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ASYMPTOTIC PROPERTIES OF NON-STANDARD DRIFT
PARAMETER ESTIMATORS IN THE MODELS INVOLVING

FRACTIONAL BROWNIAN MOTION
UDC 519.21

MERIEM BEL HADJ KHLIFA, YULIYA MISHURA, AND MOUNIR ZILI

ABSTRACT. We investigate the problem of estimation of the unknown drift parameter in the stochastic
differential equations driven by fractional Brownian motion, with the coefficients supplying standard
existence—uniqueness demands. We consider a particular case when the ratio of drift and diffusion
coefficients is non-random, and establish the asymptotic strong consistency of the estimator with
different ratios, from many classes of non-random standard functions. Simulations are provided to
illustrate our results, and they demonstrate the fast rate of convergence of the estimator to the true
value of a parameter.

AHoTALIsg. CTaTTIO IPUCBAYEHO 3321 OLIHIOBAHHS HEBiJOMOIO MapaMeTpa 3CyBY B CTOXACTHIHOMY
nudepenniaabHOMY piBHaHHI, MmO MicTuTb gpobOoBHit OpoyHIBCbKHI Pyx, i koedirientn sikoro 3amo-
BOJIBHAIOTh CTAHJAPTHI yMOBH iCHYBaHHSI Ta €JUHOCTI PO3B’a3Ky. PO3IVISHYTO 4aCcTKOBHiIl BHIIAJOK,
KOs BijgHOmenHst koediuienTiB 3cyBy Ta audy3il € HEeBUNIAKOBUM, 1 JIOBEJEHO CHJIbHY KOH3UCTEH-
THICTH OI[IHKY JJIsi Pi3HUX BigHOIIEHBL KOEDIIiE€HTIB, 110 HAJEXKATh 0 CTAHJAPTHUX KJIACIB (DYHKITi.
PesynpraTtu cynmpoBOMKYIOTHCS OOUUCTEHHSAMH, SKi MOKA3YIOTh MBHAKY 30iKHICTH OJEPKAHUX OIIHOK
JI0 CIPaBXKHBOTO 3HAYEHHS ITapaMeTpa.

AHHOTANUs. CTaTbs MOCBSIEHA 33/a49€ OIEHHBAHUS HEM3BECTHOIO IIapaMeTPa CABHIA B CTOXACTH-
qeckoM auddepeHnnaabHOM YPAaBHEHHH, COZEpKAIleM JApoOHOe GPOYHOBCKOE IBM2KEHHe, C K03hdu-
QUEHTAMH, YJOBJICTBOPAIIINMHA CTAaHJAAPTHBIE YyCJ/JIOBUA CYIIECTBOBAHUA U €JUHCTBEHHOCTHU PEIICHUA.
PaccmoTrpen wacTHBIM cirydail, Korja oTHomeHne Ko3ddUIUEHTOB caBura m Auddy3un HeCIydaitHo,
¥ JOKA3aHA CHJIbHAS COCTOATEJHHOCTH OIEHKH IIPH PA3JUYHLIX OTHOIIEHUSX KO3(MOUINEHTOB, IPHUHA-
JIJIeXKAIUX CTAHJAPTHBIM KJlaccaM (DyHKIMi. Pe3ysbraThl CONMPOBOXK/IAIOTCS BBIYUCIEHUSIME, KOTOPHIE
[TOKa3bIBAIOT OBICTPYIO CXOIMMOCTD IIOTYUEHHBIX OI€HOK K HCTHHHOMY 3HAUEHHIO ITapaMeTpa.

