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ASYMPTOTIC PROPERTIES OF NON-STANDARD DRIFT
PARAMETER ESTIMATORS IN THE MODELS INVOLVING

FRACTIONAL BROWNIAN MOTION
UDC 519.21

MERIEM BEL HADJ KHLIFA, YULIYA MISHURA, AND MOUNIR ZILI

Abstract. We investigate the problem of estimation of the unknown drift parameter in the stochastic
differential equations driven by fractional Brownian motion, with the coefficients supplying standard
existence–uniqueness demands. We consider a particular case when the ratio of drift and diffusion
coefficients is non-random, and establish the asymptotic strong consistency of the estimator with
different ratios, from many classes of non-random standard functions. Simulations are provided to
illustrate our results, and they demonstrate the fast rate of convergence of the estimator to the true
value of a parameter.

1. Introduction

The paper is devoted to the drift parameter estimation in the diffusion models in-
volving fractional Brownian motion. Such important problem was studied originally in
the papers [3] and [4], where the authors investigated the fractional Ornstein-Uhlenbeck
process with unknown drift parameter. After that, several works were interested in the
same statistical problem with many different methods (see. for instance [1], [6] and [10]).
These methods are well described and compared in the paper [5]. One of them is the con-
struction of maximum likelihood estimator, but it is necessary to apply Girsanov theorem
for fractional Brownian motion, and it leads to complicated calculations and moreover it
is hard to discretize this estimator (see [4] & [9]). Instead, some more simple estimator
is proposed that is easy to discretize but in order to establish its strong consistency, one
needs to bound the integral w.r.t. fractional Brownian motion, that is non-trivial prob-
lem. However, in some particular cases especially when the ratio of the coefficients of the
initial equation is non-random, the bounds can be significantly simplified. In this paper,
we investigate this case in detail and illustrate the strong consistency of the estimator
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with the help of different classes of non-random ratios: power, trigonometric, exponential
and logarithmic functions. It is pleasant for the investigator that in all these examples
we have strong consistency, but with the different rate of convergence of the remainder
term to zero. Theoretical results are illustrated by simulations.

Let (Ω,F ,F , P ) be a complete probability space with filtration F = {Ft, t ∈ R
+}

satisfying the standard assumptions. It is assumed that all processes under consideration
are adapted to filtration F .

Definition 1.1. Fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a
Gaussian process BH = {BH

t , t ∈ R
+} on (Ω,F , P ) featuring the properties

(a) BH
0 = 0;

(b) E(BH
t ) = 0, t ∈ R

+;
(c) E(BH

t BH
s ) = 1

2 (t2H + s2H − |t − s|2H), s, t ∈ R
+.

We consider the continuous modification of BH whose existence is guaranteed by the
classical Kolmogorov theorem. In what follows we consider the case when H > 1

2 .
To describe the statistical model, we need to introduce the pathwise integrals w.r.t.

fBm.

2. Elements of fractional calculus and fractional integration

At first we give the basic facts on fractional integration; for more detail, see [8, 12].
Consider functions f, g : [0, T ] → R, and let [a, b] ⊂ [0, T ]. For α ∈ (0, 1) define Riemann-
Liouville fractional derivatives on the finite interval

(Dα
a+f

)
(x) =

1
Γ(1 − α)

d

dx

⎛
⎝ x∫

a

f(t)(x − t)−αdt

⎞
⎠ 1(a,b)(x)

=
1

Γ(1 − α)

(
f(x)

(x − a)α
+ α

∫ x

a

f(x) − f(u)
(x − u)1+α

du

)
1(a,b)(x),

(Dα
b−g

)
(x) =

1
Γ(1 − α)

(
g(x)

(b − x)α
+ α

∫ b

x

g(x) − g(u)
(u − x)1+α

du

)
1(a,b)(x). (1)

Assuming that Dα
a+f ∈ L1[a, b], D1−α

b− gb− ∈ L∞[a, b], where gb−(x) = g(x) − g(b), the
generalized Lebesgue-Stieltjes integral is defined as

∫ b

a

f(x)dg(x) =
∫ b

a

(
Dα

a+f
)
(x)

(
D1−α

b− gb−
)
(x)dx.

