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ON COUPLING MOMENT INTEGRABILITY FOR
TIME-INHOMOGENEOUS MARKOV CHAINS

UDC 519.21

V. V. GOLOMOZIY AND N. V. KARTASHOV

Abstract. In this paper, we find the conditions under which the expectation of the first coupling
moment for two independent, discrete, time-inhomogeneous Markov chains will be finite. We consider
discrete chains with a phase space {0, 1, . . . } and as the coupling moment we understand the first
moment of visiting zero state by the both chains at the same time.
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1. Introduction

The problem of finiteness for the moment of simultaneous hitting for two chains into
certain set (or simultaneous renewal of two renewal processes) play a crucial role in
evaluation of the stability estimates using coupling method. Similar estimates one can
find in the authors’ works [4, 5]. The problem of stability for a time-inhomogeneous
Markov chain is investigated there using a coupling method as a key method of the
research. Similar problems, but for the homogeneous Markov chains, are also considered
in the work [7].

The key question for the stability estimate evaluation in these papers is how we can
estimate the expectation for the moment of simultaneous hitting for two Markov chains.
The coupling setup can be found in the following work [5].

The problem of integrability and finiteness for the coupling moment can be reduced
to the problem of integrability and finiteness for the moment of simultaneous hitting
into certain set or to the problem of finiteness for the moment of simultaneous renewal.
Similar task is considered in the Lindvall’s book [14]. It worth to mention, that this
monograph is a classical book on the coupling method. There introduced different types
of coupling: week coupling, maximal coupling, Ornshtein coupling, Mineka coupling and
so on. Another famous book on the coupling method is a Torrison’s work [15].

The coupling method is also used in many other works. The first works on coupling
method are [1, 12, 13]. An example of how the coupling method is used to establish stabil-
ity estimates for time-homogeneous chain with different initial distributions is proposed
in [2].
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However, the problem of coupling only the same homogeneous Markov chain and re-
lated problems were considered in books mentioned above. In particular, the theorem
about integrability of the coupling moment in the book by Lindvall [14] had been proved
for two copies of the same time-homogeneous Markov chain whith different initial dis-
tributions. In the investigation of stability there arises the necessity to extend coupling
moment for different, not necessarily homogeneous Markov chains. So, well-known classi-
cal Lindvall’s and Thorrison’s results do not work in this case. Meantime, it is important
to note that the main theorem of this article uses the same proof schema as Lindvall’s
theorem 4.2 [14, p. 27].

The paper [9] is devoted to the investigation of such problem as integrability of the
coupling moment for two different Markov chains. In this work the estimates for the
expectation of a coupling moment for two different time-homogeneous Markov chains
starting with a random delays are presented. The conditions under which these estimates
were obtained are the strong aperiodicity (g1

1+g2
1 > 0) and the finiteness of second renewal

moments.
The maximal coupling for two time-inhomogeneous chains is considered in other au-

thor’s papers [10, 11].
In the current paper these results extended to the time-inhomogeneous case. It is

important that in this case the fundamental principle of independence of the renewal
times does not hold true anymore. Instead, the conditional independence should be
considered given the fixed moments of the previous renewal process.

The main theorem of this paper gives the general conditions which guarantee the
integrability of the coupling moment. They are the condition of the separation from a
zero for renewal probabilities (in the time-homogeneous case this condition automatically
holds true for the non-periodic renewal distribution with a finite mean) and the uniform
integrability of the renewal distributions. It is interesting that similarity of the condition
can be noted for homogeneous and inhomogeneous case. In particular, for the time-
homogeneous case, an estimate similar to the one from the work [9] is derived in a
principal different way.

2. Dependence of renewal moments for time-inhomogeneous Markov chain

The fundamental fact defining the proof schema in the time-inhomogeneous case is
that elements of a renewal sequence are not independent and the distribution of the
k + 1-st renewal moment is completely defined by the k-th renewal value.

Let’s examine an example that leads to the renewal sequence generated by the time-
inhomogeneous Markov chain.

