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DISTRIBUTION OF THE PRODUCT OF SINGULAR WISHART
MATRIX AND NORMAL VECTOR

UDC 519.21

T. BODNAR, S. MAZUR, AND Y. OKHRIN

Abstract. In this paper we derive a very useful formula for the stochastic representation of the prod-
uct of a singular Wishart matrix with a normal vector. Using this result, the expressions of the density
function as well as of the characteristic function are established. Moreover, the derived stochastic repre-
sentation is used to generate random samples from product which leads to a considerable improvement
in the computation efficiency. Finally, we present several important properties of the singular Wishart
distribution, like its characteristic function and distributional properties of the partitioned singular
Wishart matrix.

1. Introduction

The theory of Wishart distribution contains numerous important and useful results
which are applied in theoretical and applied statistics. The distributional properties of
random matrices which follow a Wishart distribution, an inverse Wishart distribution
and related quantities were established in Olkin and Roy (1954), Khatri(1959), Olkin and
Rubin (1964), Gupta and Nagar (2000), Bodnar and Okhrin (2008), Drton et al. (2008)
and others. Massam and Wesélowski (2006) discussed in detail the characterization of
the Wishart distribution and extended the results of Geiger and Heckerman (1998, 2002).

A k-dimensional symmetric positive semi-definite random matrix V = (vij)i,j=1,...,k is
Wishart distributed with n degrees of freedom and covariance matrix Σ = (σij)i,j=1,...,k,
i.e. V ∼ Wk(n,Σ), if the joint density function of its functionally independent elements,
that is of vech(V) = (v11, . . . , vn1, v12, . . . , vn2, . . . , vnn), is given by

f(V) =
|V|(n−k−1)/2

2kn/2Γk(n/2)|Σ|n/2
etr
(
−1

2
Σ−1V
)

,

which is defined on a cone of positive definite matrices (cf. Andersson and Wojnar (2004)).
The symbol Γm(·) denotes the multivariate gamma function expressed as

Γm(n/2) = πk(k−1)/4
m∏

i=1

Γ((n − i + 1)/2).

Gupta and Nagar (2000) discussed the relationship between the Wishart distribution
and the matrix variate normal distribution. They proved that if X ∼ Nk,n(0,Σ ⊗ In)
(matrix variate normal distribution with zero mean matrix and covariance matrix Σ⊗In

where In denotes the n-dimensional identity matrix), then V = XXT ∼ Wk(n,Σ) as
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soon as n ≥ k (see Theorem 3.2.2 of Gupta and Nagar (2000)). Recently, Srivastava
(2003) extended this result by deriving the distribution of the quadratic form

A = XXT with X ∼ Nk,n(0,Σ ⊗ In), k > n. (1)

This distribution was called the singular Wishart distribution and it is denoted by A ∼
Wk(n,Σ), k > n. Although the matrix A is singular, its density function was derived
in terms of its functionally independent elements, i.e. A11 and A21, where A11 and A21

are obtained from the following partitioned matrix

A =
[
A11 A12

A21 A22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2)

with dim(A11) = dim(Σ11) = n×n, k > n. The density function of the singular Wishart
distributed random matrix A is then given by (cf. Srivastava (2003, p. 1550))

f(A) ≡ f(A11,A21) =
πn(n−k)/22−kn/2

Γn(n/2)|Σ|n/2
|A11|(n−k−1)/2 exp

(
−1

2
tr
(
Σ−1A
))

. (3)

Bodnar and Okhrin (2008) derived several distributional results for the functions calcu-
lated for the elements of the singular Wishart distributed matrix.

Although the (singular) Wishart distribution has been applied in different fields of
science and a lot of papers were devoted to studying its distributional properties, the
Wishart matrix usually does not appear alone but in a combination with a normally dis-
tributed random vector. For instance, Mathai and Provost (1992) discussed in detail the
distribution of quadratic forms in normally distributed random matrices, while Bodnar
and Okhrin (2011) derived the distribution of the product of an inverse Wishart random
matrix and a normally distributed random vector. This combination is of great interest
both in statistical theory and in the applications, for example to portfolio analysis. In
statistical theory the product of an inverse Wishart matrix and a normal vector appears
in the discriminant function (see, e.g. Rencher (2002)), whereas some types of optimal
portfolio weights are determined by this product in portfolio theory (cf. Bodnar and
Okhrin (2011)). Bodnar et al. (2013) considered expressions which depend on Az, where
A is a (non-singular) Wishart matrix and z is a Gaussian vector, which are independently
distributed and derived a stochastic representation as well as the exact density function
of LAz for an arbitrary deterministic matrix L.

In this paper we extend the results of Bodnar et al. (2013) by investigating the dis-
tributional properties of the product of a singular Wishart matrix and a normal vector.
The singularity of the Wishart distribution leads to substantial technical complications,
which have to be solved. Particularly, this refers to a special type of partitioning which
leads to singular matrix variate normal distributions. Furthermore, the singular Wishart
distribution becomes more relevant nowadays, when the covariance matrix has to be es-
timated for high-dimensional data using a few observations. For example, this problem
arises in portfolio theory, when we consider many assets and historical returns over a few
past periods. The results established in this paper can tackle such problems in contrary
to the results provided by Bodnar et al. (2013).

