all a, μ ∈ R. Then the CS estimator (ân, μ̂n)T is defined as a solution to equation
n∑

k=1

ψ0,CS(Wk,Wk−1; a, μ) = 0, a, μ ∈ R.

The true parameter a satisfies |a| < 1, and it will be shown below that |ân| < 1, for all
n ≥ n0(w) a.s.

In this paper we construct the CS estimator explicitly and study its asymptotic prop-
erties as n→∞.

The paper is organized as follows. The CS is given explicitly in Section 2. The strict
consistency and asymptotic normality of the estimator are presented in Section 3, and
Section 4 concludes. Proofs of the main results are given in Appendix.

We use the following notations. zT is transposed vector z, E stands for expectation of
a random variable, P1→ and d→ denote the convergence a.s. and in distribution respectively,

an
P1≈ bn means that an − bn P1→ 0, as n→∞.

2. Construction of corrected score estimator

Rewrite model (1) in a more convenient way.
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Lemma 2.1. For the model (1) it holds

Xn − μ = b

n∑
i=1

an−iεi + an(X0 − μ), n ≥ 1. (2)

Proof. This statement is straightforward and can be proved by induction. �
From now on we suppose that {Wk, k = 0, . . . , n} are observed instead of

{Xk, k = 0, . . . , n},
where the additive error Vk ∼ N(0, σ2

V ) and {Vk, Xk, k ≥ 0} are mutually independent.
First, for the unknown AR coefficient a and mean μ we construct the LS estimators

(LSEs). To do that we introduce the objective function:

QLS(W0, . . . ,Wn; a, μ) =
1
n

n∑
k=1

((Wk − μ)− a(Wk−1 − μ))2,

and minimize it with respect to a and μ. Necessary and sufficient conditions for mini-
mizing are: {

∂QLS

∂a = 2
n

∑n
k=1(a(Wk−1 − μ)− (Wk − μ))(Wk−1 − μ) = 0,

∂QLS

∂μ = 2
n

∑n
k=1(a(Wk−1 − μ)− (Wk − μ))(1 − a) = 0.

Solving this system of equations, we get the LSE of the mean μ

μ̂n =
∑n

k=1WkWk−1

∑n
k=1Wk−1 −

∑n
k=1W

2
k−1

∑n
k=1Wk

n(
∑n

k=1WkWk−1 −
∑n

k=1W
2
k−1) + (

∑n
k=1Wk−1)2 −

∑n
k=1Wk−1

∑n
k=1Wk

,

provided the denominator is nonzero, and the LSE of the parameter a is

âLS
n =

∑n
k=1(Wk − μ̂n)(Wk−1 − μ̂n)∑n

k=1(Wk−1 − μ̂n)2
. (3)

Because the LSE μ̂ is too complicated to be investigated, we use the sample mean
that provides a strict consistent estimator of the mean μ,

μ̂n =
1
n

n−1∑
k=0

Wk
P1→ μ, as n→∞.

We prove that the μ̂n is asymptotically normal using the Central Limit Theorem
(CLT) (see Billingsley [1, Th 27.4]) and results of Bosq and Blanke [3, p. 47–48] in order
to ensure that we deal with a geometrically strong mixing sequence.

Next we construct an estimator of the regression coefficient a by the CS method. We
introduce a function ψLS(X0, . . . , Xn; a, μ) as

ψLS(X0, . . . , Xn; a, μ) =
1
2
∂QLS

∂a
=
a

n

n∑
k=1

(Xk−1 − μ)2 − 1
n

n∑
k=1

(Xk − μ)(Xk−1 − μ).