Consider some time-inhomogeneous discrete Markov chain (Xt, t ≥ 0) with a phase
space {0, 1, 2, . . .}. Its transition probabilities are defined in the following way:

P{Xt+1 = j | Xt = i} = Pt(i, j) = p
(t)
ij , t ≥ 0. (1)

In the zero moment of time the chain is in the zero state. Let’s introduce the following
notation:

θ1 = inf{t > 0: Xt = 0}
θ2 = inf{t > θ1 : Xt = 0}

. . .

θm = inf{t > θm−1 : Xt = 0}, m > 1,

(2)

where θ1 is time of the first returning to zero, θ2 is time between first and second zero
hitting, and so on. In this case τk =

∑k
j=1 θk is the k-th hitting moment.

The sequence {θm, m ≥ 1} is a renewal sequence generated by the time-inhomogeneous
Markov chain Xt. In general case, for the chain starting from a non-zero state we may
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consider an initial delay θ0. It is time that a chain takes till hitting zero for the first
time.

Let’s now investigate a problem of dependence for the θm variables. In the homo-
geneous case, these variables are independent. But if the chain is time-inhomogeneous
there is dependence between θm’s. Let’s see an example below.

The random variable θ1 has a following distribution:

pr{θ1 = k} = P{Xk = 0, Xk−1 �= 0, . . . , X1 �= 0, X0 = 0}

=
∑

i0=0,i1 �=0,i2 �=0,...,ik−1 �=0,ik=0

k−1∏
j=0

p
(j)
ijij+1

.
(3)

So, we can see that a distribution potentially depends from all Xt, t ≤ k.
The distribution of the random variable θ2 is as follows

P{θ2 = k} =
k−1∑
j=1

P{θ2 = k, θ1 = j}

=
∑

j

P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0, Xj = 0,

Xj−1 �= 0, . . . , X1 �= 0, X0 = 0}.

(4)

Note, that for each term in the last sum, the following equality holds true:∑
P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0 | Xj = 0}P{θ1 = j}
=

∑
P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0 | Xj = 0}P{τ1 = j}.

So, the distribution of the random variable θ2 depends on the variable τ1 and all Xt,
t > τ1. We’ll show that this situation holds true for the other θm as well.

Let us now consider

P{θm = k} =
∑

P{Xk = 0, Xk−1 �= 0, . . . , Xj+1 �= 0 | Xj = 0}P{τm−1 = j}. (5)

So the distribution of the θm depends on probabilities p
(t)
ij where t ≥ τm−1. In other

words, in order to write down a distribution for the θm, one should know the value of the
variable τm−1 but now necessarily the values of variables θ1, . . . , θm−1. Moreover, under
fixed τm−1 the distribution of θm does not depend on the values θ1, . . . , θm−1.

Now we have:
P{θm = i, θm−1 = j | τm−1 = t}

= P{θm = i, θm−1 = j | Xt = 0, Xl = 0, exactly m − 2 times, l < m − 1}
= P{Xk = 0, k ∈ {i, t, t − j}, Xk �= 0 otherwise, A}P−1(A)

= P{Xi = 0, Xl �= 0,

l = t + 1, . . . , i − 1 | Xt = 0, Xt−1 �= 0, . . . , Xt−j = 0, Xt−j−1 �= 0, A}
× P{Xt = 0, Xt−1 �= 0, . . . , Xt−j = 0, Xt−j−1 �= 0 | A}

= P{Xi = 0, Xl �= 0, l = t + 1, . . . , i − 1 | Xt = 0}P{θm−1 = j | τm−1 = t}
= P{Xi = 0, Xl �= 0, l = i − 1, . . . , t + 1 | Xt = 0, B}P{θm−1 = j | τm−1 = t}
= P{θm = i | τm−1 = t}P{θm−1 = j | τm−1 = t},

where the set A = {Xt = 0, Xl = 0, exactly m − 2 times, l < m − 1} = {τm−1 = t},
B = {exactly m − 1 zero hittings happened till time t − 1}.

So we have proved that

P{θm = i, θm−1 = j | τm−1 = t} = P{θm = i | τm−1 = t}P{θm−1 = j | τm−1 = t}, (6)
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which means that variables θm and θm−1 are conditionally independent given τm−1.
Let us also note, that formula (5) implies that the distribution of the θm is parame-

terized by only one parameter j (values of a τm−1), and does not depend on index m.
So we can write:

gj
n = P{θm = n | τm−1 = j}.

