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NECESSARY AND SUFFICIENT CONDITIONS FOR
CONVERGENCE OF FIRST-RARE-EVENT-TIME PROCESSES FOR

PERTURBED SEMI-MARKOV PROCESSES
UDC 519.21

D. S. SILVESTROV

Abstract. Necessary and sufficient conditions for convergence in distribution of first-rare-event times

and convergence in Skorokhod J-topology of first-rare-event-time processes for perturbed semi-Markov
processes with finite phase space are obtained.

1. Introduction

Random functionals similar with first-rare-event times are known under different
names such as first hitting times, first passage times, absorption times, in theoretical
studies, and as lifetimes, first failure times, extinction times, etc., in applications. Limit
theorems for such functionals for Markov-type processes have been studied by many
researchers.

The main features for the most previous results is that they give sufficient conditions
of convergence for such functionals. As a rule, those conditions involve assumptions,
which imply convergence in distribution for sums of i.i.d. random variables distributed
as inter-jump times to some infinitely divisible laws plus some ergodicity condition for
the imbedded Markov chain plus condition of vanishing probabilities of occurring a rare
event during one transition step for the corresponding processes.

There is a huge bibliography of works related to limit theorems for first-rare-event
times and related functionals. Here, I would like to refer to the originating paper by
Korolyuk (1969), where convergence in distribution for hitting times to an exponentially
distributed random variable has been proved for linearly perturbed finite Markov chains
and, then, to mention books, which contain results of further theoretical and applied
studies in the area. These are, Silvestrov (1974, 1980), Korolyuk and Turbin (1976,
1978), Keilson (1979), Anisimov (1988, 2008), Korolyuk and Swishchuk (1992), Kar-
tashov (1996), Kalashnikov (1997), Korolyuk V.S. and Korolyuk V.V. (1999), Asmussen
(2003), Koroliuk and Limnios (2005), Gyllenberg and Silvestrov (2008), and Asmussen
and Albrecher (2010). I also refer to the books by Silvestrov (2004) and Gyllenberg and
Silvestrov (2008) and papers by Kovalenko (1994) and Silvestrov D. and Silvestrov S.
(2016), where one can find comprehensive bibliographies of works in the area.

In the context of necessary and sufficient conditions of convergence in distribution for
first-rare-event-time type functionals, we would like to point out the paper by Kovalenko
(1965) and the books by Gnedenko and Korolev (1996) and Bening and Korolev (2002),
where one can find some related results for geometric sums of random variables, and the
papers by Korolyuk, D. and Silvestrov (1983, 1984) and Silvestrov and Velikii (1988),

2000 Mathematics Subject Classification. Primary 60J10, 60J22, 60J27, 60K15; Secondary 65C40.
Key words and phrases. Semi-Markov process, First-rare-event time, First-rare-event-time process,

Convergence in distribution, Convergence in Skorokhod J-topology, Necessary and sufficient conditions.

119



120 D. S. SILVESTROV

where one can find some related results for first-rare-event-time type functionals defined
on Markov chains and semi-Markov processes with arbitrary phase space.

The results of the present paper relate to the model of perturbed semi-Markov processes
with a finite phase space. Instead of conditions based on “individual” distributions of
inter-jump times, more general and weaker conditions imposed on distributions sojourn
times averaged by stationary distributions of the corresponding imbedded Markov chains
are used. Moreover, it is shown that these conditions are not only sufficient but also nec-
essary conditions for convergence in distribution of first-rare-event times and convergence
in Skorokhod J-topology of first-rare-event-time processes. These results give some kind
of a “final solution” for limit theorems for first-rare-event-time processes for perturbed
semi-Markov process with a finite phase space.

The paper generalize and improve results concerned necessary and sufficient condi-
tions of convergence in distribution for first-rare-event times for semi-Markov processes
obtained in papers by Silvestrov and Drozdenko (2006) and Drozdenko (2007, 2009).

First, a weaker model ergodic condition is imposed on the corresponding embedded
Markov chains. Second, the results of the above papers about convergence in distribu-
tion for first-rare-event times are extended, in Theorem 1, to the form of corresponding
functional limit theorem for first-rare-event-time processes, with necessary and sufficient
conditions of convergence. Third, new proofs, based on general limit theorems for ran-
domly stopped stochastic processes, developed and extensively presented in Silvestrov
(2004), are given, instead of more traditional proofs based on cyclic representations of
first-rare-event times if the form of geometric-type random sums. This actually made it
possible to get more advanced results in the form of functional limit theorem. I would like
also to mention Lemmas 1 - 8, which give some useful supplementary information about
asymptotic properties of first-rare-event-time processes and step-sum reward processes.

I would like to conclude the introduction with the remark that the present paper is
a shorten version of the research report by Silvestrov (2016), where one can find some
additional details of proofs, comments and references.

2. Main results

Let (ηε,n, κε,n, ζε,n), n = 0, 1, . . . be, for every ε ∈ (0, ε0], a Markov renewal process,
i.e., a homogenous Markov chain with a phase space Z = {1, 2, . . . ,m} × [0,∞)× {0, 1},
an initial distribution q̄ε = 〈qε,i = P{ηε,0 = i, κε,0 = 0, ζε,0 = 0} = P{ηε,0 = i}, i ∈ X〉
and transition probabilities,

P{ηε,n+1 = j, κε,n+1 ≤ t, ζε,n+1 = j/ηε,n = i, ξε,n = s, ζε,n = ı}
= P{ηε,n+1 = j, κε,n+1 ≤ t, ζε,n+1 = j/ηε,n = i}
= Qε,ij(t, j), i, j ∈ X, s, t ≥ 0, ı, j = 0, 1.

(1)

As it is known, the first component ηε,n of the above Markov renewal process is
also a homogenous Markov chain, with the phase space X = {1, 2, . . . ,m}, the initial
distribution q̄ε = 〈qε,i = P{ηε,0 = i}, i ∈ X〉 and the transition probabilities, pε,ij =
Qε,ij(+∞, 0) +Qε,ij(+∞, 1), i, j ∈ X.

Random variables κε,n, n = 1, 2, . . . can be interpreted as sojourn times and random
variables τε,n = κε,1 + · · · + κε,n, n = 1, 2, . . . , τε,0 = 0 as moments of jumps for a
semi-Markov process ηε(t), t ≥ 0 defined by the following relation, ηε(t) = ηε,n for
τε,n ≤ t < τε,n+1, n = 0, 1, . . ..

As far as random variables ζε,n, n = 1, 2, . . . are concerned, they are interpreted as
so-called, “flag variables” using to record events {ζε,n = 1} which can be interpreted as
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“rare” events. Let us introduce first-rare-event-time process,

ξε(t) =
[tνε]∑
n=1

κε,n, t ≥ 0, where νε = min(n ≥ 1 : ζε,n = 1). (2)

In the present paper, we describe class F of all possible càdlàg processes ξ0(t), t ≥ 0,
which can appear in the corresponding functional limit theorem given in the form of
the asymptotic relation, ξε(t), t ≥ 0 J−→ ξ0(t), t ≥ 0 as ε → 0, and give necessary and
sufficient conditions for holding of the above asymptotic relation with the specific (by its
finite-dimensional distributions) limiting stochastic process ξ0(t), t ≥ 0 from class F .

Here and henceforth, symbol J−→ denotes convergence in Skorokhod J-topology for
real-valued càdlàg stochastic processes defined on time interval [0,∞).

The problems formulated above are solved under three general model assumptions.
Let us introduce the probabilities of occurrence of rare event during one transition

step of the semi-Markov process ηε(t),

pε,i = Pi{ζε,1 = 1}, i ∈ X.

The first model assumption A specifies interpretation of the event {ζε,n = 1} as “rare”
and guarantees the possibility for such event to occur:

A: 0 < max1≤i≤m pε,i → 0 as ε→ 0.

The second model assumption is a condition of asymptotically uniform ergodicity for
the embedded Markov chains ηε,n:

B: There exists a ring chain of states i0, i1, . . . , iN = i0 which contains all states
from the phase space X and such that limε→0 pε,ik−1ik

> 0, for k = 1, . . . , N .

Let us introduce random variables,

με,i(n) =
n∑

k=1

I(ηε,k−1 = i), n = 0, 1, . . . , i ∈ X.