Introduce the norm

‖f‖α,a,b,∞ = sup
t∈[a,b]

(
|f(t)| +

∫ t

a

|f(t) − f(z)|
(t − z)1+α

dz

)
,

and denote Wα,a,b,∞ the class of functions for which this norm is finite. Let the function
g have Hölder trajectories, namely, g ∈ Cθ[a, b] with θ ∈ (1

2 , 1). In order to integrate
w.r.t. the function g and get the appropriate upper estimate for the integral, fix some
α ∈ (1 − θ, 1/2) and introduce the following norm:

‖f‖α,[a,b] =
∫ b

a

( |f(s)|
(s − a)α

+
∫ s

a

|f(s) − f(z)|
(s − z)1+α

dz

)
ds.

For simplicity we will abbreviate ‖ · ‖α,t = ‖ · ‖α,[0,t]. Denote

Λα(g) := sup
0≤s<t≤T

|D1−α
t− gt−(s)|.

In view of Hölder continuity, Λα(g) < ∞.



ASYMPTOTIC PROPERTIES OF NON-STANDARD DRIFT PARAMETER ESTIMATORS 75

Then for any t ∈ (0, T ] and any f such that ‖f‖α,t < ∞, the integral
∫ t

0
f(s)dg(s)

is well defined as a generalized Lebesgue–Stieltjes integral, and the following bound is
evident: ∣∣∣∫ t

0

f(s)dg(s)
∣∣∣ ≤ Λα(g)

Γ(1 − α)
‖f‖α,t. (2)

It is well known that in the case when both functions, f and g are Hölder, more precisely,
f ∈ Cβ [a, b], g ∈ Cθ[a, b] with β + θ > 1, the generalized Lebesgue–Stieltjes integral∫ b

a f(x)dg(x) exists, equals the limit of Riemann sums and admits upper bound (2) for
any α ∈ (1 − θ, β ∧ 1/2).

3. Description of the model and properties of the estimator

Consider the equation

Xt = x0 + θ

∫ t

0

a(s, Xs)ds +
∫ t

0

b(s, Xs)dBH
s , t ∈ R

+, (3)

where x0 ∈ R is the initial value and θ is the unknown drift parameter to be estimated.
First, we formulate existence–uniqueness conditions for the solution of equation (3).

Let K > 0 be a constant and let the following assumptions hold on any interval [0, T ]:
(A1) Linear growth of a and b in space: there exists such K > 0 that for any s ∈ [0, T ]

and any x ∈ R

|b(s, x)| ≤ K(1 + |x|),
and for any s ∈ [0, T ] and any x ∈ R

|a(s, x)| ≤ a0(s) + K|x|,
where the non-negative function a0 = a0(s) ∈ Lρ[0, T ] for some ρ ≥ 2.

(A2) Local Lipschitz continuity of a and Lipschitz continuity of b in space: for any
N > 0 there exists such KN that for any t ∈ [0, T ] and |x|, |y| ≤ N

|a(t, x) − a(t, y)| ≤ KN |x − y|,
and there exists K > 0 such that for any t ∈ [0, T ] and x, y ∈ R

|b(t, x) − b(t, y)| ≤ K|x − y|,
(A3) Hölder continuity in time: function b(t, x) is differentiable in x and there exists

β ∈ (1 − H, 1) such that for any s, t ∈ [0, T ] and any x ∈ R

|a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| + |∂xb(s, x) − ∂xb(t, x)| ≤ K|s − t|β .