This fact leads us to consideration of the random variables θ(t) which have the same
distribution as (gt

n)n≥0. This variables can be handled as moments of the first after time
t returning to zero, if we know that a chain is in the zero state at the moment t.

3. Key definitions

In this section and further on we’ll consider two time-inhomogeneous Markov chains
(X1

t , t ≥ 0) and (X2
t , t ≥ 0) defined on a phase space E = {0, 1, . . .}. The chains are

defined by their transition probabilities on the s-th step Ps(x, A, 1), Ps(x, A, 2) for chains
X1

t , X2
t respectively. Let’s define transition probabilities for n > 0 steps:

P t,n(x, A, l) =

(
n−1∏
k=0

Pt+k

)
(x, A, l). (7)

Having this set of transition probabilities and the initial conditions μl(·) we can build
a probability space (Ω, F, P) where both chains (X l

t), l ∈ {1, 2}, are defined and

P{X l
s ∈ A} =

∫
E

μl(dx)P 0,s(x, A, l), P{X l
s+1 ∈ A | X l

s = x} = Ps(x, A, l).

Let’s define renewal intervals θl
k, l ∈ {1, 2}:

θl
0 = inf{t ≥ 0: Xt = 0}, θl

m = inf{t > θm−1 : Xt = 0}, m > 1, (8)

which are defined on the same probability space (Ω, F, P). The classes of variables
{θ1

k}k≥0 and {θ2
k}k≥0 are independent. θl

k for each l ∈ {1, 2} and k > 0 have only positive
integer values while θl

0 take non-negative integers. Let’s define renewal sequences in the
following way:

τ l
n =

n∑
k=0

θl
k, l ∈ {1, 2}. (9)

We will assume that neighboring variables inside each class are conditionally indepen-
dent giving τ . In other words, for each k, t, l the following equality holds true:

E
[
f

(
θl

k

)
g

(
θl

k+1

) | τ l
k

]
= E

[
f

(
θl

k

) | τ l
k

]
E

[
g

(
θl

k+1

) ∣∣ τ l
k

]
, (10)

for any bounded Borel functions f and g.
Let’s introduce a definition for the conditional distribution of the θl

k variable (please,
note that this distribution does not depend on k):

gt,l
n = P

{
θl

k = n
∣∣ τk−1 = t

}
, l =∈ {1, 2}, n ≥ 0, (11)

and we assume that gt,l
0 = P{θl

k = 0 | τk−1 = t} = 0. The variables θl
k, k ≥ 1 will be

interpreted as renewal steps and θl
0 as a delay.

We’ll say that T > 0 is a coupling (or simultaneously hitting) moment if:

T = min
{
t > 0: ∃m, n : t = τ1

m = τ2
n

}
. (12)

Our goal is to find conditions which guarantee T < ∞ a.s. and E[T ] < ∞.
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By u
(t,l)
n we define a renewal sequence for the process τ l. In other words, u

(t,l)
n is a

probability of a renewal at the moment t + n having renewal at the moment t. Formally
u

(t,l)
n can defined in a following way:

u
(t,l)
0 = 1, u(t,l)

n =
n∑

k=0

u
(t,l)
k gt+k,l

n−k . (13)

4. Formal definition of the θl(t) variable

As we’ve seen before, the distribution of the k + 1-st renewal interval is completely
defined by the value of the τk variable, i.e. by the moment of the previous renewal and
does not depend on the index k. That’s why we have introduced the notations gt,l

n and
u

(t,l)
n . Our goal is to define random variables θl(t) in such a way that gt,l

n be a distribution
for θl(t).