The rest of the paper is structured as follows. In Section 2 we consider several distri-
butional properties of the singular Wishart random matrix. In particular, we derive its
characteristic function in Theorem 1 and prove that the singular Wishart distribution is
closed with respect to linear symmetric transformations given by LALT in Theorem 2.
In Theorem 3 the distribution of the quadratic form based on the singular Wishart dis-
tribution is presented. In Section 3 main results are given. In Theorem 4 we obtain a
very useful stochastic representation for the product LAz, where L is a p × k matrix of
constants and z is a k-dimensional normal vector which is independent of A. Its density
function is derived in Corollary 1. Important special cases are considered in Corollaries 2
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and 3. The characteristic function for the product Az is given in Theorem 5. The results
of numerical studies are discussed in Section 4. Section 5 summarizes the paper.

2. Preliminary results

In this section we present several distributional properties of the elements of the singu-
lar Wishart random matrix which are used in the proofs of our main results of Section 3.
We start with presenting Lemma 1 which extends the results of Srivastava (2003, Corol-
lary 3.4) and Bodnar and Okhrin (2008, Lemma 1) to an arbitrary partitioning in (2).

Lemma 1. Let A ∼ Wk(n,Σ), k > n where A and Σ are partitioned as follows

A =

[
Ã11 Ã12

Ã21 Ã22

]
and Σ =

[
Σ̃11 Σ̃12

Σ̃21 Σ̃22

]
(4)

with dim(Ã11) = dim(Σ̃11) = p × p. Then, it holds that

Ã21|Ã11 ∼ Nk−p,p(Σ̃21Σ̃−1
11 Ã11, Σ̃22·1 ⊗ Ã11),

where Σ̃22·1 = Σ̃22 − Σ̃21Σ̃−1
11 Σ̃12.

Proof. The statement of the lemma was proved for p = n by Srivastava (2003, Corol-
lary 3.4) and for p < n by Bodnar and Okhrin (2008, Lemma 1). Thus, we deal with the
case p > n only.

Because A22 = A21A−1
11 A12, we get

A =

[
Ã11 Ã12

Ã21 Ã22

]
=

⎡⎣ A11 A12;1 A12;2

A21;1 A21;1A−1
11 A12;1 A21;1A−1

11 A12;2

A21;2 A21;2A−1
11 A12;1 A21;2A−1

11 A12;2

⎤⎦ ,

where A11 and A21 =
[
A21;1

A21;2

]
are given in (2). Moreover, let Σ21 =

[
Σ21;1

Σ21;2

]
. We are

interested in the conditional distribution of[
A21;2 A21;2A−1

11 A12;1

]
= A21;2

[
I A−1

11 A12;1

]
(5)

given A11 and A12;1. Using (5) we first derive the distribution of A21;2|A11,A12;1. The
application of Corollary 3.4 by Srivastava (2003) leads to

A21 =
[
A21;1

A21;2

] ∣∣ A11 ∼ Nk−n,n

(
Σ21Σ−1

11 A11,Σ22·1 ⊗ A11

)
.

Let

B = Σ22·1 =
[
B11 B12

B21 B22

]
and B22·1 = B22 − B21B−1

11 B12.

Using Theorem 2.21 by Gupta et al. (2013) for the case of matrix variate normal distri-
bution we get

A21;2 | A11,A21;1

∼ Nk−p,n

(
Σ21;2Σ−1

11 A11 + B21B−1
11

(
A21;1 − Σ21;1Σ−1

11 A11

)
,B22·1 ⊗ A11

)
.

Now, the application of Theorem 2.2 in Gupta et al. (2013) in the same case of matrix
variate normal distribution leads to
Ã21 | Ã11 = A21;2

[
I A−1

11 A12;1

] ∣∣ A11,A12;1

∼ Nk−p,p

((
Σ21;2Σ−1

11 A11 + B21B−1
11

(
A21;1 − Σ21;1Σ−1

11 A11

)) [
I A−1

11 A12;1

]
,

B22·1 ⊗
([

I
A21;1A−1

11

]
A11

[
I A−1

11 A12;1

]))
.



4 T. BODNAR, S. MAZUR, AND Y. OKHRIN

Let

Q = Σ22 =
(
Q11 Q12

Q21 Q22

)
with Q22 = Σ̃22.

Then

Σ̃11 =
(

Σ11 Σ21;1

Σ21;1 Q11

)
(6)

and
Bij = Qij − Σ21;iΣ−1

11 Σ12;j for i, j = 1, 2. (7)

Moreover, we get[
I

A21;1A−1
11

]
A11

[
I A−1

11 A12;1

]
=
[

A11 A12;1

A21;1 A21;1A−1
11 A12;1

]
= Ã11, (8)

and (
Σ21;2Σ−1

11 A11 + B21B−1
11

(
A21;1 − Σ21;1Σ−1

11 A11

)) [
I A−1

11 A12;1

]
=
[
Σ21;2Σ−1

11 − B21B−1
11 Σ21;1Σ−1

11 B21B−1
11

] [ A11

A21;1

] [
I A−1

11 A12;1

]
︸ ︷︷ ︸

=�A11

=
[
Σ21;2(Σ−1

11 + Σ−1
11 Σ12;1B−1

11 Σ21;1Σ−1
11 ) − Q21B−1

11 Σ21;1Σ−1
11

−Σ21;2Σ−1
11 Σ12;1B−1

11 + Q21B−1
11

]T
Ã11

=
[
Σ21;1 Q21

](Σ−1
11 + Σ−1

11 Σ12;1B−1
11 Σ21;1Σ−1

11 −B−1
11 Σ21;1Σ−1

11

−Σ−1
11 Σ12;1B−1

11 B−1
11

)
Ã11

= Σ̃21Σ̃−1
11 Ã11 ,

where in the third equality we use (8) and the fact that Σ̃21 =
[
Σ21;1 Q21

]
. The last

equality follows from the formula for the inverse of the partitioned matrix Σ̃11 as in (6)
(see, e.g. Harville (1997, Corollary 8.5.12)).