We search for a function ψCS(W0, . . . ,Wn; a, μ) that satisfies the deconvolution equa-
tion

E(ψCS(W0, . . . ,Wn; a, μ) | X0, . . . , Xn) = ψLS(X0, . . . , Xn; a, μ) a.s. (4)
To do that we obtain polinomial functions h(Wk;μ) and g(Wk−1,Wk;μ) that solve

equations
E(h(Wk;μ) | Xk) = (Xk − μ)2 a.s., (5)

E(g(Wk−1,Wk;μ) | Xk−1, Xk) = (Xk − μ)(Xk−1 − μ) a.s. (6)
of the following form

h(Wk;μ) = (Wk − μ)2 − σ2
V ,

g(Wk−1,Wk;μ) = (Wk−1 − μ)(Wk − μ).
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Hence we get a polynomial solution to (4)

ψCS(W0, . . . ,Wn; a, μ) =
a

n

n∑
k=1

(
(Wk−1 − μ)2 − σ2

V

)− 1
n

n∑
k=1

(Wk−1 − μ)(Wk − μ).

Plugging-in the sample mean μ̂n and equating ψCS(W0, . . . ,Wn; a, μ̂n) to zero we get
the CS estimator of a,

ân =
∑n

k=1(Wk − μ̂n)(Wk−1 − μ̂n)∑n
k=1(Wk−1 − μ̂n)2 − nσ2

V

. (7)

Remark 2.1. The denominator of (7) is nonzero starting from certain random number,
i.e., for all n ≥ n0(ω) a.s.

Proof of Remark 2.1 is a part of proof of Theorem 3.2, see Appendix.

3. Main results

Asymptotic properties of CS estimator. We state the consistency and asymptotic
normality of the CS estimator (7) as n→∞.

Theorem 3.1. In model (1), let {Xk, k ≥ 1} be a stationary process. Assume that
variables {X0, εk, Vk−1, k ≥ 1} are mutually independent, then the CS estimator (7) is
strictly consistent.

For Theorems 3.2 and 3.4, do not assume that X0 has a stationary distribution of
underlying AR sequence. In particular, assume (1) without requirement that X0 ∼
N(μ, σ2).

Theorem 3.2. Assume that {Xk, k ≥ 1} in AR (1) has an arbitrary initial distribution
with finite fourth moment and variables {X0, εk, Vk−1, k ≥ 1} are mutually independent.
Then CS estimator (7) is strictly consistent.

Theorem 3.3. In AR (1) let {Xk, k ≥ 1} be a stationary process. Assume that vari-
ables {X0, εk, Vk−1, k ≥ 1} are mutually independent. Then the CS estimator (7) is
asymptotically normal with positive asymptotic variance

σ2
∞ = 1− a2 + 2

(
1− a2

) σ2
V

σ2
+

(
2a2 + 1

) σ4
V

σ4
. (8)

Theorem 3.4. Assume that {Xk, k ≥ 1} in AR (1) has arbitrary initial distribution
with finite fourth moment and variables {X0, εk, Vk−1, k ≥ 1} are mutually independent.
Then the CS the estimator (7) is asymptotically normal with positive asymptotic variance

σ2
∞ = 1− a2 + 2

(
1− a2

)2 σ2
V

b2
+

(
2a2 + 1

) (
1− a2

)2 σ4
V

b4
. (9)

Remark 3.1. In case of known parameter μ, the CS estimator of a is defined by (7)
setting μ̂n = μ. Then the estimator remains strictly consistent and asymptotically normal
with unchanged asymptotic variance (8).

Proofs of Theorems 3.1 to 3.4 can be found in Appendix.

Comparison of the LS and CS estimators. We compare the efficiency of the LS
estimator (3) and CS estimator (7) in the forecasting problem.

As two forecasts of the forthcoming observation Wn+1 we take the values

WLS
n+1 = μ̂n + âLS

n (Wn − μ̂n), WCS
n+1 = μ̂n + âCS

n (Wn − μ̂n).
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To find an optimal forecast E(Wn+1|Wn) first we calculate the correlation coefficient
between Wn and Wn+1,

ρ =
aσ2

σ2 + σ2
V

.

Then we use a theorem from Kartashov [8] which states that for jointly Gaussian random
variables (ξ1, ξ2) ∼ N(μ1, μ2, σ1, σ2, ρ), the conditional expectation can be calculated as

E(ξ1 | ξ2 = y) = μ1 + ρ
σ1

σ2
(y − μ2).

Thus, the optimal forecast is

E(Wn+1 | Wn) = μ+ ρ(Wn − μ) = μ+
aσ2

σ2 + σ2
V

(Wn − μ).

