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Abstract. Let u(t, x), t > 0, x ∈ �n, be the spatial-temporal random field arising from the solution
of a time-fractional relativistic diffusion equation with the time-fractional parameter β ∈ (0, 1), the
spatial-fractional parameter α ∈ (0, 2) and the mass parameter � > 0, subject to random initial data
u(0, ·) which is characterized as a subordinated Gaussian field. Compared with [5] written by Anh and
Leoeneko in 2002, we not only study the large-scale limits of the solution field u, but also propose a
small-scale scaling scheme, which also leads to the Gaussian and the non-Gaussian limits depending
on the covariance structure of the initial data. The new scaling scheme involves not only to scale u but
also to re-scale the initial data u0. In the two scalings, the parameters α and � play distinct roles in
the process of limiting, and the spatial dimensions of the limiting fields are restricted due to the slow
decay of the time- fractional heat kernel.

1. Introduction

In this paper, we study the scaling limits of the spatial-temporal random field arising
from the solution u of the following random initial value problem

∂β

∂tβ
u(t,x) = (m− (m

2
α −Δ)

α
2 )u(t,x), u(0,x) = u0(x), t ≥ 0, x ∈ R

n, (1)

of the time-fractional relativistic diffusion equation (TFRDE), where the time-fractional
parameter β ∈ (0, 1), the spatial-fractional parameter α ∈ (0, 2) and the (normalized)
mass parameter m > 0. This equation is obtained from the classical diffusion equation by
replacing the spatial and temporal derivatives by fractional ones, which were introduced
to describe physical phenomena such as diffusion in porous media with fractal geometry,
kinematics in viscoelastic media, relaxation processes in complex systems [4].
For the operator (m − (m

2
α − Δ)

α
2 ), the prominent case is α = 1, for which −(m −√

m2 −Δ) is regarded as the relativistic Schrödinger operator; see the seminal paper
of Carmona et al. [11] and Shieh [33] for its relation to Lévy processes. For general
α ∈ (0, 2), one may refer to Ryznar [31], Baeumer et al. [7], Kumara et al. [21], and the
references therein. TFRDEs have also played an essential role in the theory of computer
vision; see a special volume edited by Kimmel et al. [20], in which P.D.E. and scale-space
methods are focused and TFRDEs with β = 1 are particularly employed.
In this article, the initial data u0 are modeled by a class of nonlinear functions of

homogeneous Gaussian random fields. We study the large-scale and the small-scale
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limits of the re-scaled solution field. For the large-scale limit (Theorem 1 and Theorem
3), the mass m > 0 dominates the space-time scaling and also the limiting field. For
the small-scale limit (Theorem 2 and Theorem 4), the spatial-fractional parameter α
dominates both the scaling factor and the limiting field, and it appears to be irrelevant
for m being positive or zero.
In our discussions, the large-scale limits in Theorem 1 and Theorem 3 are respectively

comparable to the Central Limit Theorem for local functionals of random fields with weak
dependence in [10], and to a certain non-Gaussian Central Limit Theorem for which the
papers [34, 14] are pioneering. For the small-scale limits in Theorem 2 and Theorem 4,
they involve not only the space-time scaling on u but also need to re-scale the initial
data u0; to our knowledge, these are new type results for the literature; see [27] for the
authors’ very recent study. We use the moment method and the Feymann-type diagrams,
which are used notably in [10], to find out the Gaussian limits. On the other hand, we
exploit the truncation of Hermite expansions and the multiple Wiener-Itô integrals to
find out the non-Gaussian limits.
We remark that, in the non-relativistic case, i.e. m = 0, the large-scale limits for

the random initial value problem with multiple Itô-Wiener integrals as input have been
discussed in Anh and Leonenko [2, 5]; subsequent works, together with Burgers’ equation,
in this direction by the authors and collaborators can be seen in [6, 8, 18, 23, 24, 25, 26, 30]
and the references therein. However, the multi-scaling limits due to the different roles of
the mass and the fractional-index, the target of this article, are not mentioned in the cited
papers. Compare to [3, 5] and our previous work [26] related to the random initial value
problem for the fractional diffusion-wave equations, the Laplace operator Δ is extended
to the α-fractional relativistic diffusion operator (m − (m

2
α − Δ)

α
2 ). In [3, 5, 26], the

large-scale limit of u is discussed but the existence of small-scale limits of u is neglected.
In this paper, we show that the random solution u under the small scaling and the large
scaling has different limits no matter whether the initial data is long-range dependent or
not. Finally, we mention that the study on the PDEs with random initial conditions can
be traced back to [19] and [29]. Besides the above mentioned literature, there also has
very significant progress on Burgers equation with different types of random input; see
the monograph of Woyczyński [37] and the Chapter 6 of Bertoin [9].
The rest of the paper is organized as follows. In Section 2, we present some prelimi-

naries; we state our main results in Section 3, and all the proofs of our results are given
in Section 4.

2. Preliminaries

2.1. Heat kernel for TFRDEs. In the TFRDE, the fractional temporal derivative ∂β

∂tβ

is in the Caputo-Djrbashian sense [12]

dβf

dtβ
(t) =

{
f (m)(t) if β = m ∈ N

1
Γ(m−β)

∫ t

0
f(m)(τ)

(t−τ)β+1−m dτ if β ∈ (m− 1,m),
(2)

where f (m) denotes the ordinary derivative of order m of a causal function f (i.e., f is
vanishing for t < 0). The spatial operator (m − (m

2
α − Δ)

α
2 ) in (1) is regarded as a

psudo-differential operator, see for example the book and the paper by Wong [35, 36].
In this paper, we mainly focus on the case 0 < β ≤ 1. In this case, (1) can be

derived from the master equation of a continuous-time random walk with the Mittag-
Leffler distributed waiting times between jumps (see, for example, Angulo et al. [1]).
The Mittage-Leffer distribution has the density function ψ(t), t ≥ 0, as follows

ψβ(t) = tβ−1Eβ,β(−tβ), (3)
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Figure 1. The Mittag-Leffler probability density function

where Eβ,β(·) is the two-parameter Mittag-Leffler function, which is defined by the series
expansion

Ea,b(z) =
∞∑

k=0

zk

Γ(ak + b)
, a, b > 0, z ∈ C. (4)