1. INTRODUCTION

The paper is devoted to the drift parameter estimation in the diffusion models in-
volving fractional Brownian motion. Such important problem was studied originally in
the papers [3] and [4], where the authors investigated the fractional Ornstein-Uhlenbeck
process with unknown drift parameter. After that, several works were interested in the
same statistical problem with many different methods (see. for instance [1], [6] and [10]).
These methods are well described and compared in the paper [5]. One of them is the con-
struction of maximum likelihood estimator, but it is necessary to apply Girsanov theorem
for fractional Brownian motion, and it leads to complicated calculations and moreover it
is hard to discretize this estimator (see [4] & [9]). Instead, some more simple estimator
is proposed that is easy to discretize but in order to establish its strong consistency, one
needs to bound the integral w.r.t. fractional Brownian motion, that is non-trivial prob-
lem. However, in some particular cases especially when the ratio of the coefficients of the
initial equation is non-random, the bounds can be significantly simplified. In this paper,
we investigate this case in detail and illustrate the strong consistency of the estimator
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with the help of different classes of non-random ratios: power, trigonometric, exponential
and logarithmic functions. It is pleasant for the investigator that in all these examples
we have strong consistency, but with the different rate of convergence of the remainder
term to zero. Theoretical results are illustrated by simulations.

Let (Q,F,F,P) be a complete probability space with filtration F = {F;,t € R"}
satisfying the standard assumptions. It is assumed that all processes under consideration
are adapted to filtration F.

Definition 1.1. Fractional Brownian motion (fBm) with Hurst index H € (0,1) is a
Gaussian process BY = {BH ¢t € R"} on (Q, F, P) featuring the properties

(a) Bg' = 0;
(b) BE(BF)=0,tcR™;
(c) E(BEBH) = L(#*H +32H [t —s|?H), s,t € RT.

We consider the continuous modification of B whose existence is guaranteed by the
classical Kolmogorov theorem. In what follows we consider the case when H > %

To describe the statistical model, we need to introduce the pathwise integrals w.r.t.
fBm.

2. ELEMENTS OF FRACTIONAL CALCULUS AND FRACTIONAL INTEGRATION

At first we give the basic facts on fractional integration; for more detail, see [8, 12].
Consider functions f, g : [0,7] — R, and let [a,b] C [0,T]. For a € (0,1) define Riemann-
Liouville fractional derivatives on the finite interval

N6 = Freoi / F0) @ — 1)t | Lo (@)

N F(ll—a)<x—a /f 1+ad“)1<ab>()

0t 00 = 7y (2 +o [ SR st
bl,

Assuming that DS, f € Li[a,b], Dy “gy— € Loola, b], where g,—(z) = g(x) — g(b), the
generalized Lebesgue Stieltjes mtegral is defined as

/: f(@)dg () = /ab (D2,.£) @) (Di="g1-) ()

Introduce the norm
f(t)
- Sup <|f |+/ | 1+a| )
E a,

and denote Wy 4,00 the class of functions for which this norm is finite. Let the function
g have Holder trajectories, namely, g € C°[a,b] with § € (1,1). In order to integrate
w.r.t. the function g and get the appropriate upper estimate for the integral, fix some
a € (1—0,1/2) and introduce the following norm:

£l farp) = /ab (% + / %dz) ds.

For simplicity we will abbreviate || - [|a,t = || - ||la,[0,¢- Denote
Aalg) = sup_ |Dt1:°‘9t—(8)|-
0<s<

In view of Holder continuity, A, (g) < oo.
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Then for any ¢ € (0,7] and any f such that ||f|la,s < o0, the integral fot f(s)dg(s)
is well defined as a generalized Lebesgue—Stieltjes integral, and the following bound is
evident:

[ i) < 20 @)

It is well known that in the case when both functions, f and g are Hélder, more precisely,
f € CPla,b], g € C%a,b] with 3+ 6 > 1, the generalized Lebesgue-Stieltjes integral

b f(x)dg(x) exists, equals the limit of Riemann sums and admits upper bound (2) for
a g
any a € (1 —0,6/N1/2).

