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SEMI-MARKOV APPROACH TO THE PROBLEM OF DELAYED
REFLECTION OF DIFFUSION MARKOV PROCESSES

UDC 519.21

B. P. HARLAMOV

Abstract. An one-dimensional diffusion process with positive values, reflecting from zero, is consid-
ered. All the variants of reflecting with preservation of the semi-Markov property are described. This
property is characterized by a family of Laplace images of times from the first hitting of zero up to
the first hitting of a level r for any r > 0. The parameter C(λ) of this family is used for construction
of a time change, transforming a process with instantaneous reflection to the process with delayed
reflection.
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1. Introduction

Apparently Gihman and Skorokhod were the first who investigated reflection with
delaying of one-dimensional Markov diffusion processes ([1, p. 197]). They applied a
method of stochastic integral equations which takes into account preserving the Markov
property while reflecting. However there exist examples of interaction between a process
and a boundary of its range of values, which can be interpreted like reflection, when
the Markov property is being lost, although the property of continuous semi-Markov
processes is preserved. Here is a simple example.

Let w(t), t ≥ 0, be Wiener process. Let us consider on the segment [a, b], a < w(0) < b,
the truncated process

w(t) =

⎧⎪⎨
⎪⎩

b, w(t) ≥ b

w(t), a < w(t) < b

a, w(t) ≤ a

for all t ≥ 0. It is clear that this process is not Markov. However it remains to be
continuous semi-Markov [4]: the Markov property is fulfilled with respect to the first
exit time from any open interval inside the segment, and also that from any one-sided
neighborhood of any end of the segment.
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The semi-Markov approach to the problem of reflection consists in solution of the
following task: to determine a semi-Markov transition function for the process at a
boundary point for the process preserving its diffusion form inside its open range of
values, i. e. that up to the first exit time from the region and any time when it leaves the
boundary. A more specific task to find reflection, preserving a global Markov property,
is reduced to a problem to find a subclass of Markov reflected processes in the class of
all the semi-Markov ones. Tasks of such a kind are important for applications where
one takes into account interaction of diffusion particles with a boundary of a container,
leading to a dynamic equilibrium of the system (see, e. g. [7]).

In paper [3] all class of semi-Markov characteristics of reflection for a given locally
Markov diffusion process is described. In paper [5] conditions for a semi-Markov charac-
teristic to give a globally Markov process are found. In the present paper we continue to
investigate processes with semi-Markov reflection. The aim of investigation is to find for-
mulae, characterizing a time change, transforming a process with instantaneous reflection
into the process with delaying reflection,

In paper [6] while analyzing a two-dimensional diffusion process in a neighborhood of
a flat screen a time change in a tangential component of the process with respect to a
normal component time run is factually treated. This splitting of the process on two
components makes the situation easier to be understood, but at the same time it masks
the true mechanism of transformation. In fact the time change could be learned on the
initial stage of semi-Markov approach to the problem of reflection. In the present paper
this shortcoming of our first paper on this theme is removed.

2. Semi-Markov transition function on a boundary

We will consider a diffusion process X(t) on the half-line t ≥ 0 with one boundary at
zero. We assume that the process does not go to infinity and from any positive initial
point it hits zero with probability one. For example, it could be a diffusion Markov
process with a negative drift and bounded local variance. We had substantiated above
why it is expedient to consider semi-Markov reflection. Semi-Markov approach permits
to consider from unit point of view an operation of instantaneous reflection as well as an
operation of truncation.

In frames of semi-Markov models of reflection it is natural to assume that X(t) is
a semi-Markov process of diffusion type. Let (Px), x ≥ 0, be a consistent family of
measures of the process, depending on initial points of trajectories. On interval (0,∞)
semi-Markov transition generating functions of the process

g(a,b)(λ, x) := Ex

(
e−λσ(a,b) ; X(σ(a,b)) = a

)
;

h(a,b)(λ, x) := Ex

(
e−λσ(a,b) ; X(σ(a,b)) = b

)
,

a < x < b, satisfy the differential equation
1
2
f ′′ + A(x)f ′ −B(λ, x)f = 0,

with boundary conditions

g(a,b)(λ, a+) = h(a,b)(λ, b−) = 1, g(a,b)(λ, b−) = h(a,b)(λ, a+) = 0.