(A4) Hölder continuity of ∂xb(t, x) in space: there exists such δ ∈ ( 1
H − 1, 1) that for

any t ∈ [0, T ] and x, y ∈ R

|∂xb(t, x) − ∂xb(t, y)| ≤ D|x − y|δ,
Also, let

α0 =
1
2
∧ β ∧ δ

1 + δ
.

Then according to Theorem 2.1 from [7], if α ∈ (1 − H, α0) and ρ ≥ 1
α , there

exists unique solution of equation (3) with trajectories a.s. belonging to the space
Wα,0,T,∞, and moreover with a.s. Hölder trajectories up to order H .

Now, suppose that the following assumption holds:
(B1) b(t, Xt) 
= 0, t ∈ [0, T ] and a(t,Xt)

b(t,Xt)
is a.s. Lebesgue integrable on [0, T ] for any

T > 0.
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Denote ψ(t, x) = a(t,x)
b(t,x) , ϕ(t) := ψ(t, Xt) and introduce the process

Yt =
∫ t

0

b−1(s, Xs)dXs = θ

∫ t

0

ϕ(s)ds + BH
t .

According to [5], where different estimators of unknown drift parameter θ were created
and compared, we consider the following estimator of θ, that is simple in its structure and
is easy to discretize, but needs some additional assumptions to be strongly consistent.
Similar approach was applied in [3] to the fractional Ornstein-Uhlenbeck process with
constant coefficients. More precisely, consider the estimator

θT =

∫ T

0 ϕ(s)dYs∫ T

0
ϕ2(s)ds

= θ +

∫ T

0 ϕ(s)dBH
s∫ T

0
ϕ2(s)ds

. (4)

Theorem 3.1. [5] Let assumptions (A1)–(A4) and (B1) hold and let function ϕ satisfy
the following assumption: There exists such α > 1 − H and p > 1 that


α,p,T :=
T H+α−1(log T )p

∫ T

0 |(Dα
0+ϕ)(s)|ds∫ T

0
ϕ2

sds
→ 0 a.s. as T → ∞. (5)

Then estimate θT is correctly defined and strongly consistent as T → ∞.

Proof of Theorem 3.1 is based on the representation (4) and is reduced to the esti-

mation of the remainder term 
T =
T
0 ϕ(s)dBH

s
T
0 ϕ2(s)ds

. More precisely, it is proved that under

condition (5), the remainder term tends to zero a.s., because∣∣∣ ∫ T

0

ϕ(s)dBH
s

∣∣∣ ≤ sup
0≤t≤T

|(D1−α
T− BH

T−)(t)|
∫ T

0

|(Dα
0+ϕ)(s)|ds,

and furthermore, for any p > 1 there exists a non-negative random variable ξ = ξ(p)
independent of T such that for any T > 0

sup
0≤t≤T

|(D1−α
T− BH

T−)(t)| ≤ ξ(p)T H+α−1(log T )p.

Summarizing, for T > 1

|
T | ≤
∣∣∣∣∣ξ(p)T H+α−1(log T )p

∫ T

0 |(Dα
0+ϕ)(s)|ds∫ T

0 ϕ2(s)ds

∣∣∣∣∣
=

ξ(p)T H+α−1(log T )p
∫ T

0 |(Dα
0+ϕ)(s)|ds∫ T

0
ϕ2(s)ds

= ξ(p)
α,p,T

(6)

a.s. Generally speaking, assumption (5) is not very easy to check. However, the situation
is simplified substantially if the function ϕ is non-random. In this case it is possible, for
the selected classes of ϕ, to establish not only the convergence to zero, but the rate of
convergence as well.