According Lemma 1 given below, condition B guarantees that there exists ε′0 ∈ (0, ε0]
such that, for every ε ∈ (0, ε′0], the phase space X of Markov chain ηε,n is one class of
communicative states, and, thus, the Markov chain ηε,n is ergodic, i.e., the following
asymptotic relation holds, for any initial distribution q̄ε,

με,i(n)
n

a.s.−→ πε,i > 0 as n→∞, for i ∈ X. (3)

As well known, the stationary distribution πε,i, i ∈ X is the unique solution for the
system of linear equations,

πε,i =
∑
j∈X

πε,jpε,ji, i ∈ X,
∑
i∈X

πε,i = 1. (4)

Note that condition B does not require convergence of transition probabilities and, in
sequel, do not imply convergence of stationary probabilities πε,i as ε→ 0.

Finally, the following condition guarantees that the last summand κε,νε in the random
sum ξε(1) is asymptotically negligible:

C: Pi{κε,1 > δ/ζε,1 = 1} → 0 as ε→ 0, for δ > 0, i ∈ X.

Let us define a probability which is the result of averaging of the probabilities of
occurrence of rare event in one transition step by the stationary distribution of the
imbedded Markov chain ηε,n,

pε =
m∑

i=1

πε,ipε,i and vε = p−1
ε . (5)
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Let us introduce the distribution functions of a sojourn times κε,1 for the semi-Markov
processes ηε(t),

Gε,i(t) = Pi{κε,1 ≤ t}, t ≥ 0, i ∈ X and Gε(t) =
m∑

i=1

πε,iGε,i(t), t ≥ 0.

Let θε,n, n = 1, 2, . . . be i.i.d. random variables with distribution Gε(t), which is a
result of averaging of distribution functions of sojourn times by the stationary distribution
of the imbedded Markov chain ηε,n,

Now, we can formulate the necessary and sufficient condition for J-convergence of
first-rare-event-time processes:

D: θε =
∑[vε]

n=1 θε,n
d−→ θ0 as ε → 0, where θ0 is a non-negative random variable

with distribution not concentrated in zero.

As it is well known, (d1) the limiting random variable θ0 penetrating condition D
should be infinitely divisible and, thus, its Laplace transform has the form, Ee−sθ0 =
e−A(s), where A(s) = gs +

∫∞
0

(1 − e−sv)G(dv), s ≥ 0, g is a non-negative constant
and G(dv) is a measure on interval (0,∞) such that

∫
(0,∞)

v
1+vG(dv) < ∞; (d2) g +∫

(0,∞)
v

1+vG(dv) > 0 (this is equivalent to the assumption that P{θ0 = 0} < 1).
Let us define the Laplace transforms,

ϕε,i(s) = Eie
−sκε,1 , i ∈ X and ϕε(s) = Ee−sθε,1 =

∑
∈X

πε,iϕε,i(s), s ≥ 0.

Condition D can be reformulated in the equivalent form, in terms of the above Laplace
transforms:

D1: vε(1 − ϕε(s)) → A(s) as ε→ 0, for s > 0, where the limiting function A(s) > 0,
for s > 0 and A(s) → 0 as s→ 0.

In this case, (d3) A(s) is a cumulant of non-negative random variable with distribution
not concentrated in zero. Moreover, (d4) A(s) should be the cumulant of infinitely
divisible distribution of the form given in the above conditions (d1) and (d2).

The main result of the paper is the following theorem.
Theorem 1. Let conditions A, B and C hold. Then, (i) condition D is necessary and

sufficient for holding (for some or any initial distributions q̄ε, respectively, in statements
of necessity and sufficiency) of the asymptotic relation ξε = ξε(1) d−→ ξ0 as ε → 0,
where ξ0 is a non-negative random variable with distribution not concentrated in zero.
In this case, (ii) the limiting random variable ξ0 has the Laplace transform Ee−sξ0 =

1
1+A(s) , where A(s) is a cumulant of infinitely divisible distribution defined in condition

D. Moreover, (iii) the stochastic processes ξε(t), t ≥ 0 J−→ ξ0(t) = θ0(tν0), t ≥ 0 as
ε → 0, where (a) ν0 is a random variable, which has the exponential distribution with
parameter 1, (b) θ0(t), t ≥ 0 is a non-negative càdlàg Lévy process with the Laplace
transforms Ee−sθ0(t) = e−tA(s), s, t ≥ 0, (c) the random variable ν0 and the process
θ0(t), t ≥ 0 are independent.

3. Asymptotics of first-rare-event times for Markov chains

We split the proof of Theorem 1 in series of lemmas, which themselves are of some
independent interest.

Let η̃ε,n be, for every ε ∈ (0, ε0] a Markov chain with the phase space X and a matrix
of transition probabilities ‖p̃ε,ij‖.

We shall use the following condition:

E: pε,ij − p̃ε,ij → 0 as ε→ 0, for i, j ∈ X.
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If transition probabilities p̃ε,ij ≡ p0,ij , i, j ∈ X do not depend on ε, then condition E
reduces to the following condition:

F: pε,ij → p0,ij as ε→ 0, for i, j ∈ X.
Lemma 1. Let condition B holds for the Markov chains ηε,n. Then: (i) There

exists ε′0 ∈ (0, ε0] such that the Markov chain ηε,n is ergodic, for every ε ∈ (0, ε′0] and
0 < limε→0 πε,i ≤ limε→0 πε,i < 1, for i ∈ X. (ii) If, together with B, condition E holds,
then, there exists ε′′0 ∈ (0, ε′0] such that Markov chain η̃ε,n is ergodic, for every ε ∈ (0, ε′′0 ],
and its stationary distribution π̃ε,i, i ∈ X satisfy the asymptotic relation, πε,i − π̃ε,i → 0
as ε→ 0, for i ∈ X. (iii) If condition F holds, then matrix ‖p0,ij‖ is stochastic, condition
B is equivalent to the assumption that a Markov chain η0,n, with the matrix of transition
probabilities ‖p0,ij‖, is ergodic and the following asymptotic relation holds, πε,i → π0,i

as ε→ 0, for i ∈ X, where π0,i, i ∈ X is the stationary distribution of the Markov chain
η0,n.

Proof. Let us first prove proposition (iii). Condition F obviously implies that matrix
‖p0,ij‖ is stochastic. Conditions B and F imply that limε→0 pε,ik−1ik

= p0,ik−1ik
> 0,

k = 1, . . . , N , for the ring chain penetrating condition B. Thus, the Markov chain
case, η0,n with the matrix of transition probabilities ‖p0,ij‖ is ergodic. Vise versa, the
assumption that a Markov chain η0,n with the matrix of transition probabilities ‖p0,ij‖
is ergodic implies that there exists a ring chain of states i0, . . . , iN = i0 which contains
all states from the phase space X and such that p0,ik−1ik

> 0, k = 1, . . . , N . In this case,
condition F implies that

lim
ε→0

pε,ik−1ik
= p0,ik−1ik

> 0, k = 1, . . . , N,

and, thus, condition B holds. Let us assume that the convergence relation for stationary
distributions penetrating proposition (iii) does not hold. In this case, there exist δ > 0
and a sequence 0 < εn → 0 as n → ∞ such that limn→∞ |πεn,i′ − π0,i′ | ≥ δ, for some
i′ ∈ X. Since, the sequences πεn,i, n = 1, 2, . . ., i ∈ X are bounded, there exists a
subsequence 0 < εnk

→ 0 as k → 0 such that πεnk
,i → π′0,i as k → ∞, for i ∈ X. This

relation, condition F and relation (4) imply that numbers π′0,i, i ∈ X satisfy the system of
linear equation given in (4). This is impossible, since inequality |π′0,i′ − π0,i′ | ≥ δ should
hold, while the stationary distribution π0,i, i ∈ X is the unique solution of system (4).