Finally, let

Ξ = Σ−1 =
[
Ξ11 Ξ12

Ξ21 Ξ22

]
=

[
Ξ̃11 Ξ̃12

Ξ̃21 Ξ̃22

]
with dim(Ξ11) = n × n and dim(Ξ̃11) = p × p. Then Σ22·1 = Ξ−1

22 . Let

D = (Ξ−1
22 )−1 =

[
D11 D12

D21 D22

]
with D22 = Ξ̃22 .

Then B22·1 = D−1
22 = Ξ̃−1

22 . On the other hand, we get

Ξ̃−1
22 = Σ̃22 − Σ̃21Σ̃−1

11 Σ̃12 = Σ̃22·1 ,

and, hence, B22·1 = Σ̃22·1 which completes the proof of the lemma. �

Because Ã11 is singular, we obtain from Lemma 1 that the conditional distribution
of Ã21 given Ã11 belongs to the family of singular matrix variate normal distributions.
This is the only difference to the case of p ≤ n where the non-singular matrix variate
normal distribution appears.

Next, we derive the characteristic function of A.

Theorem 1. Let A be k-dimensional singular Wishart distributed, i.e. A ∼ Wk(n,Σ),
k > n. Then the characteristic function of A is given by

Ψ(T) =
∣∣In + 4T12Σ22·1T21Σ11 − 2i(T11Σ11 + T12Σ21 + Σ−1

11 Σ12T21Σ11)
∣∣−n/2

, (9)
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where T = (tij)i,j=1,...,k with tij = 1
2 (1 + δij)τij , τij = τji, for i, j = 1, . . . , k and τij = 0

for i, j = n + 1, . . . , k. The symbol δij denotes the Kronecker delta given by

δij =

{
1, if i = j,

0, if i �= j.

Proof. Let A and Σ be partitioned as in (2) with dim(A11) = n × n and let

T =
[
T11 T12

T21 T22

]
(10)

with dim(T11) = n × n and T22 = 0.
Then the characteristic function of A is given by

Ψ(T) = E
[
etr
(
iTTA
)]

= E
[
etr
(
iTT

11A11 + 2iTT
21A21

)]
= E
[
E
(
etr
(
iTT

11A11 + 2iTT
21A21

) ∣∣ A11

)]
= E
[
etr
(
iTT

11A11

)
E
(
etr
(
2iTT

21A21

) ∣∣ A11

)]
.

Using Lemma 1 and Theorem 2.3.2 of Gupta and Nagar (2000) we get

Ψ(T) = E
[
etr
(
iTT

11A11

)
etr
(
2iTT

21Σ21Σ−1
11 A11 − 2TT

21Σ22·1T21A11

)]
= E
[
etr
(
i
(
TT

11 + 2TT
21Σ21Σ−1

11

)
A11

)
etr
(−2TT

21Σ22·1T21A11

)]
=

1
|Σ11|n/2|Σ−1

11 + 4T12Σ22·1T21|n/2
E
[
etr
(
i
(
T11 + 2T12Σ21Σ−1

11

)
Ã11

)]
,

where Ã ∼ Wn

(
n, (Σ−1

11 +4T12Σ22·1T21)−1
)

and we use that TT
11 = T11 and TT

21 = T12.
Because

tr
[(

T11 + 2T12Σ21Σ−1
11

)
Ã11

]
= tr
[
ÃT

11

(
T11 + 2T12Σ21Σ−1

11

)T ]
= tr
[(

T11 + 2Σ−1
11 Σ12T21

)
Ã11

]
we get

tr
[(

T11 + 2T12Σ21Σ−1
11

)
Ã11

]
=

1
2

tr
[(

T11 + 2T12Σ21Σ−1
11

)]
Ã11

+
1
2

tr
[(

T11 + 2Σ−1
11 Σ12T21

)
Ã11

]
= tr
[(

T11 + T12Σ21Σ−1
11 + Σ−1

11 Σ12T21

)
Ã11

]
,

where T11 + T12Σ21Σ−1
11 + Σ−1

11 Σ12T21 is a symmetric matrix. Hence,

Ψ(T) =
1

|Σ11|n/2|Σ−1
11 + 4T12Σ22·1T21|n/2

× E
[
etr
[
i
(
T11 + T12Σ21Σ−1

11 + Σ−1
11 Σ12T21

)T
Ã11

]]
,

(11)

where the expectation in (11) is the characteristic function of the n-dimensional Wishart
distribution with n degrees of freedom and covariance matrix (Σ−1

