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QUANTITATIVE AND QUALITATIVE LIMITS FOR EXPONENTIAL
ASYMPTOTICS OF HITTING TIMES FOR BIRTH-AND-DEATH

CHAINS IN A SCHEME OF SERIES
UDC 519.21

N. V. KARTASHOV

Abstract. We consider time-homogeneous discrete birth-and-death Markov chain (Xt) and investi-
gate the asymptotics of the hitting time τn = inf(t ≥ 1: Xt ≥ n) as well as the chain position before
this time in the scheme of series as n → ∞. In our case one-step probabilities of the chain vary simul-
taneously with n. The proofs are based on the explicit two-side inequalities with numerical bounds
for the survival probability P(τn > t). These inequalities can be used also for the pre-limit finite-time
schemes. We have applied the results obtained for construction the uniform asymptotic representations
of the corresponding risk function.
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1. Introduction

The task of investigation of the distribution stability for general Markov chains under
the broad assumptions about the nature of jumps is expounded in details in the author’s
monograph [2]. Some applications of the theory are included there as well. The proofs
are based on the analytical operator methods. The book includes some new inequalities
for the renewal process asymptotics and the solutions of the renewal equation.

Foundations of the stability theory for stochastic models are set in the monograph by
Zolotarev [5]. Important achievements in the stability theory are included in the book
by Mayn and Tweedie [4].

This paper is based on the author’s results placed in [2, Ch.7]. These results were
obtained earlier but they have not been published. The comparison with paper [3] can
be useful. The similar but not identical results were obtained earlier in [6].

2. Main results

Let us consider the time-homogeneous birth-and-death Markov chain

X = (Xt, t = 0, 1, . . . )
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ASYMPTOTICS OF HITTING TIMES 41

with values in a discrete space E = Z+. A matrix of one-step transition probabilities
P = (pij , i, j ∈ E) has entries pi,i−1 = qi, pi,i+1 = pi, pii = ri = 1 − pi − qi when
i ≥ 1, and p01 = p0, p00 = 1 − p0 = q0. We assume that the chain is not reducible: pi,
qi > 0. The symbols Pi(·) and Ei(·) will be used to denote the conditional probability
and expectation given {X0 = i}.

Let us define the hitting moment of the ”distant” level as

τn = inf(t ≥ 1: Xt ≥ n). (1)

We investigate the asymptotics of the time τn in a scheme of series where n →∞. In
our case the one-step transition probabilities (pi, qi) could change. For instance, they
could depend on n.

Let’s introduce the following notation for t ≥ 0

θt =
∏

1≤i≤t

(qi/pi), θ0 = 1, σt =
∑

0≤i<t

θi, κt = 1/(ptθt), t ≥ 0. (2)

Consider the aggregate parameters

λn =

⎛
⎝1 +

∑
i≤j∈En

κiθj

⎞
⎠
−1

=

(
1 +

∑
i∈En

κi(σn − σi)

)−1

,

ωn = λn − λ2
n + λ2

n

∑
i≤j<k≤l∈En

κiθjκkθl

= λn − λ2
n + λ2

n

∑
i<k∈En

κi(σk − σi)κk(σn − σk).
(3)

Hereafter we will use the summation sign without upper and lower indexes assuming
summation on the hole index set En ≡ {0, 1, . . . , n − 1}. It worth to mention that the
process continuity implies the entire determination for the distribution of the time τn by
(pi, qi, i ∈ En).

The following estimation can be applicable to any scheme of series as well as for the
fixed n.

Theorem 2.1. The following inequality holds true

sup
t≥0

∣∣∣P0(τn > t)− (1−m−1
n

)t∣∣∣ ≤ 2ωn(1 + λn)p0/λnσn(1 − ωn), (4)

where
m−1

n = λn/(1 + ωn).

Remark 2.1. It follows from the definitions (3) that 0 < ωn ≤ 1/2 in (4).

Corollary 2.1. Let n →∞ in a scheme of series in such a way that λn → 0 and

ωnp0 = o(λnσn), n →∞. (5)

Then
sup
x≥0

|P0(τn/mn > x)− exp(−x)| → 0, n →∞.

This convergence is uniform in the scheme of series if the relation (5) is uniform too.