Let us now prove proposition (i). Condition B implies that there exist ε′0 ∈ (0, ε0]
such that pε,ik−1ik

> 0, k = 1, . . . , N , for the ring chain penetrating condition B, for
ε ∈ (0, ε′0]. Thus, the phase space X is one class of communicative states for the Markov
chain ηε,n and, therefore, this Markov chain is ergodic, for every ε ∈ (0, ε′0]. Let us
now assume that limε→0 πε,i′ = 0, for some i′ ∈ X. In this case, there exists a sequence
0 < εn → 0 as n → ∞ such that πεn,i′ → 0 as n → ∞. Since, the sequences pεn,ij ,
n = 1, 2, . . ., i, j ∈ X are bounded, there exists a subsequence 0 < εnk

→ 0 as k → 0
such that pεnk

,ij → p0,ij as k →∞, for i, j ∈ X. By proposition (iii), the matrix ‖p0,ij‖
is stochastic, the Markov chain η0,n with the matrix of transition probabilities ‖p0,ij‖
is ergodic and its stationary distribution π0,i, i ∈ X satisfies the asymptotic relation,
πεnk

,i → π0,i as k → ∞, for i ∈ X. This is impossible since equality π0,i′ = 0 should
hold, while all stationary probabilities π0,i, i ∈ X are positive. Thus, limε→0 πε,i > 0,
for i ∈ X. This implies that, also, limε→0 πε,i < 1, for i ∈ X, since

∑
i∈X

πε,i = 1, for
ε ∈ (0, ε′0].

Finally, let us now prove proposition (ii). Conditions B and E obviously imply that
limε→0 p̃ε,ik−1ik

= limε→0 pε,ik−1ik
> 0, k = 1, . . . , N , for the ring chain penetrating

condition B. Thus, condition B holds also for the Markov chains η̃ε,n and there exist
ε′′0 ∈ (0, ε′0] such that Markov chain η̃ε,n is ergodic, for every ε ∈ (0, ε′′0 ]. Let assume
that the convergence relation for stationary distributions penetrating proposition (ii)
does not hold. In this case, there exist here exist δ > 0 and a sequence 0 < εn → 0 as
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n → ∞ such that limn→∞ |πεn,i′ − π̃εn,i′ | ≥ δ, for some i′ ∈ X. Since, the sequences
pεn,ij , n = 1, 2, . . ., i, j ∈ X are bounded, there exists a subsequence 0 < εnk

→ 0 as k→ 0
such that pεnk

,ij → p0,ij as k → ∞, for i, j ∈ X. This relations and condition E imply
that, also, p̃εnk

,ij → p0,ij as k →∞, for i, j ∈ X. By proposition (iii), the matrix ‖p0,ij‖
is stochastic, the Markov chain η0,n with the matrix of transition probabilities ‖p0,ij‖
is ergodic and its stationary distribution π0,i, i ∈ X satisfies the asymptotic relations,
πεnk

,i → π0,i as k → ∞, for i ∈ X and π̃εnk
,i → π0,i as k → ∞, for i ∈ X. This is

impossible, since relation limk→∞ |πεnk
,i′ − π̃εnk

,i′ | ≥ δ should hold. �
Proposition (iii) of Lemma 1 implies that, in the case, where the transition probabil-

ities pε,ij = p0,ij , i, j ∈ X do not depend on parameter ε or pε,ij → p0,ij as ε → 0, for
i, j ∈ X, condition B reduces to the standard assumption that the Markov chain η0,n,
with the matrix of transition probabilities ‖p0,ij‖, is ergodic.

These simpler variants of asymptotic ergodicity condition, based on condition F and
the assumption of ergodicity of the Markov chain η0,n combined with averaging of char-
acteristic in condition D by its stationary distribution π0,i, i ∈ X, have been used in the
mentioned above works by Silvestrov and Drozdenko (2006) and Drozdenko (2007) for
proving simper analogues of propositions (i) and (ii) of Theorem 1. In this case, the
averaging of characteristics in the necessary and sufficient condition D, in fact, relates
mainly to distributions of sojourn times.

Condition B, used in the present paper, balances in a natural way averaging of char-
acteristics in condition D between distributions of sojourn times and stationary distrib-
utions of the corresponding embedded Markov chains.

Lemma 2. Let condition B hold. Then,

μ∗ε,i(t) =
με,i([tvε])
πε,ivε

P−→ t as ε→ 0, for t ≥ 0, i ∈ X. (6)

Proof. Let αε,j = min(n > 0 : ηε,n = j) be the moment of first hitting to the state
j ∈ X for the Markov chain ηε,n. Condition B implies that there exist p ∈ (0, 1) and
εp ∈ (0, ε0] such that

∏N
k=1 pε,ik−1ik

> p, for ε ∈ (0, εp]. The following inequalities are
obvious, Pi{αε,j > kN} ≤ (1 − p)k, k ≥ 1, i, j ∈ X, for ε ∈ (0, εp]. These inequalities
imply that there exists Kp ∈ (0,∞) such that maxi,j∈X Eiα

2
ε,j ≤ Kp < ∞, i, j ∈ X, for

ε ∈ (0, εp]. Also, as well known, Eiαε,i = π−1
ε,i , i ∈ X, for ε ∈ (0, εp].

Let αε,i,n = min(k > αε,i,n−1 : ηε,k = i), n = 1, 2, . . . be sequential moments of hitting
to state i ∈ X, for the Markov chain ηε,n, and βε,i,n = αε,i,n − αε,i,n−1, n = 1, 2, . . .,
where αε,i,0 = 0. The random variables βε,i,n, n ≥ 1 are independent and identically
distributed for n ≥ 2. The above relations for moments of random variables αε,i imply

that αε,i,1/vε
P−→ 0 as ε → 0, for i ∈ X. Also, Pi{v−1

ε |αε,i,[tvε] − π−1
ε,i [tvε]| > δ} ≤

tKp/δ
2vε, δ > 0, t ≥ 0, i ∈ X, for ε ∈ (0, εp]. These relations obviously implies

that random variables αε,i,[tvε]/π
−1
ε,i vε

P−→ t as ε → 0, for t ≥ 0. The dual identities
P{με,i(r) ≥ k} = P{αε,i,k ≤ r}, r, k = 0, 1, . . . let one, in standard way, convert the

latter asymptotic relation to the equivalent relation μ∗ε,i(t) = με,i,[tvε]/πε,ivε
P−→ t as

ε→ 0, for t ≥ 0. �
Let fε,i ≥ 0, i ∈ X are non-random non-negative numbers, and fε =

∑
i∈X

fε,iπε,i.
Let us. also, introduce stochastic process,

κ̄ε(t) =
[tvε]∑
n=1

fε,ηε,n−1 , t ≥ 0. (7)

Let us formulate two conditions imposed on function fε:

G: (a) fε > 0 for ε ∈ (0, ε′′0 ], where ε′′0 ∈ (0, ε′0].
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and
H: fε → f0 ∈ [0,∞] as ε→ 0.

Lemma 3. Let conditions B and G hold. Then, (i) f−1
ε κ̄ε(t)

P−→ t as ε → 0, for
t ≥ 0. (ii) Condition H is necessary and sufficient condition for holding (for some or
any initial distributions q̄ε, respectively, in statements of necessity and sufficiency) of
the asymptotic relation, κ̄ε(1) d−→ θ0 as ε → 0, where θ0 is a non-negative proper or
improper random variable. In this case, (iii) The random variable θ0

d= f0, i.e., it is a
constant, and (iv) κ̄ε(t)

P−→ f0t as ε→ 0, for t > 0.
Proof. Let us use the following representation,

κ̄ε(t) =
∑
i∈X

μ∗ε,i(t)vεπε,ifε,i, t ≥ 0. (8)

For any sequence 0 < εn → 0 as n → ∞, there exists a subsequence 0 < εnk
→ 0 as

k → ∞ such that
vnk

πεnk
,ifεnk

,i

fεnk

→ gi ∈ [0, 1] as k → ∞, for i ∈ X. Constants gi, i ∈ X

can depend on the choice of subsequence εnk
, but, obviously satisfy the following relation,∑

i∈X
gi = 1. These relations and Lemma 2 imply that f−1

εnk
κ̄εnk

(t) P−→ ∑
i∈X

git = t

as k → ∞, for t ≥ 0, since the limiting processes in relations (6) given in Lemma 2 are
non-random functions. Since the limits t is the same for all subsequences εnk

described
above, the above asymptotic relation implies the asymptotic relation given in proposition
(i) of Lemma 3.