But the parameters of the model are unknown, and instead one can use two forecasts
constructed above. Because the CS estimator is strictly consistent, i.e. âCS

n
P1→ a, as

n→∞, and

âLS
n

P1→ a
σ2

σ2 + σ2
V

as n→∞,
we have:

WCS
n+1 − μ = (a+ o(1))(Wn − μ) a.s.

and for the LS forecast,

WLS
n+1 − μ = âLS

n (Wn − μ) =
(
a

σ2

σ2 + σ2
V

+ o(1)
)

(Wn − μ) a.s.,

where o(1) is a sequence of random variables that converges to 0 a.s.
Hence like in the example from Cheng and Van Ness [5, p. 70], we conclude that the

naive LS estimator yields better forecast.

4. Conclusion

In this paper we considered the autoregressive model with measurement error. We
proved the strict consistency and asymptotic normality of the CS estimator. Also we
compared the efficiency of the LS (naive) estimator and CS estimator in the forecasting
problem and showed that the naive estimator gives better forecast, though the naive
estimator is inconsistent as n→∞.

Appendix

Proof of Theorem 3.1. We suppose that the main sequence of AR (1) has stationary
distribution. Initial distribution is X0 ∼ N(μ, σ2), therefore using stationarity of the
process we get that σ2 = b2

1−a2 .
To show the strict consistency rewrite the estimator (7):

ân =
1
n

∑n
k=1 VkVk−1 + 1

n

∑n
k=1(Xk − μ̂n)(Xk−1 − μ̂n)

1
n

∑n
k=1(Xk−1 − μ̂n)2 + 1

n

∑n
k=1 V

2
k−1 + 2

n

∑n
k=1(Xk−1 − μ̂n)Vk−1 − σ2

V

+
1
n

∑n
k=1(Xk − μ̂n)Vk−1 + 1

n

∑n
k=1 Vk(Xk−1 − μ̂n)

1
n

∑n
k=1(Xk−1 − μ̂n)2 + 1

n

∑n
k=1 V

2
k−1 + 2

n

∑n
k=1(Xk−1 − μ̂n)Vk−1 − σ2

V

.

(10)

We find the limits as n→∞ for all terms in (10) separately.
First consider the sequence

1
n

n∑
k=1

(Xk−1 − μ̂n)2.
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Rewriting it as

1
n

n∑
k=1

(Xk−1 − μ̂n)2 =
1
n

n∑
k=1

(Xk−1 − μ)2 + (μ− μ̂n)
2
n

n∑
k=1

(Xk−1 − μ) + (μ− μ̂n)2

and using strict consistency of sample mean μ̂n, we get that the last two terms are
vanishing as n→∞, hence

1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2.

To get the limit of the sequence

1
n

n∑
k=1

(Xk−1 − μ)2,

we use the ergodic theorem for stationary processes (see Korolyuk et al. [9]). Conditions
of the ergodic theorem can be verified, and we get a limit of the first term in denominator
of (10),

1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2 P1→ E(X0 − μ)2 = σ2 as n→∞. (11)

To get a limit for the second term we use the strong law of large numbers (SLLN):

1
n

n∑
k=1

V 2
k−1

P1→ EV 2
0 = σ2

V as n→∞. (12)

By similar technique we get limits of all terms in (10) as n→∞:

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk−1
P1→ 0, (13)

1
n

n∑
k=1

VkVk−1
P1→ 0, (14)

1
n

n∑
k=1

(Xk − μ̂n)(Xk−1 − μ̂n) P1→ aσ2, (15)

1
n

n∑
k=1

(Xk − μ̂n)Vk−1
P1→ 0, (16)

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk
P1→ 0. (17)

Plugging limits (11)–(17) in expression (10), we get that ân
P1→ a as n→∞. �

Proofs of Remark 2.1 and Theorem 3.2. We denote stationary distributed random vari-
ables satisfying (1) as {Xst

k , k ≥ 1}, with initial distribution Xst
0 ∼ N(μ, σ2). We assume

that {X0, X
st
0 , εk, Vk−1, k ≥ 1} are mutually independent.