The coefficients of the equation are assumed to be piece-wise continuous functions of
x > 0, and for any x function B(λ, x) is non-negative and has completely monotone
partial derivative with respect to λ. First of all reflection of the process from point
x = 0 means addition of this point to the range of values of the process. Further all
the semi-closed intervals [0, r) are considered what the process can only exit from open
boundary. Corresponding semi-Markov transition generating functions are denoted as
h[0,r)(λ, x) with main distinction from exit from an open set h[0,r)(λ, 0) > 0. Function
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K(λ, r) := h[0,r)(λ, 0) plays an important role for description of properties of reflected
processes. Using semi-Markov properties of the process, we obtain

h[0,r)(λ, x) = h(0,r)(λ, x) + g(0,r)(λ, x)K(λ, r),

and also

K(λ, r) = K(λ, r − ε)(h(0,r)(λ, r − ε) + g(0,r)(λ, r − ε)K(λ, r)).

Assuming that there exist derivatives with respect to the second argument we have

g(a,b)(λ, x) = 1 + g′(a,b)(λ, a+)(x − a) + o(x − a),

g(a,b)(λ, x) = −g′(a,b)(λ, b−)(b − x) + o(b − x),

h(a,b)(λ, x) = h′(a,b)(λ, a+)(x− a) + o(x− a),

h(a,b)(λ, x) = 1− h′(a,b)(λ, b−)(b− x) + o(b − x),

and obtain the differential equation

K ′(λ, r) + K(λ, r)h′(0,r)(λ, r−) + K2(λ, r)g′(0,r)(λ, r−) = 0.

Its general solution is

K(λ, r) =
h′(0,r)(λ, 0+)

C(λ) − g′(0,r)(λ, 0+)
,

where arbitrary constant C(λ) can depend on λ. In order for K(λ, r) to be a Laplace
transform it is sufficient that function C(λ) to be non-decreasing, C(0) = 0, and its
derivative to be a completely monotone function [5]. Under our assumptions it is fair

K(λ, r) = 1− C(λ)r + o(r), r → 0.

Our next task is to learn a time change in the process with instantaneous reflection
which derives the process with delayed reflection.

3. Time change with respect to time run under instantaneous reflection

Let us denote θt the shift operator on the set of trajectories; σΔ the operator of the
first exit time from set Δ. For any Markov times τ1, τ2 (with respect to the natural
filtration) on set {τ1 < ∞} let us determine the following operation

τ1+̇τ2 := τ1 + τ2 ◦ θτ1 .

It is known [4], that for any open (in relative topology) sets Δ1, Δ2, if Δ1 ⊂ Δ2, then

σΔ2 = σΔ1+̇σΔ2 .

In this case σΔ(ξ) = 0, if ξ(0) /∈ Δ.
Let us introduce special denotations for some first exit times and their combinations,

and that for random intervals as ε > 0
α := σ[0,ε), β := σ(0,∞), γ(0) := β,

γ := α+̇β, γ(n) := γ(n− 1)+̇γ, n ≥ 1,

b(0) := [0, β), a(n) :=
[
γ(n− 1), γ(n− 1)+̇α

)
, b(n) =

[
γ(n− 1)+̇α, γn

)
.

The random times α, γ(n), and intervals a(n), b(n), n = 1, 2, . . . , depend on ε. In some
cases we will denote this dependence by the lower index.

Let us remark that sequence (γ(n)) forms moments of jumps of a renewal process.
Besides if X(t) > 0 then for any t > 0 there exist ε > 0, and n ≥ 1 such that t ∈ bε(n).
It implies that for ε → 0 random set

⋃∞
k=1 bε(k) covers all the set of positive values of

process X with probability one. On share of supplementary set (a limit of set
⋃∞

k=1 aε(k))
there remain possible intervals of constancy and also a discontinuum of points (closed
set, equivalent to continuum, without any intervals, [2, p. 158]), consisted of zeros of
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process X . The linear measure of it can be more than or equal to 0. This measure is
included as a component in a measure of delaying while reflecting.