The Mittag-Leffler functions are entire functions on the complex plane and their asymp-
totic behaviors, when β < 1, have the inverse power law as follows:

|Ea,b(z)| ∼ O(
1
|z| ), |z| → ∞ with |arg(−z)| < π(1− a

2
), b > 0, (5)

where arg: C → (−π, π) and f(z) ∼ O(g(z)) denotes that f(z)/g(z) remains bounded
as z approaches the indicated limit point; see, for example, the classic books by Erdélyi
et.al. [16] (pp. 206-212, in particular p. 206 (7) and p. 210 (21)) or by Djrbashian
[12, Chapter 1]. When β = 1, the Mittag-Leffler distribution becomes an exponentially
distribution since E1,1(z) = ez. The Mittag-Leffler probability density functions ψβ(t)
for β = 0.2, 0.6 and 1 are illustrated in Figure 1. By (5) (see also Figure 1), when β < 1,
the probability density function ψβ of the waiting time between jumps does not have the
exponential decay as ψ1, so the case 0 < β < 1 is referred as the sub-diffusive.
The solution of (1) is given in the convolution form

u(t,x;u0(·)) =
∫

Rn

G(t,x − y)u0(y)dy, (6)

where the heat kernel G(·, ·) is defined by its spatial Fourier transform Ĝ(t, ·) as follows:
Ĝ(t, λ) =

∫
Rn

ei<λ,x>G(t,x)dx = Eβ,1

(−tβθ(λ)) (7)

with θ(λ) = (m
2
α + |λ|2)α

2 −m, where λ ∈ Rn. The derivation of (7) can be found in [32].
In this work, the initial data u0 in (6) is a second-order homogeneous random field

on Rn, and (6) should be understood as a mean-square solution of (1); resulting in
a spatial-temporal random solution field u; see [30, Proposition 1] for some discussion
on the mean-square solutions of parabolic PDEs with mean-square continuous random
initial data.

2.2. Subordinated Gaussian fields as initial data. Let (Ω,F ,P) be an underlying
probability space such that all random elements appeared in this article are measurable
with respect to it.

Condition A. The initial data of (1) is assumed to be a random field on R
n given by

u0(x) = h(ζ(x)), x ∈ R
n, (8)

where ζ is a mean-square continuous and homogeneous Gaussian random field with mean
zero and variance 1. We suppose that the Gaussian random field ζ has positive covariance
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function R(x), x ∈ Rn, and its spectral measure F (dλ) has the (spectral) density f(λ),
λ ∈ Rn; moreover, h : R → R is a (non-random) function such that

Eh2(ζ(0)) =
∫

R

h2(r)p(r)dr <∞; p(r) =
1√
2π
e−

r2
2 , r ∈ R. (9)

Condition A implies that the initial data u0 is a subordinated Gaussian field, which is
introduced by Dobrushin [13]; see also [2, 5] for more recent discussions. Under Condition
A, by the Bochner-Khintchine theorem, we have the following spectral representation for
the covariance function of the Gaussian field ζ:

R(x) = Cov(ζ(0), ζ(x)) =
∫

Rn

ei<λ,x>f(λ)dλ. (10)

Moreover, by the Karhunen Theorem, ζ has the representation

ζ(x) =
∫

Rn

ei<λ,x>
√
f(λ)W (dλ), x ∈ R

n, (11)

whereW (dλ) is the standard complex-valued Gaussian white noise on the Fourier domain
Rn such that W (Δ1) =W (−Δ1) and EW (Δ1)W (Δ2) = Leb(Δ1 ∩Δ2) for any Δ1,Δ2 ∈
B(Rn). See, for example, the book of Leonenko [22, Theorem 1.1.3] for the above facts.
The function h has the following expansion:

h(r) = C0 +
∞∑

l=1

Cl
Hl(r)√

l!
(12)

in the Hilbert space L2(R, p(r)dr), where

Cl =
∫

R

h(r)
Hl(r)√

l!
p(r)dr, (13)

and {Hl(r), l = 0, 1, 2, . . .} are the Hermite polynomials, that is,

Hl(r) = (−1)le r2
2
dl

drl
e−

r2
2 for l ∈ {0, 1, 2, . . .}.

Accordingly, the Hermite rank of the function h is defined by

m = inf{l ≥ 1 : Cl 
= 0}.
It is well-known that (see, for example, Major [28, Corollary 5.5 and p. 30]):

E[Hl1(ζ(y))Hl2 (ζ(z))] = δl1
l2
l1!Rl1(y − z), y, z ∈ R

n, (14)

(δσ1
σ2

is the Kronecker symbol) and

Hl(ζ(x)) =
∫ ′

Rn×l

ei<x,λ1+···+λl>

[
l∏

k=1

√
f(λk)

]
W (dλ1) . . .W (dλl), (15)

where
∫ ′

means that the integral excludes the diagonal hyperplanes zi = ∓zj , i, j =
1, . . . , l, i 
= j.
We impose two different conditions on the singularity of the spectral density f(λ) at

0, which yield, respectively, the Gaussian and the non-Gaussian scaling-limits.
Condition B. The spectral density function f of the Gaussian random field ζ in

Condition A can be expressed as

f(λ) =
B(λ)
|λ|n−κ

for some κ >
n

m
, (16)

where m is the Hermite rank of the function h, and B(·) ∈ C(Rn) is of suitable decay at
infinity to ensure f ∈ L1(Rn).
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Condition C. The spectral density function f of the Gaussian random field ζ in
Condition A can be expressed as

f(λ) =
B(λ)
|λ|n−κ

for some 0 < κ <
n

m
, (17)

where m is the Hermite rank of the function h, B(·) ∈ C(Rn) is of suitable decay at
infinity to ensure f ∈ L1(Rn), and B(0) > 0.
Note that, in Condition B and C, we do not assume that B(·) is a radial function,

so the field u0 is not necessary to be isotropic. Condition B means that the density f
either is regular at 0, or has a singularity for which the order is less than n(1 − 1/m);
while Condition C means that f has a singularity at 0 for which the order is higher than
n(1− 1/m).
By (10) and the convolution theorem, for each l ∈ N,

Rl(x) =
∫

Rn

ei<λ,x>f∗l(λ)dλ, (18)

where f∗l(λ) is the l-fold convolution of f . Given that f can be expressed as (16) or
(17), the behavior of f∗l, l ∈ N, near the original can be described as follows.

Lemma 1. Suppose that the spectral density function f has the form,

f(λ) =
B(λ)
|λ|n−κ

, κ > 0,

for some non-negative bounded and continuous function B(λ) so that f ∈ L1(Rn). Then,
for any k ≥ 2, there exists a bounded function Bk ∈ C(Rn\{0}) such that the k-fold
convolution f∗k of f can be re-written as

f∗k(λ) =

⎧⎨⎩
Bk(λ)|λ|kκ−n, for kκ < n,
Bk(λ)ln(2 + 1

|λ| ), for kκ = n,

Bk(λ) ∈ C(Rn), for kκ > n.

(19)

Moreover, for any k1 > k2 > n/κ, the inequality supλ∈Rn Bk1(λ) ≤ supλ∈Rn Bk2(λ) holds.