Equality (2) implies that

Xn − μ = (Xst
n − μ) + an

(
X0 −Xst

0

)
, (18)

hence Xn −Xst
n

P1−→ 0 as n→∞.
Now we have to find a limit of (10) as n→∞.
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First consider
1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2.

We plug expression (18) in the latter sequence, hence

1
n

n∑
k=1

(Xk−1 − μ)2 =
1
n

n∑
k=1

(
(Xst

k−1 − μ) + ak−1(X0 −Xst
0 )

)2

=
1
n

n∑
k=1

(
Xst

k−1 − μ
)2 +

2
n

(
X0 −Xst

0

) n∑
k=1

ak−1
(
Xst

k−1 − μ
)

+
1
n

(
X0 −Xst

0

)2
n∑

k=1

a2(k−1).

(19)

In the proof of Theorem 3.1, we have shown convergence of the first term in expres-
sion (19):

1
n

n∑
k=1

(
Xst

k−1 − μ
)2 P1→ σ2 as n→∞.

Since |a| < 1, we get that

1
n

(
X0 −Xst

0

)2
n∑

k=1

a2(k−1) P1→ 0 as n→∞.

For the second term of (19) we proceed as follows. Denote corresponding random
sequence as

Yn =
2
n

n∑
k=1

ak−1
(
Xst

k−1 − μ
)

:

• First using Chebyshev’s inequality
∞∑

n=1

P(|Yn| > C) ≤
∞∑

n=1

E |Yn|2
C2

<∞

we show that for each C > 0, it holds
∑∞

n=1 P(|Yn| > C) <∞.
• Then Borel–Cantelli lemma implies that ∀C > 0 ∃n0 ∀n ≥ n0 : |Yn| ≤ C a.s.

Therefore, to prove that Yn
P1→ 0 as n→∞, it is enough to show

∑∞
n=1 E |Yn|2 <∞.

After quite cumbersome calculations, we can show that

∞∑
n=1

E

(
2
n

n∑
k=1

ak−1(Xst
k−1 − μ)

)2

converges.
Hence

2
n

(
X0 −Xst

0

) n∑
k=1

ak−1
(
Xst

k−1 − μ
) P1→ 0 as n→∞.

Therefore, plugging all limits found above in (19), we obtain

1
n

n∑
k=1

(Xk−1 − μ̂n)2 P1→ σ2 as n→∞. (20)



ASYMPTOTIC PROPERTIES OF CS ESTIMATOR IN AR WITH MEASUREMENT ERRORS 163

Similarly we get limits of all terms in (10) as n→∞:

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk−1
P1→ 0, (21)

1
n

n∑
k=1

(Xk−1 − μ̂n)(Xk − μ̂n) P1→ aσ2, (22)

1
n

n∑
k=1

(Xk − μ̂n)Vk−1
P1→ 0, (23)

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk
P1→ 0. (24)

We plug (12), (14), (20)–(24) in expression (10) and get that ân
P1→ a, as n→∞, hence

the estimator (7) is strictly consistent. A limit of the denominator in (10) is nonzero,
therefore, the statement of Remark 2.1 holds true. �

Now, we state lemmas for mixing coefficients and mixing sequences.
First note that for two σ-algebras G and H on a probability space (Ω,F ,P), the strong

mixing coefficient is defined as follows:

α(G,H) = sup
A∈G,B∈H

|P(A ∩B)− P(A)P(B)|.

For a random sequence {Xk, k ≥ 0}, denote

αX(m) = sup
k≥0

α(σ(X0, . . . , Xk), σ(Xk+m, Xk+m+1, . . .)).

The sequence {Xk, k ≥ 0} is called a strong mixing process if limm→∞ αX(m) = 0. It is
called a geometrically strong mixing (GSM) process if

αX(m) ≤ brm, m ≥ 0,

for some 0 < r < 1 and b > 0.
Now, we state a helpful lemma which is a direct consequence of the definition of strong

mixing sequences (see Billingsley [2]).