It is known ([4, p. 111]) that continuous homogeneous semi-Markov process is a Markov
process if and only if it does not contain intrinsic intervals of constancy (it can have
an interval of terminal stopping). This does not imply that a process with delayed
deflection cannot be globally Markov. Its delaying is exceptionally at the expense of
the discontinuum. A process without intervals of constancy at zero, and with the linear
measure of the discontinuum of zeros which equals to zero is said to be a process with
instantaneous reflection.

We will construct a non-decreasing sequence of continuous non-decreasing functions
Vε(t), t ≥ 0, converging to some limit V (t) as ε → 0 uniformly on every bounded interval.

Let X(0) > 0, and Vε(t) = t on interval b(0), and Vε(t) = β on interval a(1). On
interval b(1) the process Vε increases linearly with a coefficient 1. On interval a(2)
function Vε is constant. Then it increases with coefficient 1 on interval b(2), and so on,
being constancy on intervals a(k), increasing with coefficient 1 on intervals b(k). Noting
that if ε1 > ε2, for any iterval aε2(k) there exists n such that aε2(k) ⊂ aε1(n), we
convince ourself that the sequence of constructed functions does not decrease, bounded
and consequently tends to a limit.

Let us define a process with instantaneous reflecting obtained from the original process
X as a process, obtained after elimination of all its intervals of constancy at zero, and
contraction of a linear measure of its discontinuum of zeros to zero. This process can be
represented as a limit (in Skorokhod metric) of a sequence of processes Xε(t), determined
for all t by formula

Xε(t) = X
(
V −1

ε (t)
)
,

where V −1
ε (y) is defined as the first hitting time of the process Vε(t) to a level y.

Hence Xε(t) has jumps of value ε at the first hitting time to zero and its iterations.
Let us denote the process with instantaneous reflecting as X0(t), and the map X 	→ X0

as φV . Such a process is measurable (with respect to the original sigma-algebra of sub-
sets) and continuous. Let P 0

x = Px ◦ φ−1
V be the induced measure of this process.

Then it is clear that V is an inverse time change transforming the process X0 into the
process X , i.e. X = X0 ◦ V . In this case for any open interval Δ = (a, b), 0 < a < b, or
Δ = [0, r), r > 0, it is fair

σΔ(X0 ◦ V ) = V −1(σΔ(X0)).

The function V −1 we call a direct time change, which corresponds to every “intrinsic”
Markov time of the original process (in given case X0(t)) the analogous time of the
transformed process.

Remark, that for ε1 > ε2 the set {γε1(n), n = 0, 1, 2, . . .} is a subset of the set
{γε2(n), n = 0, 1, 2, . . .}. That is why every Markov time γε(n) is a Markov regeneration
time of the process V , what permits in principle to calculate finite-dimensional distrib-
utions of this process. On the other hand this process is synonymously characterized by
its inverse, i.e. the process

V −1(y) := inf{t ≥ 0: V (t) ≥ y}, y > 0.

This process is more convenient to deal with because Laplace transform of its value at a
point y can be found as a limit of a sequence of easy calculable Laplace images of values
V −1

ε (y).

Theorem 1. A direct time change V −1(y), mapping a process with instantaneous re-
flection into a process with delayed reflection satisfy the relation

E0 exp
(−λV −1(y)

)
= E0 exp(−λy − C(λ)W (y)), (1)
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where W−1(t) is a non-decreasing process with independent increments for which

E0 exp
(−λW−1(t)

)
= exp

(
g′(0,∞)(λ, 0+)t

)
. (2)

Short proof. Without loss of generality we suppose that X(0) = 0. Let Nε(t) = n if and
only if

n−1∑
k=1

|b(k)| < t ≤
n∑

k=1

|b(k)|

(|a(k)| and |b(k)| are lengths of intervals a(k), b(k)). Then

E0 exp
(−λV −1(y)

)
= lim

ε→0
E0 exp

(−λV −1
ε (y)

)

= lim
ε→0

E0

⎛
⎝−λy − λ

Nε(y)∑
k=1

|a(k)|
⎞
⎠ .