We refer the reader to the proof of Lemma 1 in [27].
To understand the difference between Conditions B and C, in view of Lemma 1,

Condition B implies that the k-fold convolution f∗k, k ≥ m, has no singularity at the
origin λ = 0, which in turn asserts that the spectral density of the random initial data
u0 has no singularity at λ = 0; while Condition C asserts that the initial data u0

has a spectral density which is singular at λ = 0. The situation can be described as,
respectively, the short-range and the long-range dependence of the initial field u0; a
central notion in vast applications, as one may refer to the special volume by Doukhan,
Oppenheim, and Taqqu [15].

3. Main results

The significant difference between Condition B and Condition C, as remarked at the
end of the last section, is employed to obtain the Gaussian and the non-Gaussian scaling-
limits. We will present them in the following two subsections.
In the context henceforth, the notation ⇒ denotes the convergence of random vari-

ables (respectively, random families) in the sense of distribution (respectively, finite-
dimensional distributions).

3.1. Gaussian limits with initial data in (A,B). As mentioned in Section 1, we
will present the large-scale and the small-scale limit theorems, which are comparable to
the central limit theorem for local functionals of random fields with weak dependence in
Breuer and Major [10]. The novel feature is that the mass m > 0 and the fractional-index
α play different roles in the two scales.
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Theorem 1. Let n=1,2 or 3. Consider the mean-square solution u(t,x;u0(·)), t > 0,
x ∈ Rn, of (1) with m > 0. The initial data u0(x) = h(ζ(x)) are supposed to satisfy
Conditions A and B with the Hermite rank m ≥ 1. When T →∞,

T
nβ
4

{
u(T t, T

β
2 x;u0(·))− C0

}
⇒ U(t,x),

where U(t,x), t > 0, x ∈ Rn, is a Gaussian field with the spectral representation

U(t,x) =
∫

Rn

ei<λ,x>σmEβ,1(−tβ α2m1− 2
α |λ|2)W (dλ), σm =

( ∞∑
r=m

f∗r(0)C2
r

) 1
2
, (20)

where W (dλ) is a complex-valued standard Gaussian noise measure on Rn (c.f. (11)).

For the small-scale limit, we need to re-scale the initial data too; thus the notation
u0(ε−

1
α−χ·) imposed on u0 emphasizes that the variable of u0 is under the indicated

dilation factor ε−
1
α−χ.

Theorem 2. Let u(t,x;u0(·)), t > 0, x ∈ Rn, be the mean-square solution of (1) with
m > 0 and 2α < (n ∧ 4). The initial data u0(x) = h(ζ(x)) are supposed to satisfy
Conditions A and B with the Hermite rank m ≥ 1. For any χ > 0, when ε→ 0,

ε−
nχ
2

{
u(ε

1
β t, ε

1
α x;u0(ε−

1
α−χ·))− C0

}
⇒ V (t,x), (21)

where V (t,x), t > 0, x ∈ Rn, is a Gaussian field with the following spectral representa-
tion:

V (t,x) =
∫

Rn

ei<λ,x>σmEβ,1(−tβ |λ|α)W (dλ), σm =
( ∞∑

r=m

f∗r(0)C2
r

) 1
2
, (22)

where W (dλ) is a complex-valued standard Gaussian noise measure on R
n.

3.2. Non-Gaussian limits with initial data in (A,C). As in the above subsection,
we have the large-scale and the small-scale limits; however, the high singularity order
in Condition C assets that our limiting fields are now non-Gaussian. The non-Gaussian
limits of the convolution type can be seen in the pioneering papers of Taqqu [34] and
Dobrushin and Major [14], and Anh and Leonenko [2, 5].

Theorem 3. Let n = 1, 2 or 3. Consider the mean-square solution u(t,x;u0(·)), t > 0,
x ∈ Rn, of (1) with m > 0. The initial data {u0(x) = h(ζ(x)),x ∈ Rn} are supposed to
satisfy Conditions A and C with m ≥ 1.

When T →∞, we have

T
βmκ

4

{
u(T t, T

β
2 x;h(ζ(·))) − C0

}
⇒ Um(t,x), (23)

where Um(t,x) is represented by the following multiple Wiener integrals

Um(t,x)=B
m
2 (0)

Cm√
m!

∫ ′

Rn×m

ei<x,λ1+···+λm>Eβ,1(−tβ α
2 m1− 2

α |λ1 + · · ·+ λm|2)
(|λ1| . . . |λm|)n−κ

2

m∏
l=1

W (dλl).

(24)

Theorem 4. Let u(t,x;u0(·)) be the mean-square solution to (1) with 2α < (n∧4). The
initial data {u0(x) = h(ζ(x)), x ∈ Rn} are supposed to satisfy Conditions A and C with
m ≥ 1. For any fixed parameter χ > 0, when ε→ 0, we have

ε−
mκχ

2

{
u(ε

1
β t, ε

1
α x;h(ζ((ε−

1
α−χ)·)))− C0

}
⇒ Vm(t,x), (25)

where Vm(t,x) is represented by the multiple Wiener integrals

Vm(t,x)=B
m
2 (0)

Cm√
m!

∫ ′

Rn×m

ei<x,λ1+···+λm>Eβ,1(−tβ |λ1 + · · ·+ λm|α)
(|λ1| . . . |λm|)n−κ

2

m∏
l=1

W (dλl). (26)
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4. Proofs of Theorems

The following two-scale property of the heat kernel G is the key to our results. In
comparison with G, the heat kernel corresponding to the fractional-Laplace operator
−(−Δ)α

2 , where α ∈ (0, 2], only has one type of scaling limit. We describe the two-scale
property of G in terms of its Fourier transform Ĝ as follows.

Ĝ(T t, T−
β
2 λ) = Eβ,1

(
T βtβ(m− (m

2
α + T−β|λ|2)α

2 )
)
→ Eβ,1

(
−tβ α

2
m1− 2

α |λ|2
)

(27)

when T →∞; (27) is a consequence of the Taylor’s expansion,

m− (m
2
α + T−β|λ|2)α

2 =m−
(
m+

α

2
(m

2
α )

α
2−1T−β|λ|2 + α

4
(
α

2
− 1)c

α
2−2

T T−2β|λ|4
)

=− α

2
(m

2
α )

α
2−1T−β|λ|2 + α

4
(1 − α

2
)c

α
2−2

T T−2β|λ|4

for some cT ∈ (m
2
α ,m

2
α + T−β|λ|2). In contrast to the large-scale property (27), when

ε→ 0, we have

Ĝ(ε
1
β t, ε−

1
αλ) = Eβ,1

(
εtβm− εtβ(m 2

α + ε−
2
α |λ|2)α

2

)
→ Eβ,1

(−tβ |λ|α) . (28)

We observe that (28) indeed holds no matter whether m is positive or not.