3. DESCRIPTION OF THE MODEL AND PROPERTIES OF THE ESTIMATOR

Consider the equation
t t
Xt =x0+ 9/ a(s, Xs)ds +/ b(s,X.)dBY, t e RT, (3)
0 0

where xg € R is the initial value and € is the unknown drift parameter to be estimated.
First, we formulate existence—uniqueness conditions for the solution of equation (3).
Let K > 0 be a constant and let the following assumptions hold on any interval [0, T':
(A1) Linear growth of a and b in space: there exists such K > 0 that for any s € [0,T]
and any z € R

[b(s, )| < K(1+ ),
and for any s € [0,7] and any x € R
la(s, 2)| < ao(s) + Kl,

where the non-negative function ag = ao(s) € L,[0,T] for some p > 2.
(A2) Local Lipschitz continuity of a and Lipschitz continuity of b in space: for any

N > 0 there exists such Ky that for any ¢ € [0,7] and |z|, |y| < N

la(t, z) —a(t,y)| < Knlz —yl,
and there exists K > 0 such that for any ¢ € [0, 7] and z,y € R
‘b(t,.’lﬁ) - b(ta y)' < K‘.’E - y|7

(A3) Holder continuity in time: function b(¢,x) is differentiable in x and there exists
B € (1 — H,1) such that for any s,¢t € [0,7] and any z € R

la(s, z) — a(t, z)| + |b(s, z) — b(t, x)| + |0.b(s, x) — Oxb(t,z)| < K|s —t|°.

(A4) Holder continuity of ,b(t,z) in space: there exists such § € (4 — 1,1) that for
any t € [0,7] and z,y € R

|02b(t, ) — 0:b(t, y)| < Dz —yl°,

Also, let
1 0
= ABAN—.
w0 =3NNS
Then according to Theorem 2.1 from [7], if a € (1 — H,a9) and p > 1, there
exists unique solution of equation (3) with trajectories a.s. belonging to the space

Wa,0,1,00, and moreover with a.s. Holder trajectories up to order H.
Now, suppose that the following assumption holds:
(B1) b(t, X)) #0, t € [0,T] and Z((:))é)) is a.s. Lebesgue integrable on [0,T] for any
T > 0.
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Denote 9(t, z) = Z((fi)), o(t) :== (¢, X;) and introduce the process

t t
Y; :/ b (s, X,)d X, :9/ ¢(s)ds + B
0 0

According to [5], where different estimators of unknown drift parameter 6 were created
and compared, we consider the following estimator of 6, that is simple in its structure and
is easy to discretize, but needs some additional assumptions to be strongly consistent.
Similar approach was applied in [3] to the fractional Ornstein-Uhlenbeck process with
constant coefficients. More precisely, consider the estimator

g _ o p)0Ys ) J e(s)aBY

LT esds 0 [T es)ds

Theorem 3.1. [5] Let assumptions (A1)—(A4) and (B1) hold and let function ¢ satisfy
the following assumption: There ezists such a« >1— H and p > 1 that

_ T | 'ror
Tt log T)P [y [(DELe)(s)lds
Qoz,p,T = T 5
fo 2ds

Then estimate 01 is correctly defined and strongly consistent as T — oo.

(4)

-0 as as T — 0. (5)

Proof of Theorem 3.1 is based on the representation (4) and is reduced to the esti-
Ji e(s)dBY
Jo 3 (s)ds
condition (5), the remainder term tends to zero a.s., because

[ etan

and furthermore, for any p > 1 there exists a non-negative random variable £ = £(p)
independent of T" such that for any 7" > 0

sup |(Dy_*By)(t)] < &(p)TH+ (log T)P.
0<t<T

mation of the remainder term op = . More precisely, it is proved that under

T
< sup |(DAoBE)(1)| / (D, )(s)]ds,
0<t<T 0

Summarizing, for T > 1

o] < 5<p>TH+a-1<1o§T>P Jo 1(Dgy o) (s)lds
fo ©2(s)ds )
_ @I Qg T Jy |(DE)@lds _
Jo 2(s)ds

a.s. Generally speaking, assumption (5) is not very easy to check. However, the situation
is simplified substantially if the function ¢ is non-random. In this case it is possible, for
the selected classes of ¢, to establish not only the convergence to zero, but the rate of
convergence as well.