4. Examples of the remainder terms with the estimation of the rate of

convergence to zero

We start with the simplest case when ϕ is a power function, ϕ(t) = ta, a ≥ 0, t ≥ 0.
It means that a(t, x) = b(t, x)ta. If the coefficient b(t, x) satisfies assumptions (A1)–
(A4) and b(t, Xt) 
= 0, t ∈ [0, T ], then a(t, x) satisfies assumptions (A1)–(A4) on any
interval [0, T ], condition (B1) holds, then the main equation has the unique solution, the
estimator θT is correctly defined and we can study the properties of the remainder term

α,p,T .
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Lemma 4.1. Let ϕ(t) = ta, a ≥ 0, t ≥ 0. Then 
α,p,T = CaT H−a−1(log T )p → 0 as
T → ∞, where

Ca =
(2a + 1)Γ(a + 1)

Γ(a − α + 2)
.

Proof. Let B(α, β) stands for Beta function. For the power function ϕ(t) = ta we can
use the definition of fractional derivative and get that for any 0 < α < 1

(Dα
0+ϕ)(x) =

1
Γ(1 − α)

d

dx

x∫
0

ta(x − t)−αdt

= B(a + 1, 1 − α)
1

Γ(1 − α)
(
xa+1−α

)′
=

Γ(a + 1)
Γ(a + 1 − α)

xa−α.

Therefore, for p > 1 we have that


α,p,T =
T H+α−1(log T )p

T∫
0

|(Dα
0+ϕ)(x)|dx

T∫
0

ϕ2(x)dx

=
T H+α−1(log T )p

T∫
0

Γ(a+1)
Γ(a+1−α)x

a−αdx

T 2a+1

2a+1

=
(2a + 1)Γ(a + 1)

Γ(a + 2 − α)
T H−a−1(log T )p.

Thus


α,p,T = Ca
(log T )p

T a+1−H
→ 0 as T → +∞.

Remark 4.1. As to the rate of convergence to zero, we can say that


α,p,T = O(T H−1−a+ε)

as T → ∞ for any ε > 0.

Now, we can consider ϕ that is a polynomial function. In this case, similarly to
monomial case, the solution of the equation (3) exists and is unique, and the estimator is
correctly defined. As an immediate generalization of the Lemma 4.1, we get the following
statement.

Lemma 4.2. Let N ∈ N \ {0} and ϕN (t) =
N∑

k=0

αktak , t ≥ 0, (ak) be a sequence of

non-negative power coefficients, 0 ≤ a0 < a1 < ... < aN , and (αk) be a sequence of non-
negative coefficients, αN > 0. Then 
α,p,T → 0 as T → ∞, and the rate of convergence
to zero is 
α,p,T = O(T H−1−aN +ε) for any ε > 0.

Proof. The linearity of the operator Dα
0+ implies that

| (Dα
0+ϕN )(x) |≤

N∑
k=0

αk | Dα
0+(xak) |=

N∑
k=0

αk
Γ(ak + 1)

Γ(ak + 1 − α)
| x |ak−α .
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So, on one hand, similarly to the calculations performed in the proof of the Lemma
4.1, we get


α,p,T =

(
T H+α−1(log T )p

T∫
0

|(Dα
0+ϕN )(x)|dx

) (
T∫
0

ϕ2
N (x)dx

)−1

≤
(

T H+α−1(log T )p
T∫
0

∑N
k=0

αkΓ(ak+1)
Γ(ak+1−α) | x |ak−α dx

) (
T∫
0

ϕ2
N (x)dx

)−1

=
(
T H+α−1(log T )p

∑N
k=0

αkΓ(ak+1)
Γ(ak+1−α)(ak−α+1)T

ak−α+1
)(

T∫
0

ϕ2
N (x)dx

)−1

.

On the other hand,

∫ T

0

ϕ2
N (x)dx =

∫ T

0

⎛
⎝ N∑

k=0

α2
kt2ak +

∑
k �=j

αkαjt
ak taj

⎞
⎠ dt

=
N∑

k=0

α2
k

2ak + 1
T 2ak+1 +

∑
k �=j

αkαj

ak + aj + 1
T ak+aj+1

∼ α2
N

2aN + 1
T 2aN+1 as T → ∞,

and
N∑

k=0

αk
Γ(ak + 1)

Γ(ak + 1 − α)(ak − α + 1)
T ak−α+1 ∼ αNΓ(aN + 1)

Γ(aN + 2 − α)
T aN−α+1 as T → ∞,

whence


α,p,T ∼ T H−aN−1(log T )p (2aN + 1)Γ(aN + 1)
Γ(aN + 2 − α)αN

→ 0, as T → ∞.