Proofs of Theorems 1 and 2. In the below, we only provide the proof of Theorem 2,
and show why the rescaling of the initial data is needed to obtain the desired limit. The
proof of Theorem 1 is parallel and does not require the rescaling of the initial data. The
method of the proof can be traced back to [10].
Denote

Yε(t,x) = ε−
nχ
2 u(ε

1
β t, ε

1
α x;u0(ε−

1
α−χ·))− C0.

We first apply the Hermite expansion (12) and the property
∫

Rn G(t,x)dx = 1, which is
obtained by substituting λ = 0 into (7), to get

Yε(t,x) =ε−
nχ
2

∞∑
l=m

Cl√
l!

∫
Rn

G(ε
1
β t, ε

1
α x− y)Hl(ζ(ε−

1
α−χy))dy.

For any M ∈ N and any set of real numbers {a1, a2, . . . , aM}, denote

ξε =
M∑

j=1

ajYε(tj ,xj), (29)

where {t1, . . . , tM} ⊂ R+ and {x1, . . . ,xM} ⊂ Rn are arbitrary. In order to apply the
Method of Moments to prove the statement of Theorem 2, we need to verify

lim
ε→0

Eξp
ε =

⎧⎪⎨⎪⎩
0 if p = 2ν + 1,

(p− 1)!!

{
E

[( M∑
j=1

ajV (tj ,xj)
)2]}ν

if p = 2ν,
(30)

where V (t,x) is defined in (22). We remark that calculating the higher (i.e. p > 2)
moments is needed since ξε is not Gaussian, though the wanted limit is Gaussian. We
split ξε into two parts:

ξε = ξε,≤N + ξε,>N , (31)

where

ξε,>N =
M∑

j=1

ajε
−nχ

2

∞∑
l=N+1

Cl√
l!

∫
Rn

G(ε
1
β tj , ε

1
α xj − y)Hl(ζ(ε−

1
α−χy))dy. (32)
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We first prove that E[ξ2ε,>N ] → 0 whenever N is chosen large enough. Observe that for
any N ≥ m− 1, by (14),

E(ξε,>N )2 =E

[( M∑
j=1

ajε
−nχ

2

∞∑
l=N+1

Cl√
l!

∫
Rn

G(ε
1
β tj , ε

1
α xj − y)Hl(ζ(ε−

1
α−χy))dy

)2]

=
M∑

j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
R2n

G(ε
1
β tj1 , ε

1
α xj1 − y1)G(ε

1
β tj2 , ε

1
α xj2 − y2)

×Rl(ε−
1
α−χ(y1 − y2)))dy1dy2. (33)

By the spectral representation (18) for the k-th power of the covariance function R(·),
(33) can be rewritten as

E(ξε,>N )2 =
M∑

j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
R2n

G(ε
1
β tj1 , ε

1
α xj1 − y1)G(ε

1
β tj2 , ε

1
α xj2 − y2)

×
∫

Rn

ei<ε−
1
α
−χ(y1−y2),λ>f∗l(λ)dλdy1dy2.

Since∫
Rn

ei<ε−
1
α
−χy,λ>G(ε

1
β t, ε

1
α x− y)dy = ei<ε−χλ,x>Eβ,1

(
−εtβθ(ε 1

α−χλ)
)
, (34)

E(ξε,>N )2 =
M∑

j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
Rn

ei〈ε−χ(xj1−xj2 ),λ〉f∗l(λ)

× Eβ,1(−εtβj1θ(ε−
1
α−χλ))Eβ,1(−εtβj2θ(ε−

1
α−χλ))dλ

=
M∑

j1,j2=1

aj1aj2

∞∑
l=N+1

C2
l

∫
Rn

ei〈xj1−xj2 ,λ〉f∗l(εχλ)Eβ,1(−εtβj1θ(ε−
1
αλ))

× Eβ,1(−εtβj2θ(ε−
1
αλ))dλ.

Because Eβ,1(−tβj1 | · |α)Eβ,1(−tβj2 | · |α) ∈ L1(Rn) when 2α > n and f∗l(·), l ≥ m, are
continuous and uniformly bounded on Rn (Condition B and Lemma 1 imply that

f∗l(λ)=
∫

Rn

f∗m(λ− η)f∗(l−m)(η)dη ≤‖Bm‖∞
∫

Rn

f∗(l−m)(η)dη =‖Bm‖∞ ∀l > m),

we have

E(ξε,>N )2 →
M∑

j1,j2=1

aj1aj2

∞∑
l=N+1

C2
l f
∗l(0)

∫
Rn

ei<λ,xj1−xj2>Eβ,1(−tβj1 |λ|α)Eβ,1(−tβj2 |λ|α)dλ

(35)

when ε→ 0. From (35), for any δ > 0, there exists N0 ∈ N and ε0 > 0 such that
E(ξε,>N )2 < δ, for any N ≥ N0, ε < ε0, (36)

which implies that it suffices to prove a truncated version of (30) as follows:

lim
ε→0

Eξp
ε,≤N0

=

⎧⎪⎨⎪⎩
0 if p = 2ν + 1,

(p− 1)!!

{
E

[( M∑
j=1

ajVm,N0(tj ,xj)
)2]}ν

if p = 2ν,
(37)

where

Vm,N0(t,x) =
∫

Rn

ei<λ,x>σm,N0Eβ,1

(−tβ |λ|α)W (dλ), σm,N0 =

[
N0∑

r=m

f∗r(0)C2
r

] 1
2

.

(38)



RELATIVISTIC DIFFUSION EQUATIONS 109

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1) (4,1)

(3,2)

(3,3)

(4,2)

(4,3)

(3,4) (4,4)
1�

2�

(a) Regular diagram Γ (�B(1) = 3, �B(2) =
0, �B(3) = 4, �B(4) = 0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1) (4,1)

(3,2)

(3,3)

(4,2)

(4,3)

(3,4) (4,4)

(b) Non-regular diagram Γ (�B(1) = 3,
�B(2) = 1, �B(3) = 3, �B(4) = 0)

Figure 2. Illustration of complete diagrams of order (3, 3, 4, 4)

By (31) for the definition of ξε,≤N0(= ξε − ξε,>N0) and our rescaling of the initial data,

E(ξε,≤N0)
p =ε−

pnχ
2

M∑
j1,...,jp=1

N0∑
l1,...,lp=m

[ p∏
i=1

aji

Cli√
li!

]

×
∫

Rnp

[ p∏
i=1

G(ε
1
β tji , ε

1
α xji − yi)

][
E

p∏
i=1

Hli(ζ(ε
− 1

α−χyi))
]
dy1 . . . dyp

=ε−
pnχ
2

M∑
j1,...,jp=1

N0∑
l1,...,lp=m

[ p∏
i=1

aji

Cli√
li!