4. EXAMPLES OF THE REMAINDER TERMS WITH THE ESTIMATION OF THE RATE OF
CONVERGENCE TO ZERO

We start with the simplest case when ¢ is a power function, ¢(t) = t*, a > 0,¢t > 0.
It means that a(t,z) = b(t,z)t*. If the coefficient b(¢,x) satisfies assumptions (A;)-
(A4) and b(t, X;) # 0,t € [0,T], then a(t,z) satisfies assumptions (A;)—(A44) on any
interval [0, T'], condition (Bj) holds, then the main equation has the unique solution, the
estimator 67 is correctly defined and we can study the properties of the remainder term
Oa,p,T-
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Lemma 4.1. Let p(t) = t*, a > 0,t > 0. Then 0o pr = CoaTT7971(logT)? — 0 as
T — 00, where

(2a+ 1T (a+1)

Co = Ia—a+2)

Proof. Let B(a, ) stands for Beta function. For the power function (t) = t* we can
use the definition of fractional derivative and get that for any 0 < a < 1

Piee)w) = Fray 3z | e =0
0
(‘,Ea+17a)' _ P(a + 1) e

—Bla+1,1— -
(@at+1,1-a IFa+1-a)

)F(l —«)

Therefore, for p > 1 we have that

T T
THr=1(log T)? [ |(Dy ) (x)|dx THJFC‘*l(logT)pmeLl)x“*adx
0 0

(a+1—a)
Oa,p, T = = T2a+1
f @2 (z)dx 2a+1
(2a + 1)F(a +1), gouq
Ia+2-a) (log 7"
Thus
log TP
Qa,p,T:Ca(Og ) —0 as T — +o0.

Ta+1—H
Remark 4.1. As to the rate of convergence to zero, we can say that

OupT = O(TH—l—a+s)

as T — oo for any € > 0.

Now, we can consider ¢ that is a polynomial function. In this case, similarly to
monomial case, the solution of the equation (3) exists and is unique, and the estimator is
correctly defined. As an immediate generalization of the Lemma 4.1, we get the following
statement.

N

Lemma 4.2. Let N € N\ {0} and on(t) = Zakt“’“, t >0, (ax) be a sequence of
k=0

non-negative power coefficients, 0 < ag < a1 < ... < an, and (o) be a sequence of non-

negative coefficients, ay > 0. Then pqpr — 0 as T — oo, and the rate of convergence

to zero is ga,pr = O(THZ170NTE) for any e > 0.

Proof. The linearity of the operator Dy, implies that

I'(ap +1 o —a
| (DEson)(a |<Zaku> ) =S oD jaa
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So, on one hand, similarly to the calculations performed in the proof of the Lemma
4.1, we get

—1
T T
Qa,p, T — (THJra 1 10gT pf| 0+50N )|d‘r> <f @?V(I)dx>
0 0

IN

o g

-1
(TH+O‘ L(log T)P fzk o%lxla’“ adx) ( so?v(x)dx>

-1
T
a— N [ ag ap—a
= (TH+ Ylog T)P 305 r(ak+ffé)’{;vlza+1)T : +1) <0f @%(:c)dx) :

On the other hand,

/0 " 2 (@)da

/ Za 20k +Zaka 4ok |t
0

k#j
Y2 QR
_ k 2a,+1 kg ar+a;+1
D P T
P 2ar + 1 Py ap +aj +1
o2
~ — N PNt g T 0o,
2aN + 1
and
N
Z (ak + 1) Tak7a+1 ~ aNF(a’N + 1) TaNfaJrl as T — oo
— "Dk +1-a)(ax —a+1) Flan +2— ) ’
whence
o 2ay + 1)T'(any + 1)
~ =031 1gg Ty ¢ 0 T .
Cop,T (log 7) Ilan +2 — a)an T e e
We clearly see that 0,17 = O(TH =N ~1%€) as T — oo, for any & > 0. O

Now consider the case of trigonometric function.