We clearly see that 
α,p,T = O(T H−aN−1+ε) as T → ∞, for any ε > 0. �

Now consider the case of trigonometric function.

Lemma 4.3. Let ϕ(t) = sin(λt), λ ≥ 0. Then estimator θT is strongly consistent as
T → ∞.

Proof. In this case we apply Theorem 3.2 from [5]. According to this result, if there
exists such p > 0 that

lim sup
T→∞

T 2H−1+p∫ T

0
ϕ2(t)dt

< ∞,

then the estimator θT is strongly consistent as T → ∞. In our case∫ T

0

ϕ2(t)dt =
∫ T

0

sin2(λt)dt =
1
2

(
T − sin(2λT )

2λ

)
,

which means that we can choose any 0 < p < 2 − 2H , and the proof follows. �

Remark 4.2. We see that in the case of power and polynomial functions (Remark 4.1
and Lemma 4.2) we can get not only convergence to zero but the rate of convergence,
but in the case of trigonometric function we only get convergence. The difference can be
seen from the following result.
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Lemma 4.4. Let ϕ(t) = sin(λt), λ ≥ 0. Then

lim
T→+∞


α,p,T = lim
T→+∞

T H+α−1(log T )p
∫ T

0 |(Dα
0+ϕ)(x)|dx∫ T

0 ϕ2(x)dx
= +∞.

Proof. First, consider the fractional derivative. Since ϕ is absolutely continuous on the
interval [0, T ], for any T > 0, by Lemma 2.2 in [8], we have that

(Dα
0+ϕ)(x) =

1
Γ(1 − α)

[
ϕ(0)

(x − 0)α
+

∫ x

0

ϕ′(s)ds

(x − s)α

]

=
1

Γ(1 − α)

∫ x

0

λ cos(λs)
(x − s)α

ds =
λ

Γ(1 − α)

∫ x

0

cos(λ(x − v))
vα

dv

=
λ

Γ(1 − α)

[
cos(λx)

∫ x

0

cos(λv)
vα

dv + sin(λx)
∫ x

0

sin(λv)
vα

dv

]

=
λ

Γ(1 − α)

[
cos(λx)J1(x) + sin(λx)J2(x)

]
,

(7)

where

J1(x) =
∫ x

0

cos(λv)
vα

dv, and J2(x) =
∫ x

0

sin(λv)
vα

dv.

According to [2], p.893, for any 0 < α < 1 and λ > 0 we have that∫ ∞

0

cos(λt)t−αdt = Γ(1 − α) sin
(πα

2

)
λα−1 > 0,

and ∫ ∞

0

sin(λt)t−αdt = Γ(1 − α) cos
(πα

2

)
λα−1 > 0.

Denote

J(α, λ) =
(
Γ(1 − α) sin

(πα

2

)
λα−1

)
∧

(
Γ(1 − α) cos

(πα

2

)
λα−1

)
> 0.

Then there exists x0 > 0 such that for any x > x0 Ji(x) > J(α,λ)
2 , i = 1, 2. Additionally,

for x ∈ [ 2πk
λ ,

2πk+ π
2

λ ], with k >
(
1 ∨ (

λx0
2π

))
we have that

|(Dα
0+ϕ)(x)| =

∣∣∣∣∣ λ

Γ(1 − α)

[
cos(λx)J1(x) + sin(λx)J2(x)

]∣∣∣∣∣ ≥ λ

Γ(1 − α)
J(α, λ)

2
(cos(λx)

+ sin(λx)) ≥ λ

Γ(1 − α)
J(α, λ)

2
(cos2(λx) + sin2(λx)) =

λ

Γ(1 − α)
J(α, λ)

2

=
λα

2
sin(

πα

2
) ∧ cos(

πα

2
) =: J1(α, λ).