Corollary 2.2. Let the chain X be unchangeable for the scheme of series, irreducible
and ergodic, and n → ∞. Then λn → 0, ωn → 0, and the following representation is
true

sup
x≥0

|P0(λnτn > x)− exp(−x)| = O(ωn), n →∞. (6)
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Corollary 2.3. Let n and the distribution of the chain X be fixed excepting p0 → 0.
Then the following representation holds true

sup
x≥0

|P0(p0τn > x)− exp(−x)| = O(p0), p0 → 0. (7)

We can obtain from (4) the limit results for the specially structured schemes of series
at one time. Here are some examples.

Corollary 2.4. Let the transition probabilities in a scheme of series for the birth-and-
death chain satisfy the relationship

pi = εnvi + o(εn), qi = εnui + o(εn), i ≥ 1, n →∞, (8)

for some εn → 0, and vi, ui > 0. Let us use the denotations

θt =
t∏

i=1

(ui/vi), σt =
t−1∑
s=1

θs, χt = 1/(vtθt), t ≥ 1. (9)

We assume that in a scheme of series

σn →∞,
∑
t≥1

χt ≡ χ = O(1), n →∞. (10)

Then, subject to

ωn ≡ σ−1
n

∑
1≤i<k<n

χi(σk − σi)χk = o(1), n →∞,

the uniform convergence is true

sup
t≥0

∣∣∣P0(τn > t)− (1−m−1
n

)t∣∣∣ = O
(
ωn + σ−1

n

)
= o(1), n →∞.

Remark 2.2. If the coefficients vi, ui are bounded and separated from zero, then the
conditions (10) are equivalent to the ergodicity of the the birth-and-death chain with
jump probabilities (ui/(ui + vi), vi/(ui + vi)), i ≥ 1.

To analyze the asymptotics of joint distribution of the time τn and the chain value X
till this time (the comparison can be made with [6]) we additionally assume that there
is a systematic shift to zero

qi > pi, i ≥ 1, (11)
and state 0 in a scheme of series is asymptotically positive and attainable:

lim
n→∞

λnσn > 0, 0 < lim
n→∞

p0 ≤ lim
n→∞ p0 < 1. (12)

It was established in the proof of the Corollary 2.2 (see the limit relation (38)) that
the conditions (12) hold for any fixed irreducible ergodic birth-and-death chain.

We define the speed-of-mixing indicator as

δn = min
1≤i<n

(qi − pi) > 0. (13)

Theorem 2.2. Let the conditions (11), (12) and λn → 0, ωn → 0 hold true in a scheme
of series as n →∞ so that

λn lnλ−1
n = o(δ4

n), n →∞. (14)

Then, for every s0 > 0 the uniform representation holds true

sup
s≥s0,B⊂E

∣∣P0(λnτn > s, Xs/λn
∈ B)− πn(B) exp(−s)

∣∣
= O(ωn + λnδ−4

n ln(1/λnδn)) = o(1), n →∞,
(15)
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where the discrete distribution πn = (πn
i , i ∈ En) can be defined through (2), (3) by

equalities

πn
n = λn, πn

i = λnκi(σn − σi), i < n, πn(B) =
∑
i∈B

πn
i . (16)

Corollary 2.5. Let the chain X do not change in a scheme of series and be irreducible
and ergodic. Then, the sufficient condition for the convergence to zero of the left-hand
part of (15) is

lim
n→∞

nδn/ lnn > 3/2. (17)

Remark 2.3. For comparison with (17) we remark that
(a) in a class of birth-and-death chains satisfying the conditions (13) and δn → 0,

n →∞ the sufficient condition of ergodicity is

lim
n→∞

nδn/ lnn > 1,

(b) under additional assumptions ri ≡ 0 and qi − pi ↓ 0, i →∞, it follows from the
condition

lim
n→∞

nδn < 1/2

that the chain is not ergodic.

3. Proofs

The proofs in this section are based on the Corollary 7.5 [2, Ch.VII].
In order to use it we consider the auxiliary finite chain Xn = (Xn

t , t ≥ 0) with the set
of states En ≡ {0, 1, . . . , n} = En ∪ {n} and the transition probabilities

Pn = (pij(n), i, j ∈ En),

where pij(n) = pij as i ∈ En and
pn0(n) = 1.