For simplicity we’ll omit index l in this section.
Assume Xt is some time-inhomogeneous Markov chain with transition probabilities

on the t-th step equal to Pt(x, A). As before, let’s define:

P t,n(x, A) =

(
n−1∏
k=0

Pt+k

)
(x, A),

transition probability for the time from t to t + n.
For each t we define probability space (Ωt, Ft, Pt) as a canonical space for the Markov

chain Xt+n which starts at zero. Let’s note that

θ(t) = min{j > 0: Xt+j = 0}, (14)

and gt
n = Pt{θ(t) = n} is the distribution of the variable θ(t). Then,

gt
n =

∫
(E\{0})n−1

Pt(0, dx0)Pt+1(x0, dx1) . . . Pt+n−1(xn−1, {0}). (15)

As in the previous section let’s define θl(t) as a moment of the first hitting zero state for
the chain (X l

t+k, k ≥ 0) which starts from zero. Then a variable θl(t) has the distribution
(gt,l

n )n≥0.
Let’s define an overshoot:

Dn(t) = min{j ≥ 0: Xt+n+j = 0}. (16)

The variable Dn(t) should be understood as a time that has left till hitting {0} after
moment t + n having Xt = 0. Note that variables Dn(t) and θ(t) are defined on the
common probability space (Ωt, Ft, Pt).

The following lemma is a key in proving the main theorem (the proof will be given
later):

Lemma 4.1. If a distribution family gt
n (or, a family of random variables θ(t)) is uni-

formly integrable then for each ρ ∈ (0, 1) there exists a constant C = C(ρ) ≥ 0, such that
for each t the following inequality holds true:

Et[Dn(t)] ≤ ρn + C.

5. Main theorem

Theorem 5.1. Assume that (in notations introduced before):
1) The set of random variables θl(t) is uniformly integrable (or, in other words, the

family of distributions gt,l
n is uniformly integrable).

2) There exists a constat γ > 0 and a positive integer n0 > 0 such that for all t, l

and n ≥ n0: u
(t,l)
n ≥ γ.
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Then the coupling moment is integrable: E[T ] < ∞.

6. Setup for the proof of the theorem 5.1

Following the Lindvall approach (see. [14, p. 27]) let’s define the following random
variables:

n0

B0 τ1
ν0

n0

B1

τ2
ν1

n0

B2 τ1
ν2

n0

B3

τ2
ν3

ν0 := min
{
j ≥ 1: τ1

j > n0

}
,

B0 := τ1
ν0

,

ν1 := min
{
j ≥ ν0 : τ2

j − τ1
ν0

> n0, or τ2
j − τ1

ν0
= 0

}
,

B1 := τ2
ν1

− τ1
ν0

,

and further on

ν2m := min
{
j ≥ ν2m−1 : τ1

j − τ2
ν2m−1

> n0, or τ1
j − τ2

ν2m−1
= 0

}
,

B2m := τ1
ν2m

− τ2
ν2m−1

,

ν2m+1 := min
{
j ≥ ν2m : τ2

j − τ1
ν2m

> n0 , or τ2
j − τ1

ν2m=0

}
,

B2m+1 := τ2
ν2m+1

− τ1
ν2m

.

νk is called as coupling trials. Let’s define τ = min{n ≥ 1: Bn = 0} and a sequence
of sigma-fields Bn, n ≥ 0 in the following way:

Bn = σ
[
Bk, νk, τ l

j , k ≤ n, j ≤ νn

]
.

Let’s also define random variables: Dk,l
n = min{j : ∃m, τ l

m = τ l
k + n + j}.

7. The proof of the theorem 5.1

At the beginning we assume that θ2
0 = 0.

The following inequality is true:

T ≤ θ1
0 +

τ∑
n=0

Bn = θ1
0 +

∑
n≥0

Bn�τ≥n. (17)

According to the lemma 8.4 for each n ≥ 0, ρ ∈ (0, 1) the following inequality holds
true:

E[Bn | Bn−1] ≤ ρBn−1 + C, (18)
which implies that

E[Bk�τ≥k | Bk−1] = E

[
Bk

k−1∏
n=0

�Bk �=0

∣∣∣∣ Bk−1

]
= �τ≥n E[Bn | Bn−1]

≤ �τ≥n(ρBn−1 + C) = ρBn−1�τ≥n + C�τ≥n

≤ ρBn−1�τ≥n−1 + C�τ≥n,

where the latest equality follows from the relation {τ ≥ n} ⊂ {τ ≥ n − 1} and so
�τ≥n ≤ �τ≥n−1.
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So we’ve proved the following inequality:

E[Bn�τ≥n] ≤ ρ E [Bn−1�τ≥n−1] + C P{τ ≥ n}. (19)

It follows from lemma 8.5 that

P{τ ≥ n} ≤ (1 − γ)n.