(8)

Now, consider I(T ) =
∫ T

0

∣∣(Dα
0+ϕ)(x)

∣∣dx. Evidently, for

T >

(
5π

2λ

)
∨

(
x0 +

π

2λ

)
and

(
1 ∨

(
λx0

2π

))
< k <

λT

2π
− 1

4

we have from (8) that

∫ 2πk+ π
2

λ

2πk
λ

∣∣(Dα
0+ϕ)(x)

∣∣dx >
π

2λ
J1(α, λ).
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Finally, denoting [a] the entire part of the number a, we get for T >
(

5π
2λ

)∨ (
x0 + π

2λ

)
the following bound from below:

I(T ) ≥
[λT
2π − 1

4 ]∑
k=[(1∨(λx0

2π ))]+1

∫ 2πk+ π
2

λ

2πk
λ

∣∣(Dα
0+ϕ)(x)

∣∣dx

>

([
λT

2π
− 1

4

]
−

[(
1 ∨

(
λx0

2π

))])
π

2λ
J1(α, λ) ∼ CT

as T → ∞ for some C > 0. Recall that α + H > 1 and we immediately get that

lim
T→+∞


α,p,T ≥ lim
T→+∞

T H+α−1(log T )pCT

T − sin(2λT )
2λ

= +∞,

and lemma is proved. �

Remark 4.3. Note for completeness that for
T H+α−1(log T )p T

0 (Dα

0+
ϕ)(x)dx

T
0 ϕ2

xdx
situation is dif-

ferent, more precisely,

lim
T→+∞

T H+α−1(log T )p
∫ T

0
(Dα

0+ϕ)(x)dx∫ T

0
ϕ2(x)dx

= 0.

Indeed, it follows from (7) and from Fubini theorem that∫ T

0

(Dα
0+ϕ)(x)dx =

λ

Γ(1 − α)

(∫ T

0

cos(λv)
vα

∫ T

v

cos(λx)dx

+
∫ T

0

sin(λv)
vα

∫ T

v

sin(λx)dx

)

=
1

Γ(1 − α)

( ∫ T

0

cos(λv)
vα

(sin(λT ) − sin(λv)) dv

+
∫ T

0

sin(λv)
vα

(cos(λv) − cos(λT )) dv

)
,

(9)

and all integrals in the right-hand side of (9) obviously are bounded. Therefore,

lim
T→+∞

∣∣∣∣∣T
H+α−1(log T )p

∫ T

0 (Dα
0+ϕ)(x)dx∫ T

0
ϕ2(x)dx

∣∣∣∣∣ ≤ lim
T→+∞

CT H+α−2(log T )p = 0.

Lemma 4.5. Let ϕ(t) = exp(−λt), λ > 0. Then

lim
T→+∞


α,p,T = lim
T→+∞

T H+α−1(log T )p
∫ T

0 |(Dα
0+ϕ)(x)|dx∫ T

0 ϕ2(x)dx
= 0.

Proof. Note that the function

G(x) =

x∫
0

e−λt(x − t)−αdt = e−λx

x∫
0

eλtt−αdt

has the derivative

g(x) = G′(x) = x−α − λe−λx

∫ x

0

eλzz−αdz = e−λx
(
eλxx−α

−λ

∫ x

0

eλzz−αdz
)

=: e−λxg1(x).
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Obviously, lim
x→0

g(x) = +∞, lim
x→+∞ g(x) = 0 and the derivative

g′1(x) = −αeλxx−1−α < 0.