It is evident that the distributions for the time τn in (1) for chains (Xt) and (Xn
t ) are

equal.

Lemma 3.1. A chain Xn has the unique invariant probability πn = (πn
i , i ∈ En) where

πn
n = λn, πn

j = λnκj(σn − σj) = λn

∑
i<j∈En

θiκj , j < n. (18)

Proof. The system of equations for xi ≡ πn
i has a form

x0q0 + x1q1 + xn = x0,

xi−1pi−1 + xiri + xi+1qi+1 = xi, 1 ≤ i < n− 1,

xn−2pn−2 + xn−1rn−1 = xn−1,

xn−1pn−1 = xn. (19)

We obtain the following equations from the first and the second rows

xi−1pi−1 − xiqi = xipi − xi+1qi+1 = xn, 1 ≤ i < n− 1. (20)

And finally, using the third, the forth rows of (19) and from (20) we recurrently
calculate when 0 ≤ k < n

xk = xnq−1
k θ−1

k−1

[
n−3∑
i=k

θi + θn−3qn−2(pn−1 + qn−1)/pn−2pn−1

]

= xnq−1
k θ−1

k−1

[
n−3∑
i=k

θi + θn−2(1 + qn−1/pn−1)

]
= xn

n−1∑
i=k

κkθi.

(21)
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The condition of normalization
∑n

k=0 xk = 1 implies (18). �

In order to prove the Theorem 2.1 we shall use the Corollary 7.5 [2, Ch.VII] for the
chain Xn with a set En and invariant probability πn. Let us mention that every tran-
sition kernel Q(x, A) and the corresponding linear operator in the descrete space can be
defined by the matrix Q(x, A) =

∑
y∈A Qxy, Qxy = Q(x, {y}). Operation of multiplica-

tion kernels by measures, functions and kernels corresponds to the multiplication of the
matrices by rows, columns and matrices.

In particular, the system for the kernel R = (Rxy, x, y ∈ En) in the formulation of the
Corollary 7.5 [2, Ch.VII] is as following

Rxy =
∑

k∈En

Pxk(n)Rky + Pxy(n)− πn
y ,

∑
k∈En

πn
kRky = 0, x, y ∈ En, (22)

where the last equation arises from the Lemma 3.1 since πn is the eigenvector for the
matrix Pn.

Moreover, it follows from the defining R as a sum of series of powers of Pn (Corol-
lary 7.5 [2, Ch.VII]) that the operators R and Pn commutate so the equations (22) are
equivalent to the system

Rxy =
∑

k∈En

RxkPky(n) + Pxy(n)− πn
y ,

∑
k∈En

Rxk = 0, x, y ∈ En. (23)

Lemma 3.2. The solutions of systems (22), (23) for x = n or y = n are as following

Rnn = −ωn, (24)

Rkn = λn

∑
i≤j<k

κiθj + λn − ωn, k < n, (25)

Rnk = κk(σn − σk)(λn − ωn) + λn

∑
k<i<n

κk(σn − σi)κi(σi − σk), k < n. (26)

Proof. Denote xk = Rkn. Taking into account (18) we put y = n into (22) and obtain
the system

x0 = q0x0 + p0x1 − λn,

xi = qixi−1 + rixi + pixi+1 − λn, 0 < i < n− 1,

xn−1 = qn−1xn−2 + rn−1xn−1 + pn−1xn + pn−1 − λn,

xn = x0 − λn. (27)

The following equalities are deduced from the first and the second rows
p0(x1 − x0) = λn,

(xi+1 − xi)/θi = λnκi + (xi − xi−1)/θi−1, 1 ≤ i < n− 1.