11 + 4T12Σ22·1T21)−1

at (T11 + 2T12Σ21Σ−1
11 ). The application of Theorem 3.3.7 by Gupta and Nagar (2000)

leads to

Ψ(T) = |Σ11|−n/2|Σ−1
11 + 4T12Σ22·1T21|−n/2

× |In − 2i(T11 + T12Σ21Σ−1
11 + Σ−1

11 Σ12T21)(Σ−1
11 + 4T12Σ22·1T21)−1|−n/2

= |In + 4T12Σ22·1T21Σ11 − 2i(T11Σ11 + T12Σ21 + Σ−1
11 Σ12T21Σ11)|−n/2. �



6 T. BODNAR, S. MAZUR, AND Y. OKHRIN

If k ≤ n then A has a Wishart distribution and, consequently, the characteristic
function of A is given by

Ψ(T) = |Ik − 2iTΣ|−n/2. (12)

Next, using the results of Theorem 1 we prove that (12) is also the expression of the
characteristic function for the singular Wishart distribution.

The application of the partitioned matrices from (2) and (10), the fact that T22 = 0
and Theorem 13.3.8 of Harville (1997) lead to

|Ik − 2iTΣ|−n/2 = |In − 2i(T11Σ11 + T12Σ21)|−n/2

× |Ik−n − 2iT21Σ12 + 4T21Σ11(In − 2i(T11Σ11 + T12Σ21))−1

× (T11Σ12 + T12Σ22)|−n/2

= |In − 2i(T11Σ11 + T12Σ21)|−n/2

× |In − 2iΣ−1
11 Σ12T21Σ11 + 4(In − 2i(T11Σ11 + T12Σ21))−1

× (T11Σ12 + T12Σ22)T21Σ11|−n/2,

where the last identity is obtained by using Sylvester’s determinant theorem (see, e.g.
Harville (1997, p. 416)). Hence,

|Ik − 2iTΣ|−n/2

= |(In − 2i(T11Σ11 + T12Σ21))(In − 2iΣ−1
11 Σ12T21Σ11)

+ 4(T11Σ12 + T12Σ22)T21Σ11|−n/2

= |In − 2i(T11Σ11 + T12Σ21 + Σ−1
11 Σ12T21Σ11) − 4T11Σ12T21Σ11

− 4T12Σ21Σ−1
11 Σ12T21Σ11 + 4T11Σ12T21Σ11 + 4T12Σ22T21Σ11|−n/2

= |In − 2i(T11Σ11 + T12Σ21 + Σ−1
11 Σ12T21Σ11) + 4T12Σ22·1T21Σ11|−n/2,

which coincides with the expression for the characteristic function of the singular Wishart
distribution as presented in Theorem 1. We summarize the above results in the following
corollary.

Corollary 1. Under the conditions of Theorem 1, the characteristic function of the
singular Wishart distribution is given by

Ψ(T) = |Ik − 2iTΣ|−n/2. (13)

The application of the characteristic function (13) allows us to prove that the class of
singular Wishart distributions is closed with respect to linear symmetric transformations
given by LALT . This is done in Theorem 2.

Theorem 2. Let A ∼ Wk(n,Σ), k > n, and L be a p× k arbitrary deterministic matrix
with rank(L) = p. Then LALT ∼ Wp(n,LΣLT ) if p ≤ n and LALT ∼ Wp(n,LΣLT ),
p > n, otherwise.

Proof. The characteristic function of LALT is given by

Ψ(T) = E
[
etr
(
iTT LALT

)]
= E
[
etr
(
iLTTT LA

)]
=
∣∣Ik − 2iLTTTLΣ

∣∣−n/2

=
∣∣Ip − 2iTTLΣLT

∣∣−n/2
,

(14)

where the second line follows from Corollary 1 and the third one is obtained by applying
Sylvester’s determinant theorem (see, e.g. Harville (1997, p. 416)). Now the result of
Theorem 2 follows from the observation that the last line in (14) is the characteristic
function of Wp(n,LΣLT ) if p ≤ n and of Wp(n,LΣLT ), p > n, otherwise. �
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A very important results is obtained in the special case when p = 1.

Theorem 3. Let A ∼ Wk(n,Σ), k > n, and y be any k × 1 random vector which is
independent of A. Then yT Ay/yT Σy ∼ χ2

n and is independent of y.

Proof. Because A and y are independent, the conditional distribution of yT Ay/yTΣy
given y = y∗ coincides with the distribution of yT

∗ Ay∗/yT
∗ Σy∗. From Theorem 2 we get

that

yT
∗ Ay∗ ∼ W1

(
n,yT

∗ Σy∗
)
,

which leads to
yT
∗ Ay∗

yT∗ Σy∗
∼ χ2

n. (15)

Because the conditional distribution of yT∗ Ay∗/yT∗ Σy∗ is independent of y∗, we get
that (15) also determines the unconditional distribution of yT Ay/yT Σy. �

3. Main results

In this section the main findings are presented. Particularly, we derive the stochastic
representation, the density and the characteristic function of a weighted product of a
singular Wishart matrix and a normal random vector. Thus we extend the results of
Bodnar and Okhrin (2011) and Bodnar et al. (2013) who considered a non-singular
Wishart matrix only.