This relation implies that the random variables κ̄ε(1) = fε · (f−1
ε κ̄ε(1)) converge in

distribution as k → ∞, if and only if fε → f0 ∈ [0,∞] as ε → 0. Moreover, in this
case, the limiting (possibly improper) random variable is constant f0. Also, this relation
implies that, in this case, κ̄ε(t) = fε · (f−1

ε κ̄ε(t))
P−→ f0t as ε→ 0, for t > 0. �

The following lemma describe asymptotics for first-rare-event times νε for Markov
chains ηε,n.

Lemma 4. Let conditions A and B hold. Then, the random variables ν∗ε = pενε
d−→

ν0 as ε→ 0, where ν0 is a random variable exponentially distributed with parameter 1.
Proof. Let us define probabilities, for ε ∈ (0, ε0],

Pε,ij = Pi{ηε,1 = j, ζε,1 = 0}, p̃ε,ij =
Pε,ij∑

r∈X
Pε,ir

=
Pε,ij

1− pε,i
, i, j ∈ X.

Let also η̃ε,n, n = 0, 1, . . . be a homogeneous Markov chain with the phase space X,
the initial distribution q̄ε = 〈qε,i, i ∈ X〉 and the matrix of transition probabilities ‖p̃ε,ij‖.

Let us also introduce stochastic processes,

κ∗ε(t) =
[tvε]∑
n=1

− ln(1 − pε,η̃ε,n−1), t ≥ 0.

The following relation takes place, for t ≥ 0,

P{ν∗ε > t} =
∑
i∈X

qε,i

∑
i=i0,i1,...,i[tvε]∈X

[tvε]∏
k=1

Pε,ik−1ik

= E exp{−
[tvε]∑
k=1

− ln(1− pε,η̃ε,k−1)} = Ee−κ∗ε(t). (9)

Conditions A and B imply that condition B holds for transition probabilities of the
Markov chains η̃ε,n, since,

|pε,ij − p̃ε,ij | ≤ 2pε,i

1− pε,i
→ 0 as ε→ 0, for i, j ∈ X. (10)
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Thus, by Lemma 1, there exist ε′′0 ∈ (0, ε′0] such that the Markov chain η̃ε,n is ergodic,
for every ε ∈ (0, ε′′0 ], and its stationary probabilities π̃ε,i, i ∈ X satisfy relation, π̃ε,i −
πε,i → 0 as ε→ 0, for i ∈ X. This relation, implies that, fε = −vε

∑
i∈X

π̃ε,i ln(1−pε,i) ∼
vε

∑
i∈X

πε,i pε,i = vεpε = 1 as ε→ 0.
Here and henceforth, relation a(ε) ∼ b(ε) as ε→ 0 means that a(ε)/b(ε)→ 1 as ε→ 0.
We can now apply sufficiency statement of proposition (ii) of Lemma 3 to the non-

negative step-sum processes, κ∗ε(t) and to get relation, κ∗ε(t)
P−→ t as ε → 0, for t ≥ 0.

This relation obviously implies that, for every t ≥ 0,

P{ν∗ε > t} = Ee−κ∗ε(t) → e−t as ε→ 0. (11)

The proof is completed. �
Let, as in Lemma 3, fε,i, i ∈ X be non-random, non-negative numbers and fε =

vε

∑
i∈X

πε,ifε,i. Let us introduce stochastic processes,

νε(t) =
[tνε]∑
n=1

fε,ηε,n−1 , t ≥ 0.

Lemma 5. Let conditions A, B and G hold. Then, (i) f−1
ε νε(t), t ≥ 0 d−→ tν0,

t ≥ 0 as ε → 0, where ν0 is a random variable exponentially distributed with parameter
1. (ii) Condition H is necessary and sufficient condition for holding (for some or any
initial distributions q̄ε, respectively, in statements of necessity and sufficiency) of the
asymptotic relation, νε(1) d−→ ν as ε → 0, where ν is a non-negative random variable
with distribution not concentrated in zero. (iii) The random variable ν d= f0ν0 and, (iv)

νε(t), t ≥ 0 d−→ f0ν0t, t > 0 as ε→ 0.
Proof. The following representation takes place,

νε(t) = κ̄ε(tν∗ε ), t ≥ 0, (12)

where κ̄ε(t) are processes defined in relation (7) and ν∗ε are random variables introduced
in Lemma 4.

Relations given in proposition (i) of Lemma 3 and in Lemma 4 imply, by Slutsky
theorem, the relation, (tν∗ε , f−1

ε κ̄ε(t)), t ≥ 0 d−→ (tν0, t), t ≥ 0 as ε→ 0. The components
of the processes on the left hand side of the above relation are non-decreasing processes
and the process on the right hand side is continuous. This let us apply Theorem 3.2.1 from
Silvestrov (2004) to processes f−1

ε νε(t) = f−1
ε κ̄ε(tν∗ε ), t ≥ 0 and to get the asymptotic

relation given in proposition (i) of Lemma 5.
This relation also implies the random variables νε(1) = fε · (f−1

ε νε(1)) converge in
distribution if and only if fε → f0 ∈ [0,∞] as ε → 0. Moreover, in this case, the
limiting (possibly improper) random variable ν d= f0ν0. Also this relation implies that
νε(t) = fε · (f−1

ε νε(t)), t ≥ 0 d−→ f0ν0t, t > 0 as ε→ 0. �

4. Propositions (i) and (ii) of Theorem 1

Let us introduce, for every ε ∈ (0, ε′0], random variables, which are sequential moments
of hitting state i ∈ X by the Markov chain ηε,n,

τε,i,n =
{

min(k ≥ 0, ηε,k = i) for n = 1,
min(k > τε,i,n−1, ηε,k = i) for n ≥ 2. (13)

Let us also define random variables,

κε,i,n = κε,τε,i,n+1, n = 1, 2, . . . , i ∈ X. (14)

Lemma 6. Let condition B holds. Then, for every ε ∈ (0, ε′0], (i) the random
variables κε,i,n, n = 1, 2, . . ., i ∈ X are independent. (ii) P{κε,i,n ≤ t} = Gε,i(t), t ≥ 0,
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for n = 1, 2, . . ., i ∈ X; (iii) the following representation takes place,

κε(t) =
[tvε]∑
n=1

κε,n =
∑
i∈X

με,i([tvε])∑
n=1

κε,i,n, t ≥ 0 (15)

Proof. Let us take an arbitrary sequence of different pairs (i1, k1), (i2, k2), . . . taking
values in space X×{1, 2 . . .}. Note that random variables τε,i1,k1 , τε,i2,k2 , . . ., by definition,
all take different values.

Hitting times τε,i,k are Markov moments for the embedded Markov chain ηε,n as, there-
fore, also for the Markov renewal process (ηε,n, κε,n). Also, any event {τε,i1,k1 < · · · <
τε,ir ,kr < minr<l≤n τε,il,kl

} is determined by the random variables ηε,0, . . ., ηε,τε,ir,kr
.

Using the above remarks, we get relation,
P{κε,ir,kr ≤ ur, r = 1, 2, τε,i1,k1 < τε,i2,k2}

= P{κε,τε,i2,k2+1 ≤ u2/κε,τε,i1,k1+1 ≤ u1, τε,i1,k1 < τε,i2,k2}
× P{κε,τε,i1,k1+1 ≤ u1, τε,i1,k1 < τε,i2,k2}

= Gε,i2 (u2)P{κε,τε,i1,k1+1 ≤ u1, τε,i1,k1 < τε,i2,k2}
= Gε,i2 (u2)P{κε,τε,i1,k1+1 ≤ u1/τε,i1,k1 < τε,i2,k2}P{τε,i1,k1 < τε,i2,k2}
= Gε,i1 (u1)Gε,i2(u2)P{τε,i1,k1 < τε,i2,k2}.

Also, the similar relation, in which random variables τε,i1,k1 , τε,i2,k2 exchange each other,
takes place. By adding the above two relations, we get relation, P{κε,ir ,kr ≤ ur, r =
1, 2} = Gε,i1 (u1)Gε,i2(u2), which prove the pair-wise independence of random variables
κε,i,n, n = 1, 2, . . ., i ∈ X.