By recurrent calculation we get

xk+1 − xk = λn

k∑
i=0

κiθk, 0 ≤ k < n− 1,

xk = x0 + λn

∑
j<k

j∑
i=0

κiθj , 0 ≤ k < n. (28)
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Putting the equalities (28) and (27) into the second equation (22) we obtain that

0 =
∑

k∈En

πn
kxk = x0 − λ2

n + λn

∑
k∈En

∑
j<k

j∑
i=0

κiθj

= x0 − λ2
n + λ2

n

∑
i≤j<k∈En

κiθjκk(σn − σk) = x0 − λ2
n + ωn − λn + λ2

n

= x0 + ωn − λn,

and deduce from (27) the identities in (24), (25).
For proving (26) we use the denote xk ≡ Rnk and use (23) when x = n

x0 = q0x0 + q1x1 + xn + 1− πn
0 ,

xk = pk−1xk−1 + rkxk + qk+1xk+1 − πn
k , 1 ≤ k < n− 1,

xn−1 = pn−2xn−2 + rn−1xn−1 − πn
n−1,

xn = pn−1xn−1 − πn
n, (29)

where the probabilities πn
k are defined in the Lemma 3.1.

Using the first two equations (29) and the recurrent calculations we deduce that

pkxk − qk+1xk+1 = −
k∑

i=0

πn
i + 1 + xn =

n∑
i=k+1

πn
i + xn, 0 ≤ k < n− 2. (30)

Multiplying (30) by θk and summing over k = 0, . . . , n− 3 we obtain

xkθkpk = xn−2θn−2pn−2 +
n−3∑
j=k

θj

⎛
⎝xn +

n∑
i=j+1

πn
i

⎞
⎠ .

Taking into account the last two equations in (29) and the identity

θn−2(pn−1 + qn−1)/pn−1 = θn−2 + θn−1

we deduce that

xk = xn(σn − σk) +
n−1∑
j=k

κkθj

n∑
i=j+1

πn
i , 0 ≤ k < n. (31)

And finally, putting there the values πn
i from (16) and xn = Rnn from (24) concludes

the proof of the Lemma 3.2. �

Proof of Theorem 2.1. Let us utilize the inequality (7.40) from the Corollary 7.5 [2,
Ch.VII] to the chain X = Xn on E = En with time τH = τn and the set H = {n}. An
invariant measure and the chain potential are calculated in the Lemmas 3.1 and 3.2.

In the notations of (7.39) [2, Ch.VII]

rHH = sup
x∈H

∣∣R∣∣ (x, H) =
∣∣Rnn

∣∣ = ωn, (32)
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under (24) since ωn > 0. It follows from (25), (18), (3)

rπH =
∫

π(dx)
∣∣R∣∣ (x, H) =

n∑
k=0

πn
k

∣∣Rkn

∣∣

≤ λn

∣∣Rnn

∣∣+ n−1∑
k=0

λnκk(σn − σk)max

⎛
⎝ωn, λn + λn

∑
i≤j<k

κiθj

⎞
⎠

= λnωn + max

⎡
⎣λnωn

n−1∑
k=0

κk(σn − σk),

λ2
n

n−1∑
k=0

κk(σn − σk)

⎛
⎝1 +

∑
i≤j<k

κiθj

⎞
⎠
⎤
⎦

≤ λnωn + max
[
λnωn(λ−1

n − 1), λ2
n(λ−1

n − 1)
]
+ ωn − λn + λ2

n

= λnωn + max[ωn(1− λn), ωn] = ωn(1 + λn).

(33)

Furthermore, according to the equality (7.41) [2, Ch. VII]

m−1
H = (EπτH)−1 = πn

n

∑
t≥0

(−1)t(Rnn)t = λn(1 + ωn)−1 = m−1
n . (34)

And finally, the constant a in the Corollary 7.5 [2, Ch.VII] is the upper limit for the
density of the initial distribution of α (it is concentrated in 0) regarding the measure πn

a = 1/πn
0 = 1/λnκ0σn = p0/λnσn. (35)

Putting the relations (32), (33), (34) and (35) into the inequality (7.40) of the Corol-
lary 7.5 [2, Ch.VII] we have proved the estimate (4) in the Theorem 1. �

Proof of Remark 1. The positiveness of ωn > 0 follows from condition λn < 1 in defini-
tion (3). Let us denote as

sn =
∑

i≤j∈En

κiθj > 0

the sum included in (3). Using the last definition

λn = (1 + sn)−1,

ωn =

⎛
⎝sn +

∑
i≤j<k≤l∈En

κiθjκkθl

⎞
⎠ / (1 + sn)2

≤
⎛
⎝sn + 1/2

∑
i≤j∈En

κiθj

∑
k≤l∈En

κkθl

⎞
⎠ / (1 + sn)2

= (sn + s2
n/2)/(1 + sn)2 ≤ 1/2 < 1. �

(36)