]

×
∫

Rnp

[ p∏
i=1

ε
n
αG(ε

1
β tji , ε

1
α xji − ε

1
α yi)
][

E

p∏
i=1

Hli(ζ(ε
−χyi))

]
dy1 . . . dyp. (39)

To analyze E(ξε,≤N0)p, we employ the diagram method (see, [10] or [17, p.72]). A
graph Γ with l1 + · · ·+ lp vertices is called a (complete) diagram of order (l1, . . . , lp) if:

(a) the set of vertices V of the graph Γ is of the form V =
⋃p

j=1Wj , where Wj =
{(j, l) : 1 ≤ l ≤ lj} is the j-th level of the graph Γ;

(b) each vertex is of degree 1, that is, each vertex is just an endpoint of an edge;
(c) if ((j1, l1), (j2, l2)) ∈ Γ then j1 
= j2, that is, the edges of the graph Γ connect

only different levels.

Let T = T(l1, . . . , lp) be a set of (complete) diagrams of order (l1, . . . , lp). Denote by
E(Γ) the set of edges of the graph Γ ∈ T. For the edge e = ((j1, l

′
1), (j2, l

′
2)) ∈ E(Γ) with

j1 < j2, 1 ≤ l
′
1 ≤ l1 and 1 ≤ l

′
2 ≤ l2, we set d1(e) = j1 and d2(e) = j2. We call a diagram

Γ to be regular if its levels can be split into pairs in such a manner that no edge connects
the levels belonging to different pairs (see Figure 2(a)). Denote by T∗ = T∗(l1, . . . , lp)
the set of all regular diagrams in T. If Γ ∈ T∗ is a regular diagram, then it implies
that p is even and Γ can be divided into p/2 sub-diagrams (denoted by Γ1, . . . ,Γp/2),
which can not be separated again; in this case, we naturally define d1(Γi) ≡ d1(e) and
d2(Γi) ≡ d2(e) for any e ∈ E(Γi), i = 1, . . . , ν = p/2. We denote �E(Γ) (resp. �E(Γj))
the number of edges belonging to the specific diagram Γ (resp. the sub-diagram Γj).
Based on the notations above and let

Dp = {(J, L) : J = (j1, . . . , jp), 1 ≤ ji ≤M, L = (l1, . . . , lp),m ≤ li ≤ N0, i = 1, . . . , p},
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(39) can be rewritten as

E(ξε,≤N0)
p =

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε) +

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗
FΓ(J, L, ε), (40)

where

K(J, L) =
p∏

i=1

aji

Cli√
li!
, (41)

FΓ(J, L, ε) = ε−
pnχ
2

∫
Rnp

[ p∏
i=1

ε
n
αG(ε

1
β tji , ε

1
α (xji − yi))

][ ∏
e∈E(Γ)

R(ε−χ(yd1(e) − yd2(e)))
]

dy1 . . . dyp.

(37) follows by (40) if we can verify the following two things:⎧⎪⎪⎨⎪⎪⎩
(1) lim

ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε) = (p− 1)!!

{
E

[( M∑
j=1

ajVm,N0(tj ,xj)
)2]}p/2

,

(2) lim
ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗
FΓ(J, L, ε) = 0.

Proof of (1): If Γ is a regular diagram in T∗(l1, . . . , lp), then Γ has an unique de-
composition Γ = (Γ1, . . . ,Γν), where ν = p/2 ∈ N and Γ1, . . . ,Γν cannot be further
decomposed. Accordingly, FΓ(J, L, ε) can be rewritten as the following ν = p/2 products

FΓ(J, L, ε)

=ε−
pnχ
2

ν∏
i=1

∫
R2n

ε
n
αG(ε

1
β td1(Γi), ε

1
α (xd1(Γi) − y))ε

n
αG(ε

1
β td2(Γi), ε

1
α (xd2(Γi) − y

′
)) (42)

×R�E(Γi)(ε−χ(y − y
′
))dydy

′
.

By

R�E(Γi)(ε−χ(y − y
′
)) = εnχ

∫
Rn

ei<y−y
′
,λ>f∗�E(Γi)(εχλ)dλ, i = 1, . . . , ν,

and∫
Rn

ei<y,λ>ε
n
αG(ε

1
β (td1(Γi), ε

1
α (xd1(Γi) − y))dy = ei<λ,xd1(Γi)>Eβ,1

(
−εtβd1(Γi)

θ(ε
1
αλ)
)
,

(42) can be rewritten as

FΓ(J, L, ε) =
ν∏

i=1

[∫
R2n

ei〈λ,xd1(Γi)−xd2(Γi)〉Eβ,1

(
−εtβd1(Γi)

θ(ε
1
αλ)
)

× Eβ,1

(
−εtβd2(Γi)

θ(ε
1
αλ)
)
f∗�E(Γi)(εχλ) dλ

]
.

(43)

Applying the small-scale property illustrated in (28), (43) has the following limit

lim
ε→0

FΓ(J, L, ε)

=
ν∏

i=1

f∗�E(Γi)(0)
∫

Rn

ei<λ,xd1(Γi)−xd2(Γi)>Eβ,1(−tβd1(Γi)
|λ|α))Eβ,1(−tβd2(Γi)

|λ|α))dλ, (44)

where f∗�E(Γi)(0) < ∞ follows from Lemma 1 and �E(Γi) > n/κ under Condition B.
Meanwhile, because Γ is a regular diagram in T(L), K(J, L) can be rewritten as follows:

K(J, L) =
ν∏

i=1

ad1(Γi)ad2(Γi)

C2
�E(Γi)

�E(Γi)!
. (45)
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Therefore, by (44) and (45),

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε)

=
∑

(J,L)∈D2ν

∑
Γ∈T∗

[ ν∏
i=1

ad1(Γi)ad2(Γi)

∫
Rn

ei<λ,xd1(Γi)−xd2(Γi)>

× Eβ,1(−tβd1(Γi)
|λ|α)Eβ,1(−tβd2(Γi)

|λ|α)dλ
][ ν∏

i=1

f∗�E(Γi)(0)
C2

�E(Γi)

�E(Γi)!

]
. (46)

Because all components in the first bracket in (46) are independent to the index set L
and the summation

∑
Γ∈T∗ depends only on

∑
L, by changing the order of summation,

(46) can be rewritten as follows:

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε)

=
∑
L

∑
Γ∈T∗

∑
J

[ ν∏
i=1

ad1(Γi)ad2(Γi)

∫
Rn

ei〈λ,xd1(Γi)−xd2(Γi)〉Eβ,1(−tβd1(Γi)
|λ|α)

× Eβ,1(−tβd2(Γi)
|λ|α) dλ

]
×
[ ν∏

i=1

f∗�E(Γi)(0)
C2

�E(Γi)

�E(Γi)!