It means that g is the product of two decreasing non-negative functions, so, it is decreasing
and therefore is non-negative. Then it follows that∫ T

0

|(Dα
0+ϕ)(x)|dx =

∫ T

0

(Dα
0+ϕ)(x)dx =

1
Γ(1 − α)

∫ T

0

e−λt(T − t)−αdt

=
1

Γ(1 − α)
e−λT

∫ T

0

eλtt−αdt.

(10)

Calculate

lim
T→+∞

∫ T

0
eλtt−αdt

eλT T−α
= lim

T→+∞
eλT T−α

λeλT T−α − αeλT T−α−1
=

1
λ

.

Moreover,
∫ T

0

ϕ2(x)dx =
1 − e−2λT

2λ
∼ 1

2λ
as T → ∞. Therefore

lim
T→+∞


α,p,T = lim
T→+∞

2
Γ(1 − α)

T H−1(log T )p = 0.

Lemma is proved. �

Remark 4.4. It is easy to deduce from the previous calculations that in the latter case


α,p,T = O(T H−1+ε)

as T → ∞ for any ε > 0.

Lemma 4.6. Let ϕ(t) = exp(λt), λ > 0. Then

lim
T→+∞


α,p,T = lim
T→+∞

T H+α−1(log T )p
∫ T

0
|(Dα

0+ϕ)(x)|dx∫ T

0 ϕ2(x)dx
= 0.

Proof. It is easy to check that for every x > 0 we have the relations

(Dα
0+ϕ

)
(x) =

1
Γ(1 − α)

(
x−α + λeλx

∫ x

0

e−λzz−αdz

)
≥ 0.

Since for any T > 0
∫ T

0 e−λtt−αdt ≤ λα−1Γ(1 − α), then it follows that∫ T

0

|(Dα
0+ϕ)(x)|dx =

∫ T

0

(Dα
0+ϕ)(x)dx =

1
Γ(1 − α)

∫ T

0

eλt(T − t)−αdt

=
1

Γ(1 − α)
eλT

∫ T

0

e−λtt−αdt ≤ λα−1eλT .

(11)

Thus,


α,p,T =
T H+α−1(log T )p

∫ T

0 |(Dα
0+ϕ)(x)|dx∫ T

0 ϕ2(x)dx
≤ λα−1T H+α−1(log T )peλT∫ T

0 ϕ2(x)dx
.

Moreover,
∫ T

0 ϕ2(x)dx = e2λT −1
2λ ∼ 1

2λe2λT as T → ∞. Therefore

lim
T→+∞


α,p,T = lim
T→+∞

2λαT H+α−1(log T )p

eλT
= 0.

Lemma is proved. �
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Remark 4.5. In this case it is easy to deduce from the previous calculations that


α,p,T = O(e−(λ−ε)T ) = o(T−ε)

as T → ∞ for any ε > 0.

Lemma 4.7. Let ϕ(t) = log(1 + t). Then

lim
T→+∞

ρα,p,T = lim
T→+∞

T H+α−1(log T )p
∫ T

0 |(Dα
0+ϕ)(x)|dx∫ T

0 ϕ2(x)dx
= 0.

Proof. By integration by parts, it is easy to get that for every x > 0

(Dα
0+ϕ

)
(x) =

1
Γ(1 − α)

∫ x

0

(x − z)−α

1 + z
dz ≥ 0.

Thus,∫ T

0

| (Dα
0+ϕ)(x) | dx =

∫ T

0

(Dα
0+ϕ)(x)dx =

1
Γ(1 − α)

∫ T

0

∫ x

0

(x − z)−α

1 + z
dzdx

=
1

Γ(1 − α)

∫ T

0

∫ T

z

(x − z)−αdx
1

1 + z
dz =

1
Γ(2 − α)

∫ T

0

(T − z)1−α 1
1 + z

dz

≤ T 1−α

Γ(2 − α)

∫ T

0

1
1 + z

dz =
T 1−α log(1 + T )

Γ(2 − α)
.