Proof of Corollary 2.1. The proof can be concluded from the inequality (4) since the
right-hand part of (4) equals to O(p0ωn/λnσn) in view of (36). From the other side, the
relation in the left-hand part after the substitution t = [xmn] is equivalent to

(1 −m−1
n )[xmn] → exp(−x), n→∞, (37)

uniformly on x ≥ 0 since m−1
n ≤ λn → 0. �
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Proof of Corollary 2.2. The well-known recurrence and positivity criteria for the birth-
and-death chain [1] correspond to the divergence of σn → ∞ and convergence of κ =∑

i≥0 κi < ∞.
Let us calculate

(λnσn)−1 = σ−1
n

⎛
⎝1 +

∑
i≤j∈En

κiθj

⎞
⎠ = σ−1

n +
∑
i≥0

κi

(
1− σiσ

−1
n

)
�i<n

→
∑
i≥0

κi = κ ∈ (0,∞), n →∞,

(38)

using the Lebesgue theorem on majorized convergence.
So, λn ∼ 1/κσn → 0, n →∞.
Similarly, it follows from the representation

ωn = λn − λ2
n + λ2

n

∑
0≤i<k<n

κi(σk − σi)κk(σn − σk)

≤ λn + (λnσn)2
∑

i,k∈En

κiκk(σk − σi)+σ−1
n �i<k<n,

and the monotonicity of σn, using the Lebesgue theorem on majorized convergence, that
limn→∞ ωn = 0.

Taking into account (38) and the Remark 1 we can conclude that the right-hand part
of (4) 2ωn(1 + λn)p0/λnσn(1− ωn) is equal to O(ωn).

Utilization of approximation (37) in its left-hand part, convergence of ωn → 0 and the
estimate |exp(−x− xε)− exp(−x)| ≤ ε, x, ε ≥ 0 result in (6) �

Proof of Corollary 2.3. Let us use the representations (4) of the Theorem 2.1, where n is
fixed. Since p0 is included into (3) only as a part of κ0, then λn = 1/(1 + L/p0) ∼ p0/L,
p0 → 0, ωn = p0/L + o(p0), p0 → 0, σ2

n = C for some constants L, C > 0. Thus, (7)
follows from (4). �

Proof of Corollary 2.4. It follows from the definitions (3), (8), (9) that

λ−1
n = 1 + σn/p0 + ε−1

n

∑
1≤i<n

χi(σn − σi) ∼ σnχ/εn →∞, n →∞.

Simultaneously,

ωn = λn − λ2
n + λ2

n

∑
1≤i<k<n

ε−2
n χi(σk − σi)χk(σn − σk) ∼ λn + λ2

nσ2
nωn/ε2

n

∼ λn + χ−2ωn = o(1), n →∞. �

Proof of Theorem 2.2. Let us use the inequality (7.43) of the Corollary 7.5 [2, Ch.VII]
to the chain X = Xn on E = En with time τH = τn and the set H = {n}. An invariant
probability and the potential of the chain Xn are calculated in the Lemmas 3.1 and 3.2.

The estimate for new variation of the potential in (7.42) can be deduced from the
equalities (24), (26) since

rH = 1 + sup
x∈H

∣∣R∣∣ (x, E) = 1 +
n∑

k=0

∣∣Rnk

∣∣
≤ 1 +

∣∣Rnn

∣∣+ (λn + ωn)
∑
k<n

κk(σn − σk) + λn

∑
k<i<n

κk(σi − σk)κi(σn − σk)

= 1 + ωn + (λn + ωn)
(
λ−1

n − 1
)

+
(
ωn − λn + λ2

n

)
λ−1

n = 1 + 2ωnλ−1
n .