We have

E0 exp
(−λ

(
V −1

ε (y)− y
))

= E0 exp

⎛
⎝−λ

Nε(y)∑
k=1

|a(k)|
⎞
⎠

=
∞∑

n=0

E0 exp

(
−λ

n∑
k=1

α ◦ θγ(k−1); Nε(t) = n

)

= Pε(β ≥ y) +
∞∑

n=1

E0

(
exp

(
−λ

n∑
k=1

α ◦ θγ(k−1)

)
;
n−1∑
k=1

|b(k)| < y ≤
n∑

k=1

|b(k)|
)

= Pε(β ≥ y)

+
∞∑

n=1

E0

(
exp

(
−λα− λ

n∑
k=2

α ◦ θγ(k−1)

)
; β ◦ θα +

n−1∑
k=2

β ◦ θα ◦ θγ(k−1)

< y ≤ β ◦ θα +
n∑

k=2

β ◦ θα ◦ θγ(k−1)

)

= Pε(β ≥ y) +
∞∑

n=1

∫ y

0

E0

(
exp

(
−λα− λ

n∑
k=2

α ◦ θγ(k−1)

)
; β ◦ θα ∈ dx,

n−1∑
k=2

β ◦ θα ◦ θγ(k−1) < y − x ≤
n∑

k=2

β ◦ θα ◦ θγ(k−1)

)

= Pε(β ≥ y)

+
∞∑

n=1

∫ y

0

E0

(
e−λα; β ◦ θα ∈ dx

)

× E0

(
exp

(
−λ

n∑
k=2

α ◦ θγ(k−2)

)
;

n−1∑
k=2

β ◦ θα ◦ θγ(k−2) < y − x ≤
n∑

k=2

β ◦ θα ◦ θγ(k−2)

)
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= Pε(β ≥ y)

+
∞∑

n=1

∫ y

0

Pε(β ∈ dx)E0

(
e−λα

)

× E0

(
exp

(
−λ

n−1∑
k=1

α ◦ θγ(k−1)

)
;

n−2∑
k=1

β ◦ θα ◦ θγ(k−1) < y − x ≤
n−1∑
k=1

β ◦ θα ◦ θγ(k−1)

)

= Pε(β ≥ y)

+
∫ y

0

Pε(β ∈ dx)E0

(
e−λα

) ∞∑
n=0

E0

(
exp

(
−λ

n∑
k=1

α ◦ θγ(k−1)

)
; Nε(y − x) = n

)

= Pε(β ≥ y) +
∫ y

0

Pε(β ∈ dx)E0

(
e−λα

)
E0 exp

(−λ
(
V −1

ε (y − x)− (y − x)
))

.

Let us denote Z(y) := E0 exp(−λ(V −1
ε (y)−y)), F (x) := Px(β < x), F (x) := 1−F (x),

A := E0(e−λα). We obtain an integral equation

Z(y) = F (x) + A

∫ y

0

Z(y − x) dF (x),

with a solution which can be written as follows

Z(y) =
∞∑

n=0

An
(
F (n)(y)− F (n+1)(y)

)
,

where F (n) is n-times convolution of distribution F . Let us consider a sequence of
independent and identically distributed random values |b(n)|, n = 1, 2, . . . . Let P ∗ε is the
distribution of a renewal process Nε(y) with this sequence of lengths of intervals, and E

∗
ε

is the corresponding expectation. Then

E
∗
εA

Nε(y) =
∞∑

n=0

AnP ∗ε (Nε(y) = n) =
∞∑

n=0

An
(
F (n)(y)− F (n+1)(y)

)
,

Thus
E0 exp

(−λV −1
ε (y)

)
= e−λy

E
∗
ε

(
E0e

−λα
)Nε(y)

.

On the other hand it is clear that there exists a version of the process Nε(y), measurable
with respect to the basic sigma-algebra, and adapted to the natural filtration of the
original process, and having identical distribution with respect to measure P0. Preserving
denotations we can write

E
∗
ε

(
E0e

−λα
)Nε(y)

= E0

(
E0e

−λα
)Nε(y)

.