Lemma 4.3. Let ¢(t) = sin(A\t), A > 0. Then estimator 01 is strongly consistent as
T — o0.

Proof. In this case we apply Theorem 3.2 from [5]. According to this result, if there

exists such p > 0 that
T2H 1+p

lim sup ————

then the estimator O is strongly con51stent as T — 00. In our case

T T 1 sin(2AT)
2 _ 2 i I —
/0 P=(t)dt _/0 sin“(\t)dt = 5 (T o ),

which means that we can choose any 0 < p < 2 — 2H, and the proof follows. U

Remark 4.2. We see that in the case of power and polynomial functions (Remark 4.1
and Lemma 4.2) we can get not only convergence to zero but the rate of convergence,
but in the case of trigonometric function we only get convergence. The difference can be
seen from the following result.
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Lemma 4.4. Let ¢(t) =sin(At), A > 0. Then
_ T\ /e
T log T) [y |(Dgep)()ld

lim = lim = +o00.
2 Qa,p, T T oeo foT 02 (x)d

Proof. First, consider the fractional derivative. Since ¢ is absolutely continuous on the
interval [0, T], for any T' > 0, by Lemma 2.2 in [8], we have that

N B 1 »(0) T (s)ds
(D0+90)($) = F(l 704) [(Q:O)O‘ +/0 (1: S)O‘]

_ 1 r )\cos()\s)ds _ A ¥ cos(A(x — v))dv
J J

I'l—a) (x — ) I'l-—a) v
B A cos(Av) ¥ sin(Av) (7)
“Ti—a) [cos()\x)/o o —dv+ sm()\x)/o o dv]
A .
= T —a) [cos(Aaz)Jl (x) + sm()\:U)Jg(a?)] ,

where

Jl(!L‘) = /Ow wcﬁu, and JQ(;L') = Aw Mdv'

v ¥

According to [2], p.893, for any 0 < a < 1 and A > 0 we have that

/Ooo cos(AM)t~%dt = T'(1 — a)sin (%) A,
and .
/0 sin(At)t~%dt =T(1 — «) cos( 5 ) Aot
Denote
J(o, A) = (I‘(l — a)sin (?) )\afl) A (I‘(l — ) cos (?) )\0‘*1) > 0.

Then there exists zg > 0 such that for any = > xo J;(z) > J(Oé)‘), i = 1,2. Additionally,
for x € [2’”g 2“;”} with k> (1V (%)) we have that

|(Dg+ ) ()| = ﬁ lcos()\x)Jl(x) —|—Sin()\;1;)J2(.r)‘| > I‘(l)\_a) J(O;, A) (cos(Az)
+sin(Az)) > F(%@(cosz()\m) +sin?(\zr)) = 7F(1)\— 5 J(O; N

)
Y To T,
5 sm(?) A COS(T) =: Ji(a, A).

T
Now, consider I(T) = / |(D8+ gp)(a:)|dx Evidently, for

o (F)v (et gy) ma (1v(52)) <hegr-g

we have from (8) that
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Finally, denoting [a] the entire part of the number a, we get for T > (—;) (3:0 + %)
the following bound from below:

[57 4] 2+ g
1z Z / (D5 9)(@)|da

2nk

PNES

2

([ (2 Fen-er

as T'— oo for some C > 0. Recall that o + H > 1 and we immediately get that

TH+a=1(log T)PCT
lim gqp7 > lim (log 7 =

T—+o0 T—+oo T — sin(22/\AT) B ’

and lemma is proved. O

TH+e-1 (log T)? fOT(Dng »)(z)dx
Jo w2de

Remark 4.3. Note for completeness that for situation is dif-

ferent, more precisely,
o T log TP [ (DG ) ()d
im

T
T—4o0 fo ©2(z)dx

Indeed, it follows from (7) and from Fubini theorem that

[ @@= 1t ( Sy

+ /0 Tsmv(ij”) / Tsin(/\ac)da:)

= 1 TCOS()\U) sin —sin(A\v)) dv
- )(/ 20 (sin(\T) — sin(w)) d

=0.