In analogous way, we can get relation,
P{κε,ir ,kr ≤ ur, r = 1, 2, 3, τε,i1,k1 < τε,i2,k2 < τε,i3,k3}

= Gε,i2 (u2)Gε,i3(u3)P{κε,i1,k1 ≤ u1, τε,i1,k1 < τε,i2,k2 < τε,i3,k3}
and analogous relation, where random variables τε,i2,k2 and τε,i3,k3 exchange each other.
By adding the above two relations, we get relation

P{κε,ir,kr ≤ ur, r = 1, 2, 3, τε,i1,k1 < min(τε,i2,k2 , τε,i3,k3)}
= Gε,i2(u2)Gε,i3 (u3)P{κε,i1,k1 ≤ u1, τε,i1,k1 < min(τε,i2,k2 , τε,i3,k3)}
= Gε,i1(u1)Gε,i2 (u2)Gε,i3 (u3)P{τε,i1,k1 < min(τε,i2,k2 , τε,i3,k3)}.

Also, two similar relations, in which random variables τε,i1,k1 , τε,i2,k2 , τε,i3,k3 are ex-
changed, respectively, by random variables τε,i2,k2 , τε,i3,k3 , τε,i1,k1 or by τε,i3,k3 , τε,i1,k1 ,
τε,i2,k2 , take place. By adding the above three relations, we get relation, P{κε,ir,kr ≤
ur, r = 1, 2, 3} = Gε,i1 (u1)Gε,i2(u2)Gε,i3 (u3), which prove the triplet-wise independence
of random variables κε,i,n, n = 1, 2, . . ., i ∈ X.

Propositions (ii) follows from the above remarks. Proposition (iii) is obvious since
relation (15), just, represents two alternative ways of grouping summands in the same
random sums. �

It is useful to note that the families of random variables 〈με,i(n), n = 0, 1, . . . , i ∈ X〉
and 〈κε,i,n, n = 1, 2, . . . , i ∈ X〉 are not independent.

Let us introduce Laplace transforms, ϕε,ij(ı, s) = EiI(ηε,1 = j, ζε,1 = ı)e−sκε,1 , s ≥ 0,
for i, j ∈ X, ı = 0, 1, and ϕε,i(ı, s) = EiI(ζε,1 = ı)e−sκε,1 , s ≥ 0, for i ∈ X, ı = 0, 1, and
define probabilities, for s ≥ 0,

pε,s,ij =
ϕε,ij(0, s)∑

r∈X
ϕε,ij(0, s)

=
ϕε,ij(0, s)
ϕε,i(0, s)

, i, j ∈ X.

Let (ηε,s,n, ζε,s,n), n = 0, 1, . . . be, for every s ≥ 0 and ε ∈ (0, ε′0], a Markov renewal
process, with the phase space X × {0, 1}, the initial distribution q̄ε = 〈qε,i = P{ηε,0 =
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i, ζε,s,0 = 0} = P{ηε,s,0 = i}, i ∈ X〉 and the transition probabilities,
P{ηε,s,n+1 = j, ζε,s,n+1 = j/ηε,s,n = i, ζε,s,n = ı}

= P{ηε,s,n+1 = j, ζε,s,n+1 = j/ηε,s,n = i}
= pε,s,ij(pε,i j+ (1 − pε,i)(1 − j)), i, j ∈ X, ı, j = 0, 1.

(16)

Note that the first component of the Markov renewal process, ηε,s,n, n = 0, 1, . . . is a
homogeneous Markov chain with the phase space X, an initial distribution q̄ε = 〈qε,i, i ∈
X〉 and the matrix of transition probabilities ‖pε,s,ij‖.

Let us prove that condition D or conditions A, B and the asymptotic relation pene-
trating proposition (i) of Theorem 1 imply that, for every s ≥ 0, condition B holds for
transition probabilities of the Markov chain ηε,s,n.

Condition D obviously, implies that, for i ∈ X,
ϕε,i(s) → 1 as ε→ 0, for s ≥ 0, (17)

Let us show that conditions A, B and the asymptotic relation penetrating proposition
(i) of Theorem 1 also imply that relation (17) holds.

Let us now assume that relation (17) does not holds. This means that there exists i ∈ X

such that for some δ, p > 0 and εδ,p ∈ (0, ε′0] probability P{κε,i,1 ≥ δ} ≥ p, for ε ∈ (0, εδ,p].

This obviously implies that random variables κ̃ε,i(t) =
∑[tπε,ivε]

n=1 κε,i,n
P−→ ∞ as ε → 0,

for t > 0, and, thus, stochastic processes min(T, κ̃ε,i(t)), t > 0 d−→ hT (t) = T , t > 0 as
ε → 0. Since, the processes κ̃ε,i(t), t > 0 are non-decreasing and the limiting function
hT (t) = T , t > 0 is continuous, the latter relation implies (see, for example, Lemma
3.2.2 from Silvestrov (2004)) that min(T, κ̃ε,i(t)), t > 0 J−→ hT (t) = T , t ≥ 0 as ε → 0.
By Lemma 5, applied to the model with functions fε,j = I(j = i)(πε,ivε)−1, j ∈ X,

the following relation takes place, μ∗ε,i(ν
∗
ε ) d−→ ν0 as ε → 0, where ν0 is a random

variable exponentially distributed with parameter 1. The latter two relations imply,
by Slutsky theorem, that (μ∗ε,i(ν

∗
ε ),min(T, κ̃ε,i(t))), t > 0 d−→ (ν0, hT (t)), t > 0 as

ε→ 0. Now we can apply Theorem 2.2.1 from Silvestrov (2004) that yields the following
relation, min(T, κ̃ε,i(μ∗ε,i(ν

∗
ε ))) d−→ T as ε → 0, for any T > 0. This is possible only if

κ̃ε,i(μ∗ε,i(ν
∗
ε )) P−→∞ as ε→ 0. Thus, random variables κ̃ε,i(μ∗ε,i(ν

∗
ε )) =

∑με,i(νε)
n=1 κε,i,n ≤

ξε(1) =
∑

i∈X

∑με,i(νε)
n=1 κε,i,n

P−→∞ as ε→ 0. This relation contradicts to the asymptotic
relation given in proposition (i) of Theorem 1.

Relation (17) and condition A imply that,
ϕε,i(s, 0) = EiI(ζε,1 = 0)e−sκε,1 → 1 as ε→ 0, for s ≥ 0, i, j ∈ X. (18)

that in sequel implies the following relation,

|pε,ij − pε,s,ij | ≤ 2(1− ϕε,i(0, s))
ϕε,i(0, s)

→ 0 as ε→ 0, for s ≥ 0, i, j ∈ X. (19)

Relation (19) implies, by Lemma 1, that, for every s ≥ 0, there exist ε′0,s ∈ (0, ε′0]
such that the Markov chain η̃ε,n,s is ergodic, for every ε ∈ (0, ε′0,s], and its stationary
probabilities πε,s,i, i ∈ X satisfy the relation, πε,s,i − πε,i → 0 as ε→ 0, for i ∈ X.

Let us introduce conditional Laplace transforms,
φε,ij(ı, s) = Ei{I(ηε,1 = j)e−sκε,1/ζε,1 = ı}, s ≥ 0,

for i, j ∈ X, ı = 0, 1, and φε,i(ı, s) = Ei{e−sκε,1/ζε,1 = ı}, s ≥ 0, for i ∈ X, ı = 0, 1.
Relation (18) and condition A imply relation, φε,i(0, s) = ϕε,i(0,s)

1−pε,i
→ 1 as ε → 0,

for s ≥ 0, i ∈ X. Also condition C is equivalent to the following relation, φε,i(1, s) =
Ei{e−sκε,1/ζε,1 = 1} → 1 as ε→ 0, for s ≥ 0, i ∈ X.