Let A be k-dimensional singular Wishart distributed with n degrees of freedom and
covariance matrix Σ, i.e. A ∼ Wk(n,Σ), k > n. Let z ∼ Nk(μ, λΣ) (k-dimensional
multivariate normal distribution with mean vector μ and covariance matrix Σ) with
λ > 0. Let L be a p × k matrix of constants with rank(L) = p. We are interested in the
distribution of LAz when A and z are independent.

Let L̃z = (LT , z)T and define Wz = L̃zAL̃T
z . Because A and z are independent, we

get that the distribution of Wz given z = z∗ is the same as the distribution of Wz∗ .
Moreover, the application of Theorem 2 leads to

Wz∗ ∼ Wp+1

(
n, L̃z∗ΣL̃T

z∗

)
.

If p + 1 ≤ n we get that Wz∗ follows a Wishart distribution (cf. Lemma 1). Hence,
from Theorem 1 of Bodnar et al. (2013) the following stochastic representation of LAz
we obtain

LAz d= ξ
(
LΣLT
)1/2

y1

+
√

ξ
(
LΣLT
)1/2
[√

yT
1 y1 + ηIp −

√
yT

1 y1 + η −√
η

yT
1 y1

y1yT
1

]
z0,

(16)

where ξ ∼ χ2
n, z0 ∼ Np(0, Ip), and

y =
(
y1

y2

)
∼ Nk

((
S1Σ1/2μ
S2Σ1/2μ

)
, λ

(
S1Σ2ST

1 S1Σ2ST
2

S2Σ2ST
1 S2Σ2ST

2

))
with η = yT

2 y2;

ξ, z0 are independent of y.
If p + 1 > n then Wz∗ has a singular Wishart distribution. However, also in this case

the stochastic representation (16) remains valid as it is proven in Theorem 4.

Theorem 4. Let A ∼ Wk(n,Σ), k > n, and let z ∼ Nk(μ, λΣ) with λ > 0. We assume
that Σ is positive definite and that A and z are independent. Let L be a p× k matrix of
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constants with rank(L) = p < k, and let S1 = (LΣLT )−1/2LΣ1/2, S2 = (Ip − ST
1 S1)1/2

with S2 : (k − p) × k. Then the stochastic representation of LAz is given by

LAz d= ξ
(
LΣLT
)1/2

y1

+
√

ξ
(
LΣLT
)1/2
[√

yT
1 y1 + ηIp −

√
yT

1 y1 + η −√
η

yT
1 y1

y1yT
1

]
z0,

(17)

where ξ ∼ χ2
n, z0 ∼ Np(0, Ip), and

y =
(
y1

y2

)
∼ Nk

((
S1Σ1/2μ

S2Σ1/2μ

)
, λ

(
S1Σ2ST

1 S1Σ2ST
2

S2Σ2ST
1 S2Σ2ST

2

))
with η = yT

2 y2 ;

ξ, z0 are independent of y.

Proof. The proof for p+1 ≤ n is given above. Thus, we deal only with the case p+1 > n
here.

Let L̃z∗AL̃T
z∗ and L̃z∗ΣL̃T

z∗ be partitioned as

L̃z∗AL̃T
z∗ =
[

LALT LAz∗

z∗T ALT z∗T Az∗

]
and L̃z∗ΣL̃T

z∗ =
[

LΣLT LΣz∗

z∗T ΣLT z∗T Σz∗

]
.

Using Lemma 1 the conditional distribution of LAz is given by

LAz | zTAz, z = z∗ ∼ Np

(
LΣz∗

z∗T Az∗

z∗T Σz∗
, z∗T Az∗

(
LΣLT − LΣz∗z∗T ΣLT

z∗T Σz∗

))
.

Let ξ = z∗T Az∗/z∗T Σz∗. Then ξ and z are independent and ξ ∼ χ2
n (see Theorem 3).

As a result, we get

LAz d= ξLΣz +
√

ξ
(
zTΣzLΣLT − LΣzzT ΣLT

)1/2

z0,

where ξ ∼ χ2
n, z0 ∼ Np(0, Ip) and z ∼ Nk(μ, λΣ); ξ, z0, z are independent.

The application of the equality(
F− bbT

)1/2

= F1/2
(
Ip − cF−1/2bbTA−1/2

)
,

with c = 1−
√

1−bT A−1b

bT A−1b , F = zT ΣzLΣLT , and b = LΣz, leads to

LAz d= ξLΣz +
√

ξ
(
LΣLT
)1/2

×
(√

zT ΣzIp −
√

zT Σz −
√

zT (Σ− Σ1/2Q1Σ1/2)z
zTΣ1/2Q1Σ1/2z

S1Σ1/2zzTΣ1/2ST
1

)
z0,

where Q1 = ST
1 S1.

Using the facts that Q1 is a projection matrix with rank(Q1) = p and S1 is a p × k
matrix with rank(S1) = p we get that rank(Ip − Q1) = k − p (see Harville (1997,
Theorem 12.3.4)). As a result there exists the (k − p) × k matrix S2 = (Ip − Q1)1/2

such that ST
2 S2 = (Ip − Q1) with rank(S2) = k − p. Making the transformation y1 =

S1Σ1/2z ∈ R
p, y2 = S2Σ1/2z ∈ R

k−p we get

y =
(
y1

y2

)
∼ Nk

((
S1Σ1/2μ

S2Σ1/2μ

)
, λ

(
S1Σ2ST

1 S1Σ2ST
2

S2Σ2ST
1 S2Σ2ST

2

))
.