]

=
[ M∑

j,j′=1

ajaj′

∫
Rn

e
i〈λ,xj−x

j
′ 〉
Eβ,1(−tβj |λ|α)Eβ,1(−tβj′ |λ|α) dλ

]ν

×
∑
L

∑
Γ∈T∗

[ ν∏
i=1

f∗�E(Γi)(0)
C2

�E(Γi)

�E(Γi)!

]
.

(47)

To handle the summation
∑

L

∑
Γ∈T∗ [. . . ] in (47), we note that

∏ν
i=1 f

∗�E(Γi)(0)
C2

�E(Γi)

�E(Γi)!

only depends on {�E(Γi), i = 1, . . . , ν}, not on the internal structures of sub-diagrams
Γi, i = 1, . . . , ν. Let s be the number of different integers r1, . . . , rs in {l1, . . . , l2ν} with
m ≤ r1 < · · · < rs ≤ N0, where 1 ≤ s ≤ ν. It implies that the set {l1, . . . , l2ν} can
be split into s subsets Q1, . . . , Qs and all elements within Qi have the common value ri,
i = 1, . . . , s. For the number of pairs within each subset Qi, we denote it by qi, which
satisfies qi ≥ 1, i = 1, . . . , s, and q1 + · · ·+ qs = ν. Using the notation introduced above,∑
L

∑
Γ∈T∗

[. . . ] can be rewritten as follows:

∑
L

∑
Γ∈T∗

[ ν∏
i=1

f∗�E(Γi)(0)
C2

�E(Γi)

�E(Γi)!

]
=
∑

1≤s≤ν

s!
∑

m≤r1<···<rs=N0

∑
q1+···+qs=ν

(2ν)!
2νq1! . . . qs!

(r1!)q1 . . . (rs!)qs

[ s∏
i=1

(
f∗ri(0)

C2
ri

ri!
)qi
]

=(2ν − 1)!!
∑

1≤s≤ν

s!
∑

m≤r1<···<rs=N0

∑
q1+···+qs=ν

ν!
q1! . . . qs!

[ s∏
i=1

(
f∗ri(0)C2

ri

)qi
]

=(2ν − 1)!!
[ N0∑

r=m

f∗r(0)C2
r

]ν
. (48)
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Substituting (48) into (47) yields

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε)

= (2ν − 1)!!
[ M∑

j,j′=1

ajaj′

∫
Rn

e
i〈λ,xj−x

j
′ 〉
Eβ,1(−tβj |λ|α)Eβ,1(−tβj′ |λ|α) dλ

]ν

×
[ N0∑

r=m

f∗r(0)C2
r

]ν
.

(49)

By the orthogonal property of the Gaussian white noise measure W (see (11)), the right
hand side of (49) is equal to

(2ν − 1)!!
[
E

( M∑
j=1

aj

∫
Rn

ei<λ,xj>σm,N0Eβ,1(−tβj |λ|α)W (dλ)
)2]ν

(50)

with σm,N0 = (
N0∑

r=m
f∗r(0)C2

r )
1
2 . The proof of (1) is complete.

Proof of (2): lim
ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗
FΓ(J, L, ε) = 0.

By (37), the number of elements in the summation of
∑

(J,L)∈Dp

is finite, thus it suffices

to show that lim
ε→0

FΓ(J, L, ε) = 0 for arbitrary p, i.e., for each Γ ∈ T(l1, . . . , lp)\T∗,

ε−
pnχ
2

∫
Rnp

[ p∏
i=1

ε
n
αG(ε

1
β tji , ε

1
α (xji − yi))

][ ∏
e∈E(Γ)

R(ε−χ(yd1(e) − yd2(e)))
]
dy1 . . . dyp

(51)

→ 0 when ε → 0. Without loss of generality, we prove (51) for tji = 1 and xji = 0,
i = 1, . . . , p, and also just consider the case l1 ≤ l2 ≤ · · · ≤ lp. Let

Aj,j′ =
{
e ∈ E(Γ) | d1(e) = j, d2(e) = j

′}
, B(i) = ∪j′>iAi,j′ , (52)

and define �Aj,j′ and �B(i) to be the numbers of edges in Aj,j′ and B(i) (see Figure 2),
respectively, where 1 ≤ i, j < j

′ ≤ p. Based on the notation in (52),

FΓ(J, L, ε) = ε−
pnχ
2

∫
Rnp

[ p∏
i=1

ε
n
αG(ε

1
β , ε

1
α yi)
]

×
[ ∏

i;B(i) 	=φ

∏
e∈B(i)

R(ε−χ(yi − yd2(e)))
]
dy1 . . . dyp

≤ ε−
pnχ
2

∫
Rnp

[ p∏
i=1

ε
n
αG(ε

1
β , ε

1
α yi)
]

×
[ ∏

i;B(i) 	=φ

∑
e∈B(i)

1
�B(i)

R�B(i)(ε−χ(yi − yd2(e)))
]
dy1 . . . dyp

≤ ε−
pnχ
2

∫
Rnp

[ p∏
i=1

ε
n
αG(ε

1
β , ε

1
α yi)
]

×
[ ∏

i;B(i) 	=φ

∑
j;Ai,j 	=φ

1
�B(i)

R�B(i)(ε−χ(yi − yj))
]
dy1 . . . dyp,

(53)

where the first inequality follows from the assumption R(·) ≥ 0 and the second inequality
follows from �B(i) ≤ �Ai,j . Henceforth, we denote Gε(yi) = ε

n
αG(ε

1
β , ε

1
α yi) for all yi
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in (53) and Ĝε to be the Fourier transform of Gε. To prove (53) → 0, by the spectral
representation, it suffices to show that

ε−
pnχ
2

∫
Rnp

[ p∏
i=1

Gε(yi)
][ ∏

i;B(i) 	=φ

∫
Rn

ei<yi−yj(i),λi>f∗�B(i)(εχλi)εnχdλi

]
dy1 . . . dyp (54)

converges to zero when ε → 0 for each i ∈ {1, . . . , p − 1} with B(i) 
= φ and any
j(i) ∈ {j′ |Ai,j′ 
= φ}.
We prove lim

ε→0
(54) = 0 for general non-regular diagrams as follows. By changing the

order of integrals,

(54) =ε−
pnχ
2

∫
Rn

. . .