Let’s define an = E[Bn�τ≥n]. Then (19) implies:

an ≤ ρan−1 + C(1 − γ)n ≤ C

n∑
k=0

ρk(1 − γ)n−k ≤ Cn max(ρ, (1 − γ))n.

Note, since ρ is arbitrary, we can choose it be equal to (1 − γ). In this case

an ≤ Cn(1 − γ)n.

So

E[T ] ≤ E
[
θ1
0

]
+

∑
n≥0

an ≤ E
[
θ1
0

]
+

C

γ2
< ∞. (20)

Recall our assumption θ2
0 = 0. Now we will get rid of it. Let’s define as T ′ a coupling

moment for the processes with the following delays:

θ′10 = max
(
θ1
0 , θ

2
0

) − min
(
θ1
0, θ

2
0

)
,

θ′20 = 0.

Note that T = T ′ + min(θ1
0 , θ

2
0). So

E[T ] ≤ E
[
min

(
θ1
0 , θ

2
0

)]
+ E[T ′] < ∞.

Note that

E[T ′] ≤ E
[
θ′10

]
+

C

γ2
,

or

E[T ] ≤ E
[
max

(
θ1
0, θ

2
0

)]
+

C

γ2
.

8. Auxiliary lemmas

Lemma 8.1. Let x
(t)
n , y

(t)
n be some inhomogeneous sequences of real numbers, u

(t)
n be

some inhomogeneous renewal sequence defined by the formula (13): g
(t)
0 = 0, for all t.

Assume the following conditions are true

x(t)
n =

n∑
k=0

g
(t)
k x

(t+k)
n−k + y(t)

n , (21)

x0
n ≥

n∑
k=0

g
(t)
k x0

n−k + y(t)
n . (22)

Then for any t, n:
x(t)

n ≤ x0
n.

Proof. Let’s show that

x(t)
n =

n∑
k=0

u
(t)
k y

(t+k)
n−k . (23)

We’ll do this by induction:
For the n = 0: x

(t)
0 = g

(t)
0 x

(t)
0 + y

(t)
0 = y

(t)
0 = u

(t)
0 y

(t)
0 .
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Assuming the statement holds true for all k ≤ n, lets prove it for the n + 1.

x
(t)
n+1 =

n+1∑
k=0

g
(t)
k x

(t+k)
n+1−k + y

(t)
n+1 =

n+1∑
k=1

g
(t)
k

n+1−k∑
j=0

u
(t+k)
j y

(t+k+j)
n+1−k−j + g

(t)
0 x

(t)
n+1 + y

(t)
n+1

=
n+1∑
k=1

u
(t)
k y

(t+k)
n−k + y(t)

n =
n+1∑
k=0

u
(t)
k y

(t+k)
n−k .

Then for any t, n:

y(t)
n ≤ x(0)

n −
n∑

k=0

g
(t)
k x0

n−k,

x(t)
n ≤

n∑
k=0

u
(t)
k x

(0)
n−k −

n∑
k=0

u
(t)
k

n−k∑
j=0

g
(t+k)
j x

(0)
n−k−j . (24)

Let us consider the second term
n∑

k=0

u
(t)
k

n−k∑
j=0

g
(t+k)
j x

(0)
n−k−j = x0

0

n∑
k=0

u
(t)
k g

(t+k)
n−k + x0

1

n−1∑
k=0

u
(t)
k g

(t+k)
n−1−k + . . . + x0

nu
(t)
0 g

(t)
0

=
n−1∑
k=0

x0
ku

(t)
n−k =

n∑
k=1

u
(t)
k x0

n−k.

Applying the last relation to the (24) we derive:

x(t)
n ≤

n∑
k=0

u
(t)
k x

(0)
n−k −

n∑
k=1

u
(t)
k x0

n−k = u
(t)
0 x0

n = x0
n. �

Lemma 8.2. Assume A is a some set defined by the variables τ l
νk

, νk, k < n. Then:

E
[
Dm,l

k+n0

∣∣ Bn+1 = k, τ l
νn

= t, νn = m, A
]

= Et

[
Dl

k+n0
(t)

]
.