(39)

The relations (3) are also used in the expressions above.
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Since π(H) = πn
n = λn then utilizing (32) to the firs term in the right-hand part

of (7.43) [2, Ch. VII] we obtain the inequality

π(H)2rH/(1− rHH) ≤ λn2
(
1 + 2ωnλ−1

n

)
/(1− ωn) = O(ωn), n →∞, (40)

where Remark 2.1 is taken into account as well. The representation λn = O(ωn) is the
evident conclusion from (3).

Thus, in order to apply (7.43) we need to find such constants rα ∈ (0, 1) and b < ∞
that

|P0(Xn
t ∈ B)− πn(B)| ≤ b(1− rα)t (41)

for all t > 0, B ⊂ E.
Let us use the Theorem 3.6 [2, Ch.III].
We define the following norm on the space of measures μ = (μi, i ∈ En)

‖μ‖ =
∑

i∈En

vi |μi| , (42)

where the constant v > 1 will be choose later. The form of the corresponding operator
norm on L(En) is placed in [2, p. 1.1]. Let us mention that since v > 1:

|P0(Xn
t ∈ B)− πn(B)| ≤ ∣∣αP t

n − πn
∣∣ (En) ≤ ∥∥αP t

n − πn
∥∥ =

∥∥α(P t
n −Πn)

∥∥
≤ ‖α‖ ∥∥P t

n −Πn

∥∥ =
∥∥P t

n −Πn

∥∥ ,
(43)

where P t
n ≡ (Pn)t and αi = δi0 is the initial distribution of the matrix Πn that has equal

rows of the type πn.
Let us transform the matrix Pn as Pn = Tn + h ◦ β, where the function

h = (δi0, i ∈ En),

the measure β = (p0, 1− p0, 0, . . . , 0) = (P0j(n), j ∈ En), and the matrix

Tn = (Pij(n)1i>0, i, j ∈ En).

So, the condition (C) [2, p.3.3] is true when n = 1 (in denotations of [2]).
Let us calculate the operator norm ρn ≡ ‖Tn‖:

ρn = max
i∈En

v−i
∑

j∈En

vjPij(n)1i>0

= max
{

max
1≤i<n

v−i
(
qiv

i−1 + riv
i + piv

i+1
)
, v−n

}
= max

1≤i<n

(
1− (v − 1)

(
qiv

−1 − pi

))
= 1− (v − 1)v−1 min

1≤i<n
(qi − pi − (v − 1)pi)

≤ 1− (v − 1)v−1(δn − (v − 1)/2),

(44)

taking into account (13) and the condition (11) under which δn > 0 and pi < 1/2.
Let us put v = 1 + δn. Then (44) implies the following inequalities

ρn ≤ 1− δ2
n/2(1 + δn) < 1− δ2

n/4.

The condition (T) from [2, p. 3.3] is fulfilled when m = 1 (in denotations of [2]) and the
following representation holds true uniformly in a scheme of series

(1− ρn)−1 = O
(
δ−2

n

)
, n →∞. (45)

Thus, all the conditions of the Theorem 3.6 [2, Ch. III] are true and in the denotations
of the Theorem: n = m = 1, α = β, h = h, P = Pn, π = πn, Π = Πn, T = Tn, ρ = ρn,
and the norm ‖·‖ is defined in (42). In particular, for the parameter σ in (3.31) [2] we
get the estimate

σ ≤ k ‖α‖ /(1− ρ) = O
(
δ−2

n

)
, n →∞. (46)
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In order to applied (3.30) we choose (3.29) according to (3.32)

ω ≤ ω1 = 2 exp
(−(1− πh) ln(αh)/πh(1 − (αh))

)− 1 = O(1), n →∞, (47)

where we used the equalities πh = πn
0 = λnσn/p0, αh = p0 and the condition of distancing

from zero (12).
From (45), (46), (47) we can calculate the asymptotics for the parameter θ0 in (3.29)

[2]:

(1− θ0)−1 = O
(
(1− ρn)−1

)
O(σω) = O

(
δ−4

n

)
, n →∞. (48)