∫
Rn

D(λ; ε)
∏

i;B(i) 	=φ

f∗�B(i)(εχλi)εnχdλi, (55)

where D(λ; ε) =
∫

Rnp

[ p∏
i=1

Gε(yi)
][ ∏

i;B(i) 	=φ

ei<yi−yj(i),λi>
]
dy1 . . . dyp. When �B(i) < li,

by Lemma 1, we have

f∗�B(i)(λ) = C�B(i)(λ)|λ|�B(i) n
li
−n
, (56)

where C�B(i)(λ) = B�B(i)(λ)|λ|�B(i)(κ− n
li

) and lim
|λ|→0

C�B(i)(λ) = 0 because κ > n/m ≥
n/li. When �B(i) ≥ li, f∗�B(i) ∈ C(Rn). To summarize, we have

f∗�B(i)(λ) ≤
{

O(1) if �B(i) = li,

o(|λ|n( �B(i)
li
−1)) if 1 < �B(i) < li

(57)

when |λ| → 0. Thus,

(54) ≤ ε−
pnχ
2 o(εχn(

� �B(i)
li

))Qε, (58)

where

Qε =
∫

Rn

. . .

∫
Rn

D(λ; ε)
∏

i;B(i) 	=φ

|λi|n( �B(i)
li
−1)

dλi,

which converges to a finite number when ε → 0 and α > n/2. Finally, the convergence
of the right hand side of (58) to zero follows by the following inequality ([10, (2.20)])

p∑
i=1

�B(i)
li

≥ p

2
.

The proof of (2) is complete. �

Proof of Theorem 3.
By the solution form (6) and

∫
Rn G(t,x)dx = 1,

T
βmκ

4

{
u(T t, T

β
2 x;h(ζ(·))) − C0

}
=T

βmκ
4

{∫
Rn

G(T t, T
β
2 x− y)

[
C0 +

∞∑
k=m

Ck
Hk(ζ(y))√

k!

]
dy − C0

}
=

∞∑
k=m

T
βmκ

4
Ck√
k!

∫
Rn

G(T t, T
β
2 x− y)Hk(ζ(y))dy =:

∞∑
k=m

uk,T (t,x). (59)

By the Slutsky argument [22, p. 6.], Theorem 3 will be proved if we can show that⎧⎨⎩
(1) um,T (t,x)⇒ Um(t,x),

(2)
∞∑

k=m+1

uk,T (t,x)→ 0 in probability (60)
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when T →∞.
Proof of (1): Replacing Hm(ζ(y)) in the expression of um,T (t,x) with its Itô-Wiener
expansion (15) and using the Fourier transform Ĝ(t, ·) of G(t, ·) in (7), we have

um,T (t,x)

=T
βmκ

4
Cm√
m!

∫
Rn

G(T t, T
β
2 x− y)

{∫ ′

Rn×m

ei<y,λ1+···+λm>
m∏

σ=1

√
f(λσ)W (dλσ)

}
dy

=T
βmκ

4
Cm√
m!

∫ ′

Rn×m

ei<T
β
2 x,λ1+···+λm>Ĝ(T t, λ1 + · · ·+ λm)

m∏
σ=1

√
f(λσ)W (dλσ). (61)

By the definition about
∫ ′

Rn×m in (15) and the self-similarity property W (T−
β
2 dλ) d=

T−
nβ
4 W (dλ), um,T has the same finite dimensional distributions as ũm,T , where

ũm,T (t,x) =
Cm√
m!
T

βm(κ−n)
4

∫ ′

Rn×m

ei<x,λ1+···+λm>Ĝ(T t, T
β
2 (λ1 + · · ·+ λm))

×
m∏

σ=1

√
f(T−

β
2 λσ)W (dλσ). (62)

From the isometry property of the multiple Wiener integrals and the integral represen-
tation of the limiting field Um(t,x) in (24),

E|ũm,T (t,x) − Um(t,x)|2

=C2
m

∫
Rnm

∣∣∣T βm(κ−n)
4 Ĝ(T t, T−

β
2 (λ1 + · · ·+ λm))

m∏
σ=1

√
f(T−

β
2 λσ)

−B(0)m
2
Eβ,1(−tβ α

2 m1− 2
α |λ1 + · · ·+ λm|2)

(|λ1| . . . |λm|)n−κ
2

∣∣∣2 m∏
σ=1

dλσ. (63)

Condition C and the large-scale property (27) allow us to apply the dominated conver-
gence theorem to show that (63) will converge to zero when T → ∞. We note that the
convergence in (27) can be shown to be monotone decreasing when T ↑ ∞ for each t > 0
and λ ∈ Rn. Thus, we get

lim
T→∞

E|ũm,T (t,x) − Um(t,x)|2 = 0. (64)

To summarize, we have proven that um,T
d= ũm,T and ũm,T (t,x) → Um(t,x) in

probability when T →∞. Therefore, the claim (1) follows by the Slutsky argument and
the Cramer-Wold theorem.
Proof of (2): By the orthogonal property (14) and (18), we have

E
[
(

∞∑
k=m+1

uk,T (t,x))2
]

=T
βmκ

2

∞∑
k=m+1

C2
k

∫
Rn

∫
Rn

G(T t, T
β
2 x− y)G(T t, T

β
2 x− y

′
)Rk(y − y

′
)dy dy

′

=T
βmκ

2

∞∑
k=m+1

C2
k

∫
Rn

(Ĝ(T t, λ))2f∗k(λ)dλ (by (18))

=T
β(mκ−n)

2

( k∗∑
k=m+1

+
∞∑

k=k∗+1

)
C2

k

∫
Rn

(Ĝ(T t, T−
β
2 λ))2f∗k(T−

β
2 λ)dλ =: (I) + (II), (65)
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where k∗ = max{k ∈ N | k ≥ m+ 1, kκ ≤ n}.
For the case k∗κ < n, by Lemma 1 and (27),

lim
T→∞

(I) = lim
T→∞

T
β(mκ−n)

2

k∗∑
k=m+1

C2
k

∫
Rn

(Ĝ(T t, T−
β
2 λ))2Bk(T−

β
2 λ)|T−β

2 λ|kκ−ndλ

≤ lim
T→∞

k∗∑
k=m+1

T
β(mκ−kκ)

2 C2
k ‖Bk‖∞

∫
Rn

[
Eβ,1(−tβ α2m1− 2

α |λ|2)]2|λ|kκ−ndλ

≤ lim
T→∞

T−
βκ
2

k∗∑
k=m+1

C2
k ‖Bk‖∞

∫
Rn

[
Eβ,1(−tβ α2m1− 2

α |λ|2)]2|λ|kκ−ndλ = 0.

For the case k∗κ = n, we still have lim
T→∞

(I) = 0 because

lim
T→∞

T
β(mκ−n)

2 C2
k∗

∫
Rn

(Ĝ(T t, T−
β
2 λ))2Bk∗(T−

β
2 λ)ln(2 + T

β
2 |λ|−1)dλ = 0.