Moreover, measures P0 and P 0
0 coincide on sigma-algebra F ∗, generated by all the random

values βε ◦ θαε ◦ θγ(k)ε , ε > 0, k = 1, 2, . . . . From here

E0

(
E0e

−λα
)Nε(y)

= E
0
0

(
E0e

−λα
)Nε(y)

.

Taking into account that α depends on ε and using our former denotations we can write

E0e
−λα = K(λ, ε) = 1− C(λ)ε + o(ε).

We will show that the process Wε(y) := εNε(y) tends weakly to a limit W (y) as ε → 0,
which is an inverse process with independent increments with known parameters, and
measurable with respect to sigma-algebra F ∗. Actually, the process Wε(y) does not
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decrease and is characterized completely by the process W−1
ε (t). The latter has indepen-

dent positive jumps on the lattice with a pitch ε. Hence it is a process with independent
increments. Evidently a limit of a sequence of such processes, if it exists, is a process with
independent increments too. Its existence follows from evaluation of Laplace transform
of its increment. We have

E
0
0e
−λW−1

ε (t) = E
0
0 exp

⎛
⎝−λ

[t/ε]∑
k=1

|b(k)|
⎞
⎠ =

(
Eεe

−λβ
)[t/ε]

=
(
1 + g′(0,∞)(λ, 0)ε + o(ε)

)[t/ε]

→ eg′(0,∞)(λ,0)t, ε → 0.

Using the sufficient condition of weak convergence of processes in terms of convergence
of their points of the first exit from open sets ([4], p. 287), we obtain

E0 exp
(−λV −1(y)

)
= E

0
0 exp (−λy − C(λ)W (y)) ,

what can be considered as description of the direct time change in terms of the process
with instantaneous reflection and the main characteristic of delaying, function C(λ). �

We use this formula for deriving the Laplace transform of a difference between the
first exit times from an one-sided neighborhood of the boundary point for processes with
delayed and instantaneous reflection.

Denote
βr := σ(0,r), γr(0) = 0,

γr := α+̇βr, γr(n) := γr(n− 1)+̇γr, n ≥ 1,

br(n) =
[
γr(n− 1)+̇α, γr(n)

)
, n ≥ 1,

M r
ε := inf {n ≥ 0: X(γr(n)) ≥ r} .

Hence
P0(M r

ε = n) = P0(X(γr(1)) = 0, . . . , X(γr(n− 1)) = 0,

X(γr(n− 1)) = r) = (p(ε, r))n−1(1− p(ε, r)),

where p(ε, r) := P0(X(γr(1)) = 0).

Theorem 2. A difference between the first exit times from a semi-closed interval [0, r)
for processes with delayed and instantaneous reflection obeys to the relation

E0 exp
(
−λ

(
σ[0,r) − σ0

[0,r)

))
=

−G′(0,r)(0+)

C(λ) −G′(0,r)(0+)
, (3)

where G(0,r)(x) = g(0,r)(0, x).

Short proof. Let X(0) = 0. Then evidently, σ[0,r) = γr
Mr

ε
for any ε < r. On the other

hand, it is clear, that γr = γ on the set {X(γr) = 0}, and by induction we conclude that

γr(n) = γ(n) on the set
n⋂

k=1

{X(γr(k)) = 0}.

From here

γr(n)I(M r
ε = n) = (γr(n− 1)+̇γr)I

(
n−1⋂
k=1

{X(γr(k)) = 0}
)
∩ {X(γr(n)) = r}

= (γ(n− 1)+̇γr)I(M r
ε = n).
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Let us denote σ0
[0,r) the first exit time from interval [0, r) of the process with instantaneous

reflection (formally it means σ0
[0,r) = V (σ[0,r))). Then V −1

(
σ0

[0,r)

)
= σ[0,r), and from

formula (1) it follows that

E0 exp
(
−λ

(
σ[0,r) − σ0

[0,r)

))
= E

0
0 exp

(
−C(λ)W

(
σ0

[0,r)

))

= E
0
0 exp

(−C(λ)W (γr(M r
ε ))

)
=

∞∑
n=1

E
0
0

(
exp

(−C(λ)W (γr(n))
)
; M r

ε = n
)

=
∞∑

n=1

E
0
0 exp

(−C(λ)W
(
γ(n− 1)+̇γr

)
; M r

ε = n
)

=
∞∑

n=1

E
0
0

(
exp(−C(λ)W

(
n−1∑
k=1

(|a(k)|+ |br(k)|) + |a(n)|+ |br(n)|
)

; M r
ε = n

)
.