Proposition (i) of Lemma 1 and the above asymptotic relations for stationary prob-
abilities πε,s,i and πε,i and conditional Laplace transforms φε,i(0, s) and φε,i(1, s) imply
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that,

Aε(s) = −vε

∑
i∈X

πε,s,i lnφε,i(0, s)

∼ vε

∑
i∈X

πε,i(1 − φε,i(0, s)) as ε→ 0, for s > 0. (20)

Let us assume that Markov chains ηε,n and ηε,n,s has the same initial distribution q̄ε.
Let us also introduce random variables,

νε,s = min(n ≥ 1 : ζε,s,n = 1). (21)
The following representation takes place for the Laplace transform of the random

variables ξε(1), for s ≥ 0,

Ee−sξε(1) =
∑
i∈X

qε,i

∞∑
n=1

∑
i=i0,i1,...,in∈X

n−1∏
k=1

ϕε,ik−1ik
(0, s)ϕε,in−1in(1, s)

=
∑
i∈X

qε,i

∞∑
n=1

∑
i=i0,i1,...,in−1∈X

n−1∏
k=1

pε,s,ik−1ik

× (1 − pε,ik−1)φε,ik−1 (0, s)pε,in−1φε,in−1(1, s)

= E exp{−
νε,s∑
k=1

− lnφε,ηε,s,k−1(0, s)

− lnφε,ηε,s,νε,s−1(0, s) + lnφε,ηε,s,νε,s−1(1, s)}. (22)

The above asymptotic relations for conditional Laplace transforms φε,i(0, s) and

φε,i(1, s) obviously imply that | lnφε,ηε,s,νε,s−1(0, s)| + | lnφε,ηε,s,νε,s−1(1, s)| P−→ 0 as
ε→ 0, for s ≥ 0. This relation and representation (22) imply the following relation,

Ee−sξε ∼ Ee−ν̃ε,s as ε→ 0, for s > 0. (23)
where

ν̃ε,s =
νε,s∑
n=1

− lnφε,ηε,s,k−1(0, s). (24)

Let us assume that condition D holds additionally to conditions A – C.
Condition D is equivalent to condition D1, and, thus, due to the above asymptotic

relations for conditional Laplace transforms φε,i(0, s) and φε,i(1, s), condition A and
proposition (i) of Lemma 1, to the following relation,

vε(1− ϕε(s)) = vε

∑
i∈X

πε,i(1− ϕε,i(s))

= vε

∑
i∈X

πε,i((1− pε,i)(1− φε,i(0, s)) + pε,i(1− φε,i(1, s))

∼ vε

∑
i∈X

πε,i(1− φε,i(0, s))→ A(s) as ε→ 0, for s > 0, (25)

where A(s) > 0, for s > 0 and A(s) → 0 as s→ 0.
Relations (20) and (25) imply that, in this case,

Aε(s) = −vε

∑
i∈X

πε,s,i lnφε,i(0, s)→ A(s) as ε→ 0, for s > 0. (26)

Now, we can, for every s > 0, apply the sufficiency statement of proposition (iv) of
Lemma 5 to random variables ν̃ε,s. This yields, the following relation,

ν̃ε,s
d−→ A(s)ν0 as ε→ 0, for s > 0, (27)

where ν0 is exponentially distributed random variable with parameter 1.
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This relation implies, by continuity theorem for Laplace transforms, the following
relation,

Ee−sξε ∼ Ee−ν̃ε,s → Ee−A(s)ν0 =
1

1 +A(s)
as ε→ 0, for s > 0. (28)

Relation (28) proves sufficiency statements of propositions (i) and (ii) of Theorem 1.
Let now assume that conditions A – C plus the asymptotic relation penetrating propo-

sition (i) of Theorem 1 hold.
The asymptotic relation (in proposition (i) of Theorem 1) expressed in terms of

Laplace transforms takes the form of relation (which should be assumed to hold for
some initial distributions q̄ε),

Ee−sξε → e−A0(s) as ε→ 0, for s > 0, (29)
where A0(s) > 0 for s > 0 and A0(s)→ 0 as s→ 0.

Let us assume that conditions A – C hold but condition D does not hold.
The latter assumption means, due to relation (20), that either (a) Aε(s) → A(s) ∈

(0,∞) as s→ 0, for every s > 0, but A(s) �→ 0 as ε→ 0, or (b) Aε(s∗) �→ A(s∗) ∈ (0,∞)
as ε → 0, for some s∗ > 0. The latter relation holds if and only if there exist at least
two subsequences 0 < ε′n, ε′′n → 0 as n→∞ such that (b1) Aε′n(s∗)→ A′(s∗) ∈ [0,∞] as
n→∞, (b2) Aε′′n(s∗) → A′′(s∗) ∈ [0,∞] as n→∞ and (b3) A′′(s∗) < A′(s∗).

In the case (a), we can repeat the part of the above proof presented in relations (20) –
(28) and, taking into account relation (29), to get relation, Ee−sξε ∼ Ee−ν̃ε,s → 1

1+A(s) =
e−A0(s) as ε→ 0, for s > 0. This relation implies that A(s) → 0 as ε → 0, i.e., the case
(a) is impossible.

In the case (b), sub-case, A′(s∗) = ∞, is impossible. Indeed, by Lemma 5 applied
to random variables ν̃ε,s∗ , in this case, ν̃ε′n,s∗

P−→ ∞ as n → ∞, and, thus, Ee−s∗ξε′n ∼
Ee−ν̃ε′n,s∗ → 0 as n→∞. This relation contradicts to relation (29).

Sub-case, A′′(s∗) = 0, is also impossible. Indeed, by Lemma 5 applied to random
variables ν̃ε,s∗ , in this case, ν̃ε′′n,s∗

P−→ 0 as n→∞, and, thus, Ee−s∗ξε′′n ∼ Ee−ν̃ε′′n,s∗ → 1
as n→∞. This relation also contradicts to relation (29).

Finally, the remaining sub-case, 0 < A′′(s∗) < A′(s∗) < ∞, is also impossible. In-
deed, the sufficiency statement of Lemma 5, applied to random variables ν̃ε,s∗ , yields,

in this case, two relations ν̃ε′n,s∗
d−→ A′(s∗)ν0 as n → ∞ and ν̃ε′′n,s∗

d−→ A′′(s∗)ν0
as n → ∞, where ν0 is exponentially distributed random variable with parameter 1.
These relations imply that Ee−s∗ξε′n ∼ Ee−ν̃ε′n,s∗ → 1

1+A′(s∗) as n → ∞ and Ee−s∗ξε′′n ∼
Ee−ν̃ε′′n,s∗ → 1

1+A′′(s∗) as n → ∞. These relations contradict to relation (29), since
1

1+A′(s∗) �= 1
1+A′′(s∗) .

Therefore, condition D should hold. This complete the proof of propositions (i) and
(ii) of Theorem 1. �

5. Proposition (iii) of Theorem 1

Let us consider step-sum reward stochastic processes,

κε(t) =
[tvε]∑
n=1

κε,n, t ≥ 0. (30)

Lemma 7. Let condition B holds. Then, (i) condition D is necessary and sufficient
condition for holding (for some or any initial distributions q̄ε, respectively, in statements
of necessity and sufficiency) of the asymptotic relation, κε(1) d−→ θ0 as ε → 0, where
θ0 is a non-negative random variable with distribution not concentrated in zero. In this
case, (ii) the random variable θ0 has the infinitely divisible distribution with the Laplace
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transform Ee−sθ0 = e−A(s), s ≥ 0 with the cumulant A(s) defined in condition D. More-
over, (iii) stochastic processes κε(t), t ≥ 0 J−→ θ0(t), t ≥ 0 as ε→ 0, where θ0(t), t ≥ 0
is a nonnegative càdlàg Lévy process with the Laplace transforms Ee−sθ0(t) = e−tA(s),
s, t ≥ 0.

Proof. Let us, first, prove that condition D implies holding of the asymptotic relations
given in proposition (iii) of Lemma 7.

Let η̂ε,n, n = 1, 2, . . . be, for every ε ∈ (0, ε′0], a sequence of random variables such
that: (a) it is independent of the Markov chain (ηε,n, κε,n), n = 0, 1, . . . and (b) it is
a sequence of i.i.d. random variables taking value i with probability πε,i, for i ∈ X. In
this case, the sequence of random variables η̂ε,n, n = 1, 2, . . . is also independent of the
families of random variables 〈με,i(n), n = 0, 1, . . . , i ∈ X〉 and 〈κε,i,n, n = 1, 2, . . . , i ∈ X〉.