On the other hand, for any k > k∗ + 1, by Lemma 1, we have ‖f∗k‖∞≤‖f∗(k∗+1)‖∞, so

lim
T→∞

(II) ≤ lim
T→∞

T
β(mκ−n)

2

∞∑
k=k∗+1

C2
k ‖f∗(k

∗+1)‖∞
∫

Rn

(Ĝ(T t, T−
β
2 λ))2dλ = 0.

Therefore, limT→∞ E
[
(
∑∞

k=m+1 uk,T (t,x))2
]
= 0 and the claim (2) follows by the Markov

inequality. �
Proof of Theorem 4.
The following proof is a hybrid of the proofs of Theorems 2 and 3, we give a full presen-
tation mainly to see how the rescaling of the initial data is proceeded. By the Hermite
expansion and the solution form (6), we can rewrite

uε(t,x) =
∞∑

k=m

ε−
χmκ

2
Ck√
k!

∫
Rn

G(ε
1
β t,y)Hk(ζ(ε−

1
α−χ(ε

1
α x− y)))dy =:

∞∑
k=m

Iε
k(t,x). (66)

Theorem 4 follows by

⎧⎨⎩
(1) Iε

m(t,x)⇒ Vm(t,x),

(2)
∞∑

k=m+1

Iε
k(t,x)→ 0 in probability (67)

when ε→ 0.
Proof of (1): By substituting the Itô-Wiener expansion (15) for the random fieldHm(ζ(·))
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into Iε
m(t,x) and exchanging the order of integration

Iε
m(t,x) =

Cm√
m!
ε−

χmκ
2

∫
Rn

G(ε
1
β t,y)Hm(ζ(ε−

1
α−χ(ε

1
α x− y)))dy

=
Cm√
m!
ε−

χmκ
2

∫
Rn

G(ε
1
β t,y)

∫ ′

Rn×m

ei〈ε− 1
α
−χ(ε

1
α x−y),λ1+···+λm〉

×
m∏

σ=1

√
f(λσ)W (dλσ)dy

=
Cm√
m!
ε−

χmκ
2

∫ ′

Rn×m

ei〈ε−χx,λ1+···+λm〉Ĝ(ε
1
β t, ε−

1
α−χ(λ1 + · · ·+ λm))

×
m∏

σ=1

√
f(λσ)W (dλσ)dy

d=
Cm√
m!
ε

χm(n−κ)
2

∫ ′

Rn×m

ei〈x,λ
′
1+···+λ

′
m〉Ĝ(ε

1
β t, ε−

1
α (λ

′
1 + · · ·+ λ

′
m))

×
m∏

σ=1

√
f(εχλ′σ)W (dλ

′
σ)

=: Ĩε
m(t,x),

(68)

where the last equality follows by the self-similarity property W (εχdλ) d= ε
nχ
2 W (dλ).

Now, applying the isometry property of the multiple Wiener integrals to the difference
of Ĩε

m(t,x) and the random field Vm(t,x) in (26), we have

E|Ĩε
m(t,x)− Vm(t,x)|2

=C2
m

∫
Rnm

∣∣εχm(n−κ)
2 Ĝ(εt

1
β , ε−

1
α (λ1 + · · ·+ λm))

m∏
σ=1

√
f(εχλσ)

−B(0)m
2 Eβ,1(−tβ |λ1 + · · ·+ λm|α)(|λ1| . . . |λm|)κ−n

2
∣∣2 m∏

σ=1

dλσ → 0 (69)

when ε→ 0, by Condition C and (28).
By the Markov inequality, (69) implies Ĩε

m(t,x) → Vm(t,x) in probability. Because
Iε
m(t,x)

d= Ĩε
m(t,x), the claim (1) follows by the Cramer-Wold argument.

Proof of (2): From (66), by the orthogonal property (14),

E

( ∞∑
k=m+1

Iε
k(t,x)

)2

=
∞∑

k=m+1

E(Iε
k(t,x))

2

=
∞∑

k=m+1

ε−χmκC2
k

∫
Rn

∫
Rn

G(ε
1
β t,y)G(ε

1
β t,y

′
)Rk(ε−

1
α−χ(y − y

′
))dydy

′

=
∞∑

k=m+1

ε−χmκC2
k

∫
Rn

(Ĝ(ε
1
β t, ε−

1
α−χλ))2f∗k(λ)dλ

=
( k∗∑

k=m+1

+
∞∑

k=k∗+1

)
εχ(n−mκ)C2

k

∫
Rn

(Ĝ(ε
1
β t, ε−

1
αλ))2f∗k(εχλ)dλ =: (I) + (II),
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where k∗ = max{k ∈ N | k ≥ m+ 1, kκ ≤ n}.
For the case k∗κ < n, by Lemma 1,

lim
ε→0

(I) =lim
ε→0

k∗∑
k=m+1

εχ(n−mκ)C2
k

∫
Rn

(Ĝ(ε
1
β t, ε−

1
αλ))2Bk(εχλ)|εχλ|kκ−ndλ

≤ lim
ε→0

k∗∑
k=m+1

εχκ(k−m)C2
k ‖Bk‖∞

∫
Rn

[
Eβ,1(−tβ|λ|α)

]2|λ|kκ−ndλ = 0.

For the case k∗κ = n, we still have lim
ε→0

(I) = 0 because

lim
ε→0

εχ(n−mκ)C2
k∗

∫
Rn

(Ĝ(ε
1
β t, ε−

1
αλ))2Bk∗(εχλ)ln(2 + |εχλ|−1)dλ = 0.

On the other hand, by the assumption κ < n/m in Condition C and Lemma 1, for any
k > k∗ + 1, we have ‖f∗k‖∞≤‖f∗(k∗+1)‖∞, so

lim
ε→0

(II) ≤ lim
ε→0

∞∑
k=k∗+1

εχ(n−mκ)C2
k ‖f∗(k

∗+1)‖∞
∫

Rn

[
Eβ,1(−tβ |λ|α)

]2
dλ = 0.

Hence, limε→0 E
[
(
∑∞

k=m+1 I
ε
k(t,x))

2
]
= 0 and the claim (2) follows by the Markov in-

equality. �
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Birkhäuser, 1993.

13. R. L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann.
Probab. 7 (1979), 1-28.

14. R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian
fields, Z. Wahrsch. verw. Geb. 50 (1979), 1-28.



118 G.-R. LIU AND N.-R. SHIEH

15. P. Doukhan, G. Oppenheim, and M.S. Taqqu, Theory and Applications of Long-Range Depen-
dence. Birkhäuser 2003.
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