Taking into account P 0
0 -almost sure convergence

∑Mr
ε

k=1(|a(k)| → 0 as ε → 0, we have

lim
ε→0

∞∑
n=1

E
0
0

(
exp(−C(λ)W

(
n−1∑
k=1

(|a(k)|+ |br(k)|) + |a(n)|+ |br(n)|
)

; M r
ε = n

)

= lim
ε→0

E
0
0

⎛
⎝exp(−C(λ)W

⎛
⎝Mr

ε−1∑
k=1

|br(k)|+ |br(M r
ε )|

⎞
⎠
⎞
⎠

= lim
ε→0

E
0
0

⎛
⎝exp(−C(λ)εNε

⎛
⎝Mr

ε−1∑
k=1

|br(k)|+ |br(M r
ε )|

⎞
⎠
⎞
⎠ .

From the definition of the process Nε(t) it folows that

Nε

(
n−1∑
k=1

|br(k)|+ |br(n)|
)

= n, n = 1, 2 . . . .

Consecuently

E0 exp
(
−λ

(
σ[0,r) − σ0

[0,r)

))
= lim

ε→0
E

0
0 exp (−C(λ)εM r

ε )

= lim
ε→0

∞∑
n=1

e−C(λ)εn(p(ε, r))n−1(1 − p(ε, r))

= lim
ε→0

e−C(λ)ε 1− p(ε, r)
1− e−C(λ)εp(ε, r)

.

and taking into account that

p(ε, r) = P0(X(γr
ε) = 0) = P0(X(αε+̇βr

ε) = 0) = P0(X(βr
ε) ◦ θαε = 0)

= Pε(X(βr
ε) = 0) := G(0,r)(ε),

and that the last expression (the partial case g(0,r)(λ, ε) for λ = 0) has an asymptotic
G(0,r)(ε) = 1 + G′(0,r)(0+)ε + o(ε), we obtain at last

E0 exp
(
−λ

(
σ[0,r) − σ0

[0,r)

))
=

−G′(0,r)(0+)

C(λ) −G′(0,r)(0+)
. �

It is interesting to note that for a linear function C(λ) = kλ, when a reflecting locally
Markov process is globally Markov [5], the difference between the first exit times from a
semi-closed interval [0, r) for processes with delayed and instantaneous reflection has the
exponential distribution with parameter −G′(0,r)(0+)/k.
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4. Example

Let us consider the standard Wiener process truncated in its negative values

w(t) =

{
0, w(t) ≤ 0,

w(t), w(t) > 0.

In frames of the semi-Markov model of reflection it is characterized by the function

K(λ, r) =
h′(0,r)(λ, 0+)

C(λ)− g′(0,r)(λ, 0+)
=

√
2λ/ sinh r

√
2λ

C(λ) −√2λ cosh r
√

2λ/ sinh r
√

2λ
.

Taking into account the origin of this process one can write

K(λ, r) = E
w
0 exp

(−λσ(−∞,r)

)
= exp

(
−r
√

2λ
)

.

Comparing derivatives at zero of these two representations of the same function, we
obtain C(λ) =

√
2λ. Now we can obtain the main characteristic of delay of this process

under reflection (including lengths of all the intervals of constancy) from the first hitting
time of the level 0 up to the first hitting time of the level r:

E0 exp
(
−λ

(
σ[0,r) − σ0

[0,r)

))
=

1/r√
2λ + 1/r

,

what relates to tabulated values of Laplace transforms, and here is not exposed.
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