Proof. Let’s denote t + k + n0 = q. Then:

P
{

Dm,l
k+n0

= r, Bn+1 = k, τ l
νn

= t, νn = m, A
}

= P
{
X l

q+r = 0, X l
q+s �= 0, s = 0, . . . , r − 1, X l

t = 0, τ l
νn

= t, νn = m, Bn+1 = k, A
}

=

(∫
(E\0)r

P t,k+n0(0, dx0, l)Pq(x0, dx1, l) . . . Pq+r−1(xr−1, dxr , l)Pq+r(xr, 0, l)

)

× P
{
Xt = 0, τ l

νn
= t, νn = m, Bn+1 = k, A

}
= Pt

{
Dl

k+n0
(t) = r

}
P

{
τ l
νn

= t, νn = m, Bn+1 = k, A
}

. �

Lemma 8.3.

E[B2n | B2n−1] =
∑
t,k

Et

[
D1

k+n0
(t)

]
�τ1

ν2n−2
=t�B2n−1=k,

E[B2n+1 | B2n] =
∑
t,k

Et

[
D2

k+n0
(t)

]
�τ2

ν2n−1
=t�B2n=k.

Proof. At the beginning we should note that the sigma-field Bm is generated by the
finite amount of random variables, and each of them takes only no more than countable
number of values. So, for each m, Bm is generated by the finite number of events.
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Let us define a set of events {An(i), i ∈ In} as An(i) = {τ l
νk

= tlk, νk = nk, k ≤ n}
and note that In is a countable set. Let’s add the following notation

Cn(s, t, m, k) =
{
τ2
k = t, τ1

m = s, ν2n−1 = k, ν2n−2 = m, A2n−3(i)
}

.

Note that it follows from the definition of B2n that

B2n = D
ν2n−2,1
B2n−1+n0

+ n0, (25)

which implies

E[B2n − n0 | B2n−1]

=
∑

s<t,m,k,i∈I2n−3

E
[
Dm,1

t−s+n0

∣∣∣ Cn(s, t, m, k), A2n−3(i)
]

�Cn(s,t,m,k)�A2n−3(i).

Using lemma 8.2 we derive that the last term is equal∑
s<t,m,k,i∈I2n−3

Es

[
D1

t−s+n0
(s)

]
�Cn(s,t,m,k)�A2n−3(i)

=
∑

s<t,m,k

Es

[
D1

t−s+n0
(s)

]
�Cn(s,t,m,k) =

∑
s<t

Es

[
D1

t−s+n0
(s)

]
�τ2

ν2n−1=t
�τ1

ν2n−2
=s

=
∑
s,k

Es

[
D1

k+n0

]
�τ1

ν2n−2=s
�B2n−1=k,

where we used the following equality B2n−1 = τ2
ν2n−1

− τ1
ν2n−2

in the last relation.
The corresponding statement for E[B2n+1 | B2n] can be derived in a similar way. �

Lemma 8.4. Assuming the conditions of the theorem 5.1 holds true for each ρ ∈ (0, 1)
there exists a constant C ∈ (0,∞), that for every n ≥ 0 a following inequality is true

E[Bn | Bn−1] ≤ ρBn−1 + C.

Proof. Using lemmas 8.3 and 4.1 we will get

E[B2n | B2n−1] =
∑
t,k

Et

[
D1

k+n0
(t)

]
�τ1

ν2n−2
=t�B2n−1=k

≤
∑
t,k

(ρ(k + n0) + C)�τ1
ν2n−2

=t�B2n−1=k = ρB2n−1 + C′.

The same statement holds true for the E[B2n+1 | B2n]. �

Lemma 8.5. The following inequality is true

P{τ > n} ≤ (1 − γ)n.

Proof. Recall that τ = min(n : Bn = 0). An event {τ > n} = {∏n
k=0 Bk �= 0}.