Let us choose in (3.30) [2, p. 3.3] the parameter θ = (1 + θ0)/2.
Since θ − θ0 = (1 − θ0)/2, 1 − θ = (1 − θ0)/2 so from (46), (48) and from (3.30) [2,

p. 3.3] we deduce the inequality (41) in the form∥∥P t
n −Πn

∥∥ ≤ bn(1 − rn)t, (49)

where

r−1
n = max

(
(1− ρn)−1, (1− θ)−1

)
= O

(
δ−4

n

)
, n →∞, (50)

bn = (1 + σ)/(θ − θ0) = O
(
δ−6

n

)
, n →∞. (51)

Finally, we deduce the following inequality for the second term in the right-hand part
of (7.43) [2, Ch. VII]

π(H)ar−1
α ln(1 + be/aπ(H)) = λnar−1

n ln(1 + bne/aλn)

≤ λnO(1)O
(
δ−4

n

)
ln
(
O
(
δ−6

n

)
λ−1

n

)
= O

(
λnδ−4

n ln(1/δnλn)
)
, n →∞,

(52)

taking into account the identity (35) under the boundedness conditions (12) and the
estimates (50), (51).

The relation (14) λn lnλ−1
n = o(δ4

n), n →∞ is equivalent to the convergence to zero of
the last term in (15): λnδ−4

n ln(λ−1
n δ−1

n ) → 0, n →∞. Really, (14) follows from (15) since
λn → 0, δn → 0. From the other hand, from (14) we deduce that δ−4

n = o(1/λn lnλ−1
n )

implying

λnδ−4
n ln δ−1

n = λno
((

λn lnλ−1
n

)−1
ln(λn lnλ−1

n )−1
)

= o(1), n →∞,

which concludes (15).
Since after putting in (7.43) [2, Ch. VII] t = λ−1

n s it follows from the inequality
s > s0 > 0 that

λ−1
n s0 ≥ t0 ≡ r−1

α ln+(b/aπ(H)) = O
(
δ−4

n ln(1/δnλn)
)
, n →∞,

as the consequence from the convergence to zero of the right-hand part of (15) and
therefore t ≥ t0 in the Corollary 7.5.

This substitution and taking into account (40) and (52) prove (15). �

Proof of Corollary 2.5. The convergence λn → 0, ωn → 0 was proved in the Corol-
lary 2.2. Correctness of (12) follows from (38).

If lim δn > 0 then the uniform ergodicity holds true and the Corollary statement will
be evident since under the condition λn + ωn → 0, n →∞.

So, we can assume that δn → 0.
From the relation (38) λn ∼ κσ−1

n , 0 < κ < ∞ we find

λn lnλ−1
n ∼ σ−1

n lnσn, n →∞. (53)
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Furthermore, it follows from the definition (13) that

θt =
t∏

i=1

(1 + (qi − pi)/pi) ≥ (1 + 2δn)t,

σn =
∑
t<n

θt ≥ (2δn)−1((1 + 2δn)n − 1),

These relations and (17) imply that

(1 + 2δn)n ≥ exp((2 − ε)nδn) ≥ exp((3 + ε) lnn) = n3+ε,

σ−1
n = O(δnn−3−ε),

for some ε > 0 starting from some number.
So, in the consequence of (53) the condition (14) hold true:

λn lnλ−1
n = O

(
δnn−3−ε ln(δ−1

n n3+ε)
)

= o
(
δ4

n

)
, n →∞,

since δ1−α
n n1+ε/3 →∞ for all sufficiently small α, ε > 0 given (17). Hereof,(

δnn−3−ε ln δ−1
n

)
/δ4

n =
(
δnn1+ε/3

(
ln δ−1

n

)−1/3
)−3

→ 0, n →∞. �

Proof of Remark 2.3. According to [1] the ergodicity of the chain is equivalent to the
convergence of the series

∑
κt, which corresponds to the convergence of the series∑

n≥1

∏n
i=1(pi/qi). By the definition (13) the convergence of the last series follows from

the convergence of the following series∑
n≥1

n∏
i=1

(1 − δn/qi) ≤
∑
n≥1

(1− δn)n < ∞.

In the conditions (b) the equality δi+1 = qi − pi hold true, so qi > 1/2 and∑
n≥1

n∏
i=1

(pi/qi) ≥
∑
n≥1

n∏
i=1

(1− 2δi+1) = ∞. �

We are grateful to the anonymous referee for the insightful comments that have sig-
nificantly improved the paper.
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