Lemma 4.1. Let {Xn, n ≥ 0} be a random sequence and Zn = (Xn−l, . . . , Xn)T , n ≥ l.
Then for α-mixing coefficients associated to sequences {Xn, n ≥ 0} and {Zn, n ≥ l}, the
following relation holds true:

αX(m) = αZ(m+ l), m ≥ 0

Corollary 4.1. Let {Xn, n ≥ 0} be a random sequence and Zn = (Xn−l, . . . , Xn)T ,
n ≥ l. For a Borel measurable vector function f , consider a sequence

f(Z) = {f(Zn), n ≥ l}.
Then

αX(m) ≥ αf(Z)(m+ l), m ≥ 0.
If {Xn, n ≥ 0} is a strong mixing sequence then {f(Zn), n ≥ l} is a strong mixing
sequence as well. If {Xn, n ≥ 0} is a GSM sequence then so is {f(Zn), n ≥ l}.
Lemma 4.2. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces. Let G1 and H1

be two sub-σ-algebras of F1 and let G2 and H2 be two independent sub-σ-algebras of F2.
Then

α(σ(G1 × G2), σ(H1 ×H2)) = α1(G1,H1),
Here for the calculating mixing coefficient α1 we use measure P1; and for α product
measure P = P1×P2 is used.



164 D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

Proof. Denote G = σ(G1 ×G2), H = σ(H1 ×H2). Expectation in (Ω2,F2,P2) is denoted
as E2. For A ∈ σ(F1 ×F2), denote the section Aω2 := {ω1 ∈ Ω1 | (ω1, ω2) ∈ A} ∈ F1.

Let A ∈ G and B ∈ H. Then P1(Aω2) and P1(Bω2) are independent random variables.
Hence

P(A)P (B) = E2(P1(Aω2)) E2(P1(Aω2)) = E2(P1(Bω2) P1(Bω2)).

We have
|P1(Aω2 ∩Bω2)− P1(Aω2)P1(Aω2)| ≤ α1(G1,H1) P2 -a.s.,

|P(A ∩B)− P(A)P(B)| = |E2(P1((A ∩B)ω2))− E2(P1(Aω2) P1(Bω2))|
= |E2(P1(Aω2 ∩Bω2)− P1(Aω2) P1(Bω2))| ≤ α1(G1,H1).

Varying A and B, we get
α(G,H) ≤ α1(G1,H1). (25)

From the other hand
α(G,H) = sup

A∈G, B∈H
|P(A ∩B)− P(A)P(B)|

≥ sup
A1∈G1, B1∈H1

|P((A1 × Ω2) ∩ (B1 × Ω2))− P(A1 × Ω2)P(B1 × Ω2)|

= sup
A1∈G1, B1∈H1

|P1(A1 ∩B1)− P1(A1)P1(B1)| = α1(G1,H1).

(26)

Inequalities (25) and (26) imply the statement of Lemma. �

Under conditions of Lemma 4.2, a similar relation holds true for φ-mixing coefficients:

φ(σ(G1 × G2), σ(H1 ×H2)) = φ1(G1,H1),

where
φ(G,H) = sup

A∈G, B∈H, P(B) �=0

∣∣P(A | B)− P(A)
∣∣.

Proof of Theorem 3.3. Now, the process {Xk, k ≥ 0} is stationary, X0 ∼ N(μ, σ2) and
σ2 = b2

1−a2 .
From expression (7) for estimator α̂n we get

√
n(ân − a) =

1√
n

∑n
k=1(Wk−1 − μ̂n)(Wk − μ̂n − a(Wk−1 − μ̂n)) +

√
naσ2

V

1
n

∑
k=1 n

∑n
k=1(Wk−1 − μ̂)2 − σ2

V

=:
An

Bn
.

From the proof of Theorem 3.1 we get a limit of the denominator:

Bn
P1−→ σ2. (27)

Now, rewrite the numerator. Because
∑n

k=1(Wk−1 − μ̂n) = 0, we have

An =
1√
n

n∑
k=1

(Wk−1 − μ̂n)(Wk − aWk−1) +
√
naσ2

V

=
1√
n

n∑
k=1

(Wk−1 − μ)(Wk − μ− a(Wk−1 − μ)) +
√
naσ2

V

− μ̂n − μ√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)).