Let us consider the sequence of random variables θε,n = κε,η̂ε,n,n, n = 1, 2, . . .. This
is the sequence of i.i.d. random variables that follows from the above definition of the
sequence of random variables η̂ε,n, n = 1, 2, . . . and the family of random variables
κε,i,n, n = 1, 2, . . ., i ∈ X. Also, P{θε,1 ≤ t} =

∑
i∈X

πε,iGε,i(t) = Gε(t), t ≥ 0.
Let us also define the homogeneous step-sum processes with independent increments,
θε(t) =

∑[tvε]
n=1 θε,n, t ≥ 0. As well known, condition D is equivalent to the following

relation, θε(t), t ≥ 0 d−→ θ0(t), t ≥ 0 as ε→ 0.
Let us define random variables, μ̂ε,i(n) =

∑n
k=1 I(η̂ε,n = i), n = 0, 1, . . ., i ∈ X and

stochastic processes, κ̂ε(t) =
∑

i∈X

∑μ̂ε,i([tvε])
n=1 κε,i,n, t ≥ 0.

By the definition of the sequence of random variables 〈η̂ε,n, n = 1, 2, . . .〉 and the family
of random variables 〈κε,i,n, n = 1, 2, . . . , i ∈ X〉, in particular, due to independence of

the above sequence and family, the following relation holds, κ̂ε(t), t ≥ 0 d= θε(t), t ≥ 0.
Thus, κ̂ε(t), t ≥ 0 also is a homogeneous step-sum process with independent increments
and condition D is equivalent to the following relation,

κ̂ε(t), t ≥ 0 d−→ θ0(t), t ≥ 0 as ε→ 0. (31)

Random variables I(η̂ε,n = i), n = 1, 2, . . . are, for every i ∈ X, i.i.d. random variables
taking values 1 and 0 with probabilities, respectively, πε,i and 1−πε,i. According propo-
sition (i) of Lemma 1, 0 < limε→0 πε,i ≤ limε→0 πε,i < 1, for every i ∈ X. Taking into
account the above remarks, this is easy to prove using the corresponding results from
Skorokhod (1964, 1986), that the following relation holds,

μ̂∗ε,i(t) =
μ̂ε,i([tvε])
πε,ivε

, t ≥ 0 J−→ μ0,i(t) = t, t ≥ 0 as ε→ 0, for i ∈ X. (32)

Let us also introduce stochastic processes with independent increments,

κ̃ε,i(t) =
[tπε,ivε]∑

n=1

κε,i,n, t ≥ 0, i ∈ X and κ̃ε(t) =
∑
i∈X

[tπε,ivε]∑
n=1

κε,i,n, t ≥ 0.

Note that, for every ε ∈ (0, ε′0], processes 〈κ̃ε,i(t), t ≥ 0〉, i ∈ X are independent.
Let us choose some 0 < u < 1. Since processes κ̃ε(t), κ̂ε(t), and μ̂∗ε,i(t), i ∈ X are

non-negative and non-decreasing, we get, for x ≥ 0,

P{κ̃ε(u) > x} ≤ P{κ̃ε(u) > x, μ̂∗ε,i(1) > u, i ∈ X}
+

∑
i∈X

P{κ̃ε(u) > x, μ̂∗ε,i(1) ≤ u}

≤ P{κ̂ε(1) > x} +
∑
i∈X

P{μ̂∗ε,i(1) ≤ u}. (33)

The first step is to prove that distributions of random variables κ̃ε,i(u), i ∈ X are
relatively compact as ε→ 0, for some u > 0.
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Relations (31)–(33) imply that distributions of random variables κ̃ε(u) are relatively
compact as ε→ 0 that is,

lim
x→∞ lim

ε→0
P{κ̃ε(u) > x} ≤ lim

x→∞ lim
ε→0

(P{κ̂ε(1) > x} +
∑
i∈X

P{μ̂∗ε,i(1) ≤ u})

= lim
x→∞P{θ0(1) > x} = 0.

Since, κ̃ε,i(u) ≤ κ̃ε(u), for i ∈ X, the above relation implies that distributions of random
variables κ̃ε,i(1), i ∈ X are also relatively compact as ε→ 0, i.e.,

lim
x→∞ lim

ε→0
P{κ̃ε,i(u) > x} ≤ lim

x→∞ lim
ε→0

P{κ̃ε(u) > x} = 0, for i ∈ X.

This implies that any sequence 0 < εn → 0 as n → ∞ contains a subsequence
0 < εnk

→ 0 as k → ∞ such that random variables, κ̃εnk
,i(u) d−→ θ0,i,u as k → ∞, for

i ∈ X, where θ0,i,u, i ∈ X are proper nonnegative random variables, with distributions
possibly dependent of the choice of subsequence εnk

. Moreover, by the central criterion
of convergence, the random variables θ0,i,u, i ∈ X have infinitely divisible distributions.
Let Ee−sθ0,i,u = e−uAi(s), s ≥ 0, i ∈ X be their Laplace transforms. As well known (see,
for example, Skorokhod (1964, 1986)), the above relation of convergence in distribution
implies that stochastic processes, κ̃εnk

,i(t), t ≥ 0 J−→ θ0,i(t), t ≥ 0 as k → ∞, for
i ∈ X, where θ0,i(t), t ≥ 0, i ∈ X are non-negative càdlàg Lévy processes with Laplace
transforms Ee−sθ0,i(t) = e−tAi(s), s, t ≥ 0, i ∈ X, possibly dependent of the choice of
subsequence εnk

. Since processes κ̃ε,i(t), t ≥ 0, i ∈ X are independent, vector processes

(κ̃εnk
,1(t), . . . , κ̃εnk

,m(t)), t ≥ 0 d−→ (θ0,1(t), . . . , θ0,m(t)), t ≥ 0 as k → ∞, where θ0,i(t),
t ≥ 0, i ∈ X are independent nonnegative càdlàg sLévy processes with Laplace transforms
Ee−sθ0,i(t) = e−tAi(s), s, t ≥ 0, i ∈ X, possibly dependent of the choice of subsequence
εnk

. By Theorem 3.8.1, in Silvestrov (2004), J-compactness of the vector processes
(κ̃εnk

,1(t), . . . , κ̃εnk
,m(t)) follows from J-compactness of their components κ̃εnk

,i(t), i ∈ X,
since the corresponding limiting processes θ0,i(t), i ∈ X are stochastically continuous and
independent and, thus, they have not with probability 1 joint points of discontinuity.
Thus, J-convergence of vector processes (κ̃εnk

,1(t), . . . , κ̃εnk
,m(t)), t ≥ 0 also takes place,

i.e.,

(κ̃εnk
,1(t), . . . , κ̃εnk

,m(t)), t ≥ 0
J−→ (θ0,1(t), . . . , θ0,m(t)), t ≥ 0 as k →∞, (34)

where θ0,i(t), t ≥ 0, i ∈ X are independent nonnegative càdlàg Lévy processes described
above.

Since, the limiting processes in (6) and (32) are non-random functions, relations (6),
(32) and (34) imply (see, for example, Subsection 1.2.4 in Silvestrov (2004)), by Slutsky
theorem, that,

(μ∗εnk
,1(t), . . . , μ

∗
εnk

,m(t), κ̃εnk
,1(t), . . . , κ̃εnk

,m(t)), t ≥ 0
d−→ (μ0,1(t), . . . , μ0,m(t), θ0,1(t), . . . , θ0,m(t)), t ≥ 0 as k →∞,

and

(μ̂∗εnk
,1(t), . . . , μ̂

∗
εnk

,m(t), κ̃εnk
,1(t), . . . , κ̃εnk

,m(t)), t ≥ 0
d−→ (μ0,1(t), . . . , μ0,m(t), θ0,1(t), . . . , θ0,m(t)), t ≥ 0 as k →∞,

where μ0,i(t) = t, t ≥ 0, i ∈ X and θ0,i(t), t ≥ 0, i ∈ X are independent nonnegative
càdlàg Lévy processes defined above. We can now apply Theorem 3.8.2, from Silve-
strov (2004), which give conditions of J-convergence for vector compositions of càdlàg