On the other hand we have that∫ T

0
ϕ2(t)dt =

∫ T

0
log2(1 + t)dt

= (T + 1) log2(1 + T ) − 2(T + 1) log(1 + T ) + 2T

∼ T (logT )2

as T → ∞.
Therefore

ρα,p,T ≤ T H(log T )p log(T+1)
Γ(2−α)((T+1) log2(1+T )−2(T+1) log(1+T )+2T )

∼ T H−1(log T )p−1

Γ(2−α) as T → ∞,

which allows to deduce that limT→∞ ρα,p,T = 0. �

Remark 4.6. In this case


α,p,T = O(T H−1+ε)

as T → ∞ for any ε > 0.

Now, we illustrate our results by some simulations. For some fixed step h = 0.005, we
simulate 10 paths of the process Y on the interval [0, T ], for different values of T , with
θ = 1 then θ = −1, H = 0.6 then H = 0.75, and with some polynomial, logarithmic,
trigonometric and exponential particular expressions of ϕ. Simulated results for unknown
parameter θ are given in the tables below.

From these tables we see that with increasing of T the estimator tends to the real value
of θ. This clearly illustrates the strong consistency of our estimator. In the particular
case of logarithmic form of ϕ, it is obvious that the rate of convergence to the true value
of θ is not very high.
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Table 1. θ = 1

H a(t, x) b(x)
T

50 100 300 500 1000

0.6

t2
√

x2 + 1
√

x2 + 1 1.0043 1.00169 1.00047 1.00027 1.00013

et
√

x2 + 1
√

x2 + 1 1.00501 1.00501 1.00501 1.00501 1.00501

sin t
√

x2 + 1
√

x2 + 1 0.97704 1.00815 1.04516 1.04630 1.00408

ln (1 + t)(2 + sinx) 2 + sin x 1.19095 1.13984 1.09693 1.08801 1.07777

cos t(2 + sinx) 2 + sin x 0.88322 0.96351 0.98973 1.00807 1.00474

0.75

t2
√

x2 + 1
√

x2 + 1 1.00363 1.00153 1.00045 1.00026 1.00013

et
√

x2 + 1
√

x2 + 1 1.00501 1.00501 1.00501 1.00501 1.00501

sin t
√

x2 + 1
√

x2 + 1 1.03370 1.01917 1.02307 1.02432 1.00383

ln (1 + t)(2 + sinx) 2 + sin x 1.18920 1.14153 1.09654 1.08931 1.07922

cos t(2 + sinx) 2 + sin x 0.84565 0.92377 0.98510 0.99827 1.00263

Table 2. θ = −1

H a(t, x) b(x)
T

50 100 300 500 1000

0.6

t2
√

x2 + 1
√

x2 + 1 −1.00076 −1.00081 −1.00037 −1.00023 −1.00012

et
√

x2 + 1
√

x2 + 1 −1.00501 −1.00501 −1.00501 −1.00501 −1.00501

sin t
√

x2 + 1
√

x2 + 1 −1.00951 −1.00288 −0.95999 −0.94766 −0.98908

ln (1 + t)(2 + sinx) 2 + sinx −0.88573 −0.90086 −0.90960 −0.91602 −0.92648

cos t(2 + sin x) 2 + sinx −1.08132 −1.01240 −0.99469 −1.00395 −1.00607

0.75

t2
√

x2 + 1
√

x2 + 1 −1.00137 −1.00097 −1.00039 −1.00024 −1.00012

et
√

x2 + 1
√

x2 + 1 −1.00501 −1.00501 −1.00501 −1.00501 −1.00501

sin t
√

x2 + 1
√

x2 + 1 −1.00180 −0.99471 −0.97423 −0.97601 −1.00121

ln (1 + t)(2 + sinx) 2 + sinx −0.89430 −0.90122 −0.91074 −0.91552 −0.92564

cos t(2 + sin x) 2 + sinx −1.08129 −1.07844 −1.05366 −1.02158 −1.01580
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