Since tT t = tT Q1t + tTST
2 S2t for all t ∈ R

k, the stochastic representation of LAz is
expressed as

LAz d= ξ
(
LΣLT
)1/2

y1+
√

ξ
(
LΣLT
)1/2
[√

yT
1 y1 + ηIp −

√
yT

1 y1 + η −√
η

yT
1 y1

y1yT
1

]
z0,
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where η = yT
2 y2. �

Next, we derive the density function of LAz. Because y2|y1 ∼ Nk−p(ν, λΩ) with

ν = S2Σ1/2μ +
(
S2Σ2ST

1

) (
S1Σ2ST

1

)−1
(
y1 − S1Σ1/2μ

)
and

Ω = S2Σ2ST
2 − S2Σ2ST

1

(
S1Σ2ST

1

)−1
S1Σ2ST

2 ,

the application of Theorem 4.2c.1 by Mathai and Provost (1992) leads to the density
function of η expressed as

fη|y1(y) =
∞∑

i=0

ci
i!

2βΓ
(

k−p
2 + i
) ( y

2β

) k−p
2 −1

e−y/2βL
( k−p

2 −1)
i

(
y

2β

)
, y > 0,

β > 0 is an arbitrary constant,

L
( k−p

2 −1)
i

(
y

2β

)
=

(− y
2β )i

i! 2F0

(
−i,− y

2β
− i;−2β

y

)
,

c0 = 1, ci =
1
i

i−1∑
r=0

di−rcr, dj =
k−p∑
j1=1

(1 − jb2
j1)(αj1)

−j , j ≥ 1.

The matrix V is a (k − p) × (k − p) orthogonal matrix which diagonalizes λΩ. That is,

λVT ΩV = diag(α1, . . . , αk−p), VVT = Ik−p,

where α1, . . . , αk−p are eigenvalues of λΩ and b = λ−1/2VT Ω−1/2ν.
Let fχ2

n
denote the density function of the χ2-distribution with n degrees of freedom

and let fNp(μ,Σ) be the density of the multivariate normal distribution with mean vec-
tor μ and covariance matrix Σ. Then the density of LAz is expressed as in Corollary 2.

Corollary 2. Let A ∼ Wk(n,Σ), k > n, z ∼ Nk(μ, λΣ) with λ > 0 and Σ positive
definite. Assume that A and z are independent. Let L be a p × k matrix of constants
with rank(L) = p < k, and let S1 = (LΣLT )−1/2LΣ1/2, S2 = (Ip − ST

1 S1)1/2. Then the
density function of LAz is given by

fLAz(x) =
∫ ∞

0

∫ ∞

0

∫
Rp

fNp(�μ,�Σ)(x | ξ = v,y1 = z1, η = z2)fNp(μ̆,Σ̆)(z1)

× fχ2
n
(v)fη|y1(z2 | y1 = z1)dz1 dz2 dv,

where μ̃ = v(LΣLT )1/2z1 and Σ̃ = v(LΣLT )1/2[(zT
1 z1 + z2)Ip − z1zT

1 ](LΣLT )1/2, μ̆ =
S1Σ1/2μ and Σ̆ = λS1Σ2ST

1 .

Proof. Using the stochastic representation of LAz (see Theorem 4), the conditional den-
sity function of LAz is given by

LAz | ξ,y1, η ∼ Np(μ̃, Σ̃).

Because the densities of ξ, y1 and η are known and the random variables are inde-
pendently distributed, we obtain the unconditional density function of LAz by, first,
constructing the joint density of LAz, ξ, y1 and η, and, then, by integrating out two
random variables η and ξ as well as the random vector y1. �

In Corollary 3, we consider the special case of Corollary 2 when Σ = Ik. In particular,
the density function of LAz is simplified significantly because the quadratic form η
times λ−1 has a non-central chi-squared distribution, namely λ−1η ∼ χ2

k−p;δ2 with δ2 =

λ−1μT S̃T
2 S̃2μ where S̃2 = (Ip − S̃T

1 S̃1)1/2 with S̃1 = (LLT )−1/2L.
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In order to prove this statement we, first, point out that the matrix S̃T
2 S̃2 is an

idempotent matrix, since S̃T
2 S̃2S̃T

2 S̃2 = S̃T
2 S̃2 where we use that Q1 is idempotent and

S̃T
2 S̃2 = Ik − Q1. Furthermore, it holds that

(i) tr[(λ−1Ik−p)(λS̃2S̃T
2 )] = tr(S̃2S̃T

2 ) = tr(S̃T
2 S̃2) = tr(Ik − Q1) = k − tr(Q1) =

k − tr(S̃1S̃T
1 ) = k − tr [(LLT )−1/2LLT (LLT )−1/2]︸ ︷︷ ︸

=Ip

= k − p;

(ii)

(λS̃2S̃T
2 )(λ−1Ik−p)(λS̃2S̃T

2 )(λ−1Ik−p)(λS̃2S̃T
2 ) = λS̃2 S̃T

2 S̃2S̃T
2 S̃2︸ ︷︷ ︸

=�ST
2
�S2

S̃T
2

= (λS̃2S̃T
2 )(λ−1Ik−p)(λS̃2S̃T

2 );