CONVERGENCE OF FIRST-RARE-EVENT-TIME PROCESSES 133

stochastic processes, and get the asymptotic relations,

(κ̃εnk
,1(μ∗εnk

,1(t)), . . . , κ̃εnk
,m(μ∗εnk

,m(t))), t ≥ 0
J−→ (θ0,1(μ0,1(t)), . . . , θ0,m(μ0,m(t))) = (θ0,1(t), . . ., θ0,m(t)), t ≥ 0 as k →∞,

and

(κ̃εnk
,1(μ̂∗εnk

,1(t)), . . . , κ̃εnk
,m(μ̂∗εnk

,m(t))), t ≥ 0
J−→ (θ0,1(μ0,1(t)), . . . , θ0,m(μ0,m(t))) = (θ0,1(t), . . . , θ0,m(t)), t ≥ 0 as k →∞,

where θ0,i(t), t ≥ 0, i ∈ X are independent nonnegative càdlàg Lévy processes defined
in relation above. The latter two asymptotic relations obviously imply J-convergence
for sum of components of the processes in these relations, i.e. that, respectively, the
following relations hold,

κεnk
(t) =

∑
i∈X

κ̃εnk
,i(μ∗εnk

,i(t)), t ≥ 0

J−→ θ′0(t) =
∑
i∈X

θ0,i(t), t ≥ 0 as k →∞, (35)

and

κ̂εnk
(t) =

∑
i∈X

κ̃εnk
,i(μ̂∗εnk

,i(t)), t ≥ 0

J−→ θ′0(t) =
∑
i∈X

θ0,i(t), t ≥ 0 as k →∞, (36)

where θ0,i(t), t ≥ 0, i ∈ X are independent nonnegative càdlàg Lévy processes defined
above.

Relation (31) implies that θ′0(t), t ≥ 0 d= θ0(t), t ≥ 0. Thus, the limiting process
θ′0(t) =

∑
i∈X

θ0,i(t), t ≥ 0 has the same finite dimensional distributions for all subse-
quences εnk

described above. Moreover, the cumulant A(s) of the limiting Lévy process
θ0(t) is connected with cumulants Ai(s), i ∈ X of Lévy processes θ0,i(t) by relation,
A(s) =

∑
i∈X

Ai(s), s ≥ 0.
Therefore, relations (35) and (36) imply that, respectively, the following relations hold,

κε(t) =
∑
i∈X

κ̃ε,i(μ∗ε,i(t)), t ≥ 0 J−→ θ0(t), t ≥ 0 as ε→ 0, (37)

and

κ̂ε(t) =
∑
i∈X

κ̃ε,i(μ̂∗ε,i(t)), t ≥ 0 J−→ θ0(t), t ≥ 0 as ε→ 0. (38)

Let us now prove that the asymptotic relation given in proposition (i) of Lemma 7
implies that condition D holds.

Again, the first step is to prove that distributions of random variables κ̃ε,i(u), i ∈ X

are relatively compact as ε→ 0, for some u > 0.
Let us choose some 0 < u < 1. Since processes κε(t), κ̃ε(t), and μ∗ε,i(t), i ∈ X are

non-negative and non-decreasing, we get, for any x ≥ 0,

P{κ̃ε(u) > x} ≤ P{κ̃ε(u) > x, μ∗ε,i(1) > u, i ∈ X}
+

∑
i∈X

P{κ̃ε(u) > x, μ∗ε,i(1) ≤ u}

≤ P{κε(1) > x} +
∑
i∈X

P{μ∗ε,i(1) ≤ u}. (39)
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Relation (39) and the asymptotic relation given in proposition (i) of Lemma 7 imply
that,

lim
x→∞ lim

ε→0
P{κ̃ε(u) > x} ≤ lim

x→∞ lim
ε→0

(P{κε(1) > x} +
∑
i∈X

P{μ∗ε,i(1) ≤ u})

= lim
x→∞P{θ0 > x} = 0.

Note that, in this necessity case, the asymptotic relation given in proposition (i) of
Lemma 7 is required to hold only for at least one family initial distributions q̄ε, ε ∈ (0, ε0].
Since, κ̃ε,i(u) ≤ κ̃ε(u), for i ∈ X, the above relation implies that distributions of random
variables κ̃ε,i(1), i ∈ X are relatively compact as ε→ 0.

Now, we can repeat the part of the above prove related to relations (34) – (36).
Relation (35) and the asymptotic relation given in proposition (i) of Lemma 7 imply

that the random variables θ′(1) and θ0, which appears in these asymptotic relations, have
the same distribution, i.e. θ′(1) d= θ0. Moreover, cumulant A(s) of the limiting Lévy
process θ′0(t) coincides with the cumulant of the random variable θ0, which, therefore,
has infinitely divisible distribution. Moreover, relation (36) implies that cumulant A(s)
is connected with cumulants Ai(s), i ∈ X of Lévy processes θ′0,i(t) by relation A(s) =∑

i∈X
Ai(s), s ≥ 0. Thus, the limiting process θ′0(t), t ≥ 0 =

∑
i∈X

θ0,i(t), t ≥ 0 has the
same finite dimensional distributions for all subsequences εnk

described above.
This let us write down relations (37) – (38). Relation (38) proves, in this case, that

condition D holds. Relation (37) proves proposition (iii) of Lemma 7. �
It is useful to note that the flag variables ζε,n are not involved in the definition of

the processes κε(t). This let one replace function vε = p−1
ε by an arbitrary function

0 < vε → ∞ as ε → 0 in condition D and Lemma 7. In this case, Lemma 7 gives
necessary and sufficient conditions for convergence in J-topology for the step-sum reward
processes κε(t), t ≥ 0. As I think, it is the result of some independent interest.

The following lemma brings together the asymptotic relations given in Lemma 4 and
7.

Lemma 8. Let conditions A, B, C and D hold. Then, the following asymptotic
relation holds, (ν∗ε , κε(t)), t ≥ 0 d−→ (ν0, θ0(t)), t ≥ 0 as ε → 0, (a) ν0 is a random
variable, which has the exponential distribution with parameter 1, (b) θ0(t), t ≥ 0 is a
nonnegative càdlàg Lévy process with the Laplace transforms Ee−sθ0(t) = e−tA(s), s, t ≥ 0,
with the cumulant A(s) defined in condition D, (c) the random variable ν0 and the process
θ0(t), t ≥ 0 are independent.

Proof. The following representation takes place, for s, t ≥ 0,

EI(ν∗ε > t)e−sκε(t) =
∑
i∈X

qε,i

∑
i=i0,i1,...,i[tvε]∈X

[tvε]∏
k=1

ϕε,ik−1ik
(0, s)

= E exp{−
[tvε]∑
k=1

(− ln(1− pε,η̃ε,s,k−1)− lnφε,η̃ε,s,k−1(0, s))}. (40)

Using condition A, B, Lemma 1 and relation πε,s,i − πε,i → 0 as ε → 0, for i ∈ X.,
we get relation, fε,s = −vε

∑
i∈X

π̃ε,s,i ln(1 − pε,i) ∼ vε

∑
i∈X

πε,i pε,i = vεpε = 1 as
ε → 0, for s ≥ 0. Thus, Lemma 3 can, for every s > 0, be applied to the processes,
κε,s(t) =

∑[tvε]
k=1 (− ln(1 − pε,η̃ε,k−1)− lnφε,η̃ε,k−1 (0, s)), t ≥ 0.

This yields that the following relation holds, for every s > 0,

κε,s(t), t ≥ 0 d−→ t+A(s)t, t ≥ 0 as ε→ 0. (41)
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Let us denote,

Ψε,ij(n, s) = EiI(νε > n, ηε,n = j)e−s
�n

k=1 κε,k ,

Ψε,i(n, s) = EiI(νε > n)e−s
�n

k=1 κε,k =
∑
j∈X

Ψε,ij(n, s)

and

ψε,ij(n, s) = EiI(ηε,n = j)e−s
�n

k=1 κε,k , ψε,i(n, s) = Eie
−s
�n

k=1 κε,k =
∑
j∈X

ψε,ij(n, s)

for i, j ∈ X, n = 0, 1, . . ., s ≥ 0.
The following representation for multivariate joint distributions of random variable ν∗ε

and increments of stochastic process κε(t) takes place, for 0 = t0 ≤ t1 < · · · tk = t ≤
tk+1 ≤ · · · ≤ tn <∞, 1 ≤ k < n <∞ and s1, . . . , sn ≥ 0,

EI(ν∗ε > tk) exp{