By the classical CLT,

1√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)) =
1√
n

n∑
k=1

(Vk − aVk−1 + bεk)
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converges in distribution. Remember that μ̂n is a consistent estimator of μ. Then by
Slutsky lemma,

μ̂n − μ√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)) P→ 0 as n→∞.

Denote
Zk = (Wk−1 − μ)(Wk − μ− a(Wk−1 − μ)) + aσ2

V

= (Wk−1 − μ)(Vk − aVk−1 + bεk) + aσ2
V .

With this notation, An
P≈ Ã = 1√

n

∑n
k=1 Zk.

The AR process {Xk−μ, k ≥ 0} is a GSM sequence, see Bosq, Blanke [3, Ex. 1.5, p. 47].
By Lemma 4.2 {(Xk − μ, Vk)T , k ≥ 0} is a GSM sequence too. Then by Corollary 4.1
{Zk, k ≥ 1} is a GSM sequence. Also {Zk, k ≥ 1} is a strictly stationary process with
EZk = 0 and EZ12

k <∞. Applying CLT, we get

1√
n

n∑
k=1

Zk
d→ N

(
0, σ2

A

)
with σ2

A = EZ2
1 + 2

∑∞
k=2 EZ1Zk. After some calculations we have

EZ2
1 =

(
1− a2

)
σ4 + 2σ2σ2

V +
(
2a2 + 1

)
σ4

V ,

EZ1Z2 = −a2σ2σ2
V ,

EZ1Zk = 0, k ≥ 3.

Therefore
σ2

A =
(
1− a2

)
σ4 + 2

(
1− a2

)
σ2σ2

V +
(
2a2 + 1

)
σ4

V .

Finally,

An
d→ N

(
0, σ2

A

)
, (28)

√
n(â− a) =

An

Bn

d→ N(0, σ2
∞)

with

σ2
∞ =

σ2
A

σ4
= 1− a2 + 2

(
1− a2

) σ2
V

σ2
+

(
2a2 + 1

) σ4
V

σ4
.

Obviously σ2
∞ > 0. Thus, α̂n is an asymptotically normal estimator of a. �

Proof of Theorem 3.4. Proof of this theorem differs from the proof of Theorem 3.3 only
when we deal with numerator Ãn. For the case of stationary initial distribution we denote
it as Ãst

n . Then using relation (18) we rewrite Ãn for an arbitrary distribution as follows:

Ãn =
1√
n

n∑
k=1

VkVk−1 +
1√
n

n∑
k=1

(Xk − μ)(Xk−1 − μ) +
1√
n

n∑
k=1

(Xk − μ)Vk−1

+
1√
n

n∑
k=1

Vk(Xk−1 − μ)− a√
n

n∑
k=1

(Xk−1 − μ)2 − a√
n

n∑
k=1

V 2
k−1

− 2a√
n

n∑
k=1

(Xk−1 − μ)Vk−1 + a
√
nσ2

V

= Ãst
n +

1√
n

(X0 −Xst
0 )

n∑
k=1

ak−1(Vk − aVk−1 + bεk).
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Because Ãst
n converges in distribution, it remains to prove only that the last term

1√
n

(X0 −Xst
0 )

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

converges to 0 in probability. We have

E

∣∣∣∣∣ 1√
n

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

∣∣∣∣∣ ≤ 1√
n

E
n∑

k=1

|ak−1|(|Vk|+ |aVk−1|+ |bεk|)

≤ 1√
n

n∑
k=1

|ak−1|(E |Vk|+ E |aVk−1|+ E |bεk|).

Because the sum (E |Vk|+E |aVk−1|+E |bεk|) can be bounded by some constant c and
|a| < 1, we have:

E

∣∣∣∣∣ 1√
n

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

∣∣∣∣∣ ≤ c√
n

1− |a|n
1− |a| → 0 as n→∞.

Hence we obtain that An
P≈ Ãst

n and from (27), (28) with Slutsky lemma for all |a| < 1
we get:

√
n(ân − a) =

An

Bn

d→ ζ ∼ N
(
0, σ2

∞
)

as n→∞. �
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