(iii)

(μT S̃T
2 )(λ−1Ik−p)(λS̃2S̃T

2 )(λ−1Ik−p)(S̃2μ) = λ−1μT S̃T
2 S̃2S̃T

2 S̃2︸ ︷︷ ︸
=�ST

2
�S2

μ

= (μT S̃T
2 )(λ−1Ik−p)(S̃2μ);

(iv)
[μT S̃T

2 ][(λ−1Ik−p)(λS̃2S̃T
2 )]2 = λ−1μT S̃T

2 S̃2S̃T
2 S̃2︸ ︷︷ ︸

=�ST
2
�S2

S̃T
2

= (μT S̃T
2 )(λ−1Ik−p)(λS̃2S̃T

2 ).

Now, the application of Theorem 5.1.3 by Mathai and Provost (1992) shows that λ−1η

is χ2
k−p;δ2 -distributed with δ2 = λ−1μT S̃T

2 S̃2μ.

Corollary 3. Let A ∼ Wk(n, Ik), k > n and z ∼ Nk(μ, λIk) with λ > 0. Assume that
A and z are independent. Let L be a p × k matrix of constants, with rank(L) = p < k,
and let S̃1 = (LLT )−1/2L, S̃2 = (Ip − S̃T

1 S̃1)1/2. Then the density of LAz is given by

fLAz(x) =
1
λ

∫
Rp

∫ ∞

0

∫ ∞

0

fNp(�μ1,�Σ1)
(x | ξ = υ,y1 = z1, η = z2)fNp(�S1μ,λ�ST

1
�S1)

(z1)

× fχ2
n
(υ)fχ2

k−p;δ2

(
λ−1z2

∣∣ y1 = z1

)
dz1 dz2 dυ,

where μ̃1 = v(LLT )1/2z1, Σ̃1 = v(LLT )1/2
[
(zT

1 z1 + η)Ip − z1zT
1

]
(LL)1/2, and δ2 =

λ−1μT S̃T
2 S̃2μ.

Proof. From Theorem 4 the stochastic representation of LAz is expressed as

LAz d= ξ
(
LLT
)1/2

y1 +
√

ξ
(
LLT
)1/2
[√

yT
1 y1 + ηIp −

√
yT

1 y1 + η −√
η

yT
1 y1

y1yT
1

]
z0,

where z0 ∼ Np(0, Ip), ξ ∼ χ2
n,

y =
(
y1

y2

)
∼ Nk

((
S1μ
S2μ

)
, λ

(
S1ST

1 0
0 S2ST

2

))
with η = yT

2 y2 ;

z0, ξ, and y are independently distributed. Using a fact that the covariance matrix of y
is block diagonal it holds that y1 and y2 are independently distributed. Moreover, η is a
function of y2 only and, hence, y1 and η are independent as well. Finally, using λ−1η ∼
χ2

k−p;δ2 and the stochastic representation (17) we get the statement of Corollary 2. �

In the next corollary, we consider a special case of Theorem 4 and Corollary 2 with
p = 1 and L = lT . As a result we obtain that the density function of lT Az is given
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by three integrals only as well as known univariate density functions. This stochastic
representation simplifies it significantly.

Corollary 4. Let A ∼ Wk(n,Σ), k > n, and z ∼ Nk(μ, λΣ) with λ > 0. Let Σ be
positive definite. Assume that A and z are independent and p + 1 > n. Let l be a k-
dimensional vector of constants and let S1 = (lTΣl)−1/2lT Σ1/2, S2 = (I − ST

1 S1)1/2.
Then

(a) the stochastic representation of lTAz is given by

lTAz d=
(
lT Σl
)1/2
[
ξy1 −
√

ηξz0

]
,

where ξ ∼ χ2
n, z0 ∼ N(0, 1),

y =
(
y1

y2

)
∼ Nk

((
S1Σ1/2μ

S2Σ1/2μ

)
, λ

(
S1Σ2ST

1 S1Σ2ST
2

S2Σ2ST
1 S2Σ2ST

2

))
with η = yT

2 y2,

and ξ, z0 are independent of y.
(b) the density of lTAz is given by

flT Az(x) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

fN((lT Σl)1/2vz1,(lT Σl)vz2)(x | ξ = υ, y1 = z1, η = z2)

× fN(S1Σ1/2μ,λS1Σ2ST
1 )(z1)fχ2

1
(υ)fη(z2 | y1 = z1)dz1 dz2 dυ.

There are several important applications of the results presented in Corollary 4. One
of them is the derivation of the characteristic function of Az whose analytical expression
is provided in Theorem 5. Another application is discussed in Section 4.

Theorem 5. Let A ∼ Wk(n,Σ), k > n, and z ∼ Nk(μ, λΣ) with λ > 0 and Σ is
positive definite. Assume that A and z are independent. Let S1 = (LΣLT )−1/2LΣ1/2,
S2 = (Ip − ST

1 S1)1/2. Then the characteristic function of Az is given by

φAz(t) =
∫ ∞

−∞

∫ ∞

0

(
1 +
(
tT Σt
)
z2 − 2i

(
tT Σt
)1/2

z1

)−k/2

× fN(S1Σ1/2μ,λS1Σ2ST
1 )(z1)fη(z2 | y1 = z1)dz1 dz2.

Proof. The characteristic function of Az for t ∈ R
k is given by

φAz(t) = E
[
exp
(
itTAz
)]

.

Let ζ = tTAz. Then applying Corollary 4 and integrating out υ and ξ we get

φAz(t) = E
[
exp
(
itTAz
)]

= E[exp(iζ)]

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
exp(iw)fN((tT Σt)1/2vz1,(tT Σt)vz2)(w | ξ = υ, y1 = z1, η = z2)

× fN(S1Σ1/2μ,λS1Σ2ST
1 )(z1)fχ2

1
(υ)fη(z2 | y1 = z1)dz1 dz2 dυ dw

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

exp
{

i
(
tT Σt
)1/2

υz1 − 1
2
(
tTΣt
)
υz2

}
fχ2

1
(υ)

× fN(S1Σ1/2μ,λS1Σ2ST
1 )(z1)fη(z2 | y1 = z1)dz1 dz2 dυ

=
1

2k/2Γ(k/2)

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

vk/2−1 exp
{

i
(
tT Σt
)1/2

υz1 − v

2
(
1 + z2tTΣt

)}
× fN(S1Σ1/2μ,λS1Σ2ST

1 )(z1)fη(z2 | y1 = z1)dz1 dz2 dυ

=
∫ ∞

−∞

∫ ∞

−∞

(
1 +
(
tTΣt
)
z2

)−k/2
(

1 − 2i
(tT Σt)1/2z1

(tT Σt)z2 + 1

)−k/2

× fN(S1Σ1/2μ,λS1Σ2ST
1 )(z1)fη(z2 | y1 = z1)dz1 dz2,
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where the last integral is obtained from the expression of the characteristic function
for the gamma distribution with shape k/2 and scale (1 + (tTΣt)z2)/2 at (tT Σt)1/2z1.
Finally, simplifying the expression under the integral we get the expression provided in
the statement of Theorem 5. �

It is remarkable to note that the characteristic function for Az is given as a two-
dimensional integral only with the known univariate density functions.

4. Numerical illustration

In this section we present the results of a simulation study. The aim is to compare
the kernel density estimators with each other calculated for two data sets where the first
one is obtained by generating singular Wishart matrices and normal vectors, whereas
the elements from the second data are obtained by using the stochastic representation
of Corollary 4. We put p = 1, lT = (1/n, 0, . . . , 0), μT = (1, . . . , k), Σ = Ik, λ = 1/n
and compare the result for several values of k ∈ {50, 100} and n ∈ {1, 20, 40}. Each of
the simulated data consists of N = 104 independent realizations which are used to fit
the corresponding kernel density estimators with the Gaussian kernel. The bandwidth
parameters are determined via cross-validation for every sample.

The first data set is generated directly from the product lTAz. It corresponds to the
abbreviation ‘data 1’ in the notations of Figure 1 and it is obtained in the following way

a) generate independently A ∼ Wk(n, Ik), k > n and z ∼ Nk(μ, λIk);
b) compute lTAz;
c) repeat a)–b) N times.

The second data set is simulated using the results of Corollary 4 and it is denoted by
‘data 2’ in this section. The corresponding algorithm is given next:

a) generate independently z0 ∼ N(0, 1), ξ ∼ χ2
n, y1 ∼ N

(
lT μ/

√
lT l, λ
)
, and η ∼

λχ2
k−1;δ2 with δ2 = λ−1

(
μT μ − (lT μ)2/lT l

)
;

b) compute

lT Az =
√

lT l
(
ξy1 −
√

ηξz0

)
; (18)

c) repeat a)–b) N times.
It is noted that the second algorithm is more computationally efficient than the first

one since only four random variables instead of k + k(k + 1)/2 are generated within each
repetition. Moreover, the number of the simulated random variables is independent of k
and, hence, even in large dimensions, for example in case of k = 100, only four random
variables have to be simulated. Finally, since no matrix appears in (18), the expression
for lT Az can be easily vectorized which provides an additional increase in the efficiency
of the second procedure with respect to the first one.

In Figure 1, we present the kernel density estimators computed from both data sets
for several values of k and n. It is noted that the obtained density functions almost
coincide for all considered values of k and n. Some minor differences are present only
around the picks of the densities. Furthermore, we observe that all density functions are
slightly skewed to the right.

5. Summary

Wishart and normal distributions are the most frequently applied families of proba-
bility distributions in both statistics and probability theory with a number of important
applications in finance, economics, biology, etc. Although many results have already
been established for each of these distributions separately as well as for quadratic forms
involving these distributional classes, other types of combinations are not deeply studied
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Figure 1. Kernel density estimators for the two considered simulation procedures
with k ∈ {50, 100} and n ∈ {1, 20, 40}.

in the literature. This topic is even less analyzed when the singular Wishart distribution
in the combination with the normal distribution is the goal of investigation.

In this paper, we derive several distributional properties of the product of a singular
Wishart matrix with a normal vector. A very useful stochastic representation of the
product is established which is then used in the derivation of the density function as well
as of the characteristic function. Moreover, the obtained results increases significantly the
efficiency of the numerical studies involving such a product by reducing the computational
time substantially. Finally, several interesting an important properties of the singular
Wishart distribution are derived.
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