I'l—a

T sin(\w) ) o
+/0 T(cos(/\v) COb(AT))dU)a

and all integrals in the right-hand side of (9) obviously are bounded. Therefore,

T log T fy (D))
Jo #*(@)dx

Lemma 4.5. Let ¢(t) = exp(—At), A > 0. Then

THr l0g )" Jy |(Dgsep) (@)|dx

< H4+a—2 P __
TEIEOO cr (logT)? = 0.

lim
T—+o00

lim gqp7 = lim =0.
Tofoo =P T o400 foT ©2(z)dw
Proof. Note that the function
G(z) = /e*/\t(x — )%t = e*’\I/e)‘tt*adt
0 0

has the derivative

g(x) =G'(z) = )\e_’\x/ Ny = e (emx_("

—/\/ Az _“dz = e Mgy (2).
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Obviously, lim g(z) = 400, lim g(x) =0 and the derivative
x—0 T——+00

gy (z) = —ae*z™17 < 0.

It means that g is the product of two decreasing non-negative functions, so, it is decreasing
and therefore is non-negative. Then it follows that

T T 1 T
[ 105 o@lds = [ Dgoads = s [T -0
0 0 Il —a) Jo
10)
1 T (
—AT Ayp—a
= = t dt~
T(1—a)° /0 ‘
Calculate
o feMear S 1
lim =———— = lim = .
T=Yoo e T—too NeAMT—a — qeATT—a=1 )\
T 1— 2T 1
Moreover, /0 ©*(x)dr = o Yoy & T — oo. Therefore
lim 04,7 = lim LTH—l(logT)P =0
T—+o00o P T—+oco F(]_ — Ol) '
Lemma is proved. O

Remark 4.4. Tt is easy to deduce from the previous calculations that in the latter case

Qa,p,T = o(rH=1+)
as T — oo for any € > 0.

Lemma 4.6. Let ¢(t) = exp(At), A > 0. Then

oa— T o
b oy r = lim Lo 008 T) o (DG o)) ldr

- ~0.
T—+oco T—+o0 fO §02 (iﬂ)dl‘

Proof. Tt is easy to check that for every x > 0 we have the relations

1 x
(D&g@) () = m (w‘a + )\e’\x/o e_’\zz_adz) >0.

Since for any 7' > 0 fOT e Mt=odt < \*71T(1 — ), then it follows that

T T 1 T
[ 10go@lde = [ Do = s [T -0
0 0 I'(l—a) Jo
: . (11)
AT —Aty—a a—1_ AT
= t %t < A .
T a) e /0 e < e
Thus,
T (log TY J (DG o) (@)lde _ A~ T+~ (log T)PeMT
Qa,p, T = T , < T .
Jo ¥*(@)da Jo ¥*(@)da
Moreover, fOT P (x)dr = CZAQT)\_l ~ 5=e**T as T — oco. Therefore
. _xerHte1(log TP
T1—1>r4rrloo Qap,T = TEIJrrloo BXT =0

Lemma is proved. 0
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Remark 4.5. In this case it is easy to deduce from the previous calculations that
Oapr =0(e” AT = o(T~)
as T — oo for any € > 0.

Lemma 4.7. Let ¢(t) =log(1+t). Then

THJrafll Tp T 'Da d
lim papr = lim (log T)” [y |(Dg:¢)(x)ldx

- —0.
T— 400 T—+o00 f() ()02 (I’)d.’l?

Proof. By integration by parts, it is easy to get that for every z > 0

(Dg) (@) = F(ll—a) /0 (wl_f); dz > 0.