E
[
��n

k=0 Bk �=0

]
= E

[
��n−1

k=0 Bk �=0 E [�Bn �=0 | Bn−1]
]

= E
[
��n−1

k=0 Bk �=0

]
P

{
θl

η > Bn + Bn−1

}
≤ E

[
��n−1

k=0 Bk �=0

]
P

{
θl

η > n0

} ≤ E
[
��n−1

k=0 Bk �=0

]
(1 − γ) ≤ (1 − γ)n,

where η is a number of the next after Bn−1 renewal in the l-th series. �
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9. The proof of the lemma 4.1

Let’s consider the random variable Dn(t)�θ(t)=j, j ≤ n. By the direct calculation it
is easy to verify that

Pt{Dn(t) = k, θ(t) = j} = Pt{θ(t) = j}Pt+j{Dn−j(t + j) = k}. (26)

The following inequality holds true:

Dn(t)�θ(t)>n = (θ(t) − n)�θ(t)>n. (27)

Then, having in mind inequalities (26) and (27) we’ll get

Et[Dn(t)] =
n∑

j=1

Et

[
Dn(t)�θ(t)=j

]
+ Et

[
Dn(t)�θ(t)>n

]

=
n∑

j=1

( ∞∑
k=0

kPt{Dn(t) = k, θ(t) = j}
)

+ Et

[
(θ(t) − n)�θ(t)>n

]

=
n∑

j=1

Pt{θ(t) = j}
( ∞∑

k=0

kPt+j{Dn−j(t + j) = k}
)

+ Et[(θ(t) − n)�θ(t)>n]

=
n∑

j=1

gt
jEt+j [Dn−j(t + j)] + Et

[
(θ(t) − n)�θ(t)>n

]
.

So we have the following equality

Et[Dn(t)] =
n∑

j=1

gt
jEt+j [Dn−j(t + j)] + Et

[
(θ(t) − n)�θ(t)>n

]
. (28)

After that we’ll use the lemma 8.1. Let’s define:
x(t)

n = Et[Dn(t)],

y(t)
n = Et

[
�θ(t)>n(θ(t) − n)

]
,

then (28) implies the condition (21).
We define as

x0
n = ρn + C.

Let’s proof that the condition (22) of the lemma 8.1 holds true. For doing that we should
show, that for any ρ ∈ (0, 1) there exists such C = C(ρ), that

ρn + C ≥
n∑

j=0

gt
j(ρ(n − j) + C) +

∑
j>n

(j − n)gt
j , (29)

We’ll derive the following from the statement (29)

(29) ⇔ ρn + C ≥ nρ
n∑

j=0

gt
j + C

n∑
j=0

gt
j − ρ

n∑
j=0

jgt
j +

∑
j>n

jgt
j − nGt

n

⇔ nρGt
n + CGt

n ≥ Et

[
θ(t)�θ(t)>n

] − ρEt

[
θ(t)�θ(t)≤n

] − nGt
n

⇔ n(ρ + 1)Gt
n + CGt

n + ρEt

[
θ(t)�θ(t)≤n

] ≥ Et

[
θ(t)�θ(t)>n

]
⇔ n(ρ + 1)Gt

n + CGt
n + ρEt [θ(t)] ≥ (1 + ρ)Et

[
θ(t)�θ(t)>n

]
,

(30)

So, the inequalities (29) are equivalent to (30). Note that, in the case of Gt
n = 0 the

equality (30) holds true automatically. Assume than Gt
n > 0. But Et[θ(t)] ≥ 1 and the

uniform integrability implies that there is a number n0, such that for all t > 0, n ≥ n0:
Et[θ(t)�θ(t)>n] ≤ ρ/(1 + ρ). The constant C we’ll choose in the way to satisfy (30) for
n ≤ n0.
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Let’s show now, that C could be chosen disregarding of t. For ε = ρ/(1+ ρ) we’ll find
such δ > 0, that for each set A, such that P(A) < δ it follows that Et[θ(t)�A] < ε. It is
possible, since θ(t) are uniformly integrable. Let’s define then

C :=
(1 + ρ)suptEt[θ(t)] − ρ

δ
.

Now having Gt
n < δ inequality (30) holds true automatically. In the case of Gt

n ≥ δ, we’ll
get:

n(ρ + 1)Gt
n + CGt

n + ρEt[θ(t)] > (1 + ρ) sup
t

Et[θ(t)] ≥ (1 + ρ)Et[θ(t)]

≥ (1 + ρ)Et

[
θ(t)�θ(t)>n

]
.
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