Thus,

/TI(DO+w)( |dx—/T<z>“ o) () = 1706// €D e
Ti—a) // (z —2) O‘dx1+zdz:ﬁ/o (T—z)lfo‘l_'_%dz

/ 1 d T log(1+1T)
z = .
_F(Q—a) 0o 1+z I'2-a)
On the other hand we have that
[T e2dt = [ log?(1+ t)dt

= (T+1)log?(1+T)—2(T 4 1)log(1+T) + 2T

~ T(logT)?
as T — oo.
Therefore

< TH (log T)? log(T+1)
PapT = T ((T1DIlogZ(1+T)—2(T+1) log(1+T)+2T)

TH=1(logT)P 1
Ir'(2—a)

~

asT — oo,

which allows to deduce that limr_. pa.p,7 = 0.

Remark 4.6. In this case
Qa,p,T — O(TH—1+E)

as T' — oo for any € > 0.

Now, we illustrate our results by some simulations. For some fixed step h = 0.005, we
simulate 10 paths of the process Y on the interval [0,T], for different values of T', with
0 = 1 then § = —1, H = 0.6 then H = 0.75, and with some polynomial, logarithmic,
trigonometric and exponential particular expressions of ¢. Simulated results for unknown

parameter # are given in the tables below.

From these tables we see that with increasing of T' the estimator tends to the real value
of . This clearly illustrates the strong consistency of our estimator. In the particular
case of logarithmic form of ¢, it is obvious that the rate of convergence to the true value

of 6 is not very high.
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TABLE 1. =1

T

H a(t,z) b(z) 50 100 300 500 1000
222 + 1 Va2 +1 | 1.0043 | 1.00169 | 1.00047 | 1.00027 | 1.00013
etva? +1 V2 +1 | 1.00501 | 1.00501 | 1.00501 | 1.00501 | 1.00501

0.6 sintva? + 1 Va2 +1 | 097704 | 1.00815 | 1.04516 | 1.04630 | 1.00408

In(1+¢)(2+sinz) | 2+sinz | 1.19095 | 1.13984 | 1.09693 | 1.08801 | 1.07777
cos t(2 + sin ) 24 sinz | 0.88322 | 0.96351 | 0.98973 | 1.00807 | 1.00474

222 + 1 V22 +1 | 1.00363 | 1.00153 | 1.00045 | 1.00026 | 1.00013
etVzZ +1 V2241 | 1.00501 | 1.00501 | 1.00501 | 1.00501 | 1.00501
0.75 sintvz2 4+ 1 Vz2 +1 | 1.03370 | 1.01917 | 1.02307 | 1.02432 | 1.00383

In(1+¢)(2+sinz) | 2+sina | 1.18920 | 1.14153 | 1.09654 | 1.08931 | 1.07922
cost(2 + sinz) 2 +4sinx | 0.84565 | 0.92377 | 0.98510 | 0.99827 | 1.00263

TABLE 2. 0§ = —1

T

a a(t, z) b(z) 50 100 300 500 1000
2vz2 + 1 Vz2+1 | —1.00076 | —1.00081 | —1.00037 | —1.00023 | —1.00012
etvz2 +1 Vz2+1 | —1.00501 | —1.00501 | —1.00501 | —1.00501 | —1.00501

0.6 sintvz? + 1 Va2 +1 | —1.00951 | —1.00288 | —0.95999 | —0.94766 | —0.98908

In(14¢)(2+sinz) | 2+ sinz | —0.88573 | —0.90086 | —0.90960 | —0.91602 | —0.92648
cos t(2 + sin ) 2+sinx | —1.08132 | —1.01240 | —0.99469 | —1.00395 | —1.00607

t>Vx2 + 1 Vz2 +1 | —1.00137 | —1.00097 | —1.00039 | —1.00024 | —1.00012
etvz2 +1 Va2 +1 | =1.00501 | —1.00501 | —1.00501 | —1.00501 | —1.00501
0.75 sintvz? + 1 Va2 +1 | —1.00180 | —0.99471 | —0.97423 | —0.97601 | —1.00121

In(14¢)(2+sinz) | 2+ sinz | —0.89430 | —0.90122 | —0.91074 | —0.91552 | —0.92564
cos t(2 4 sin ) 2+sinx | —1.08129 | —1.07844 | —1.05366 | —1.02158 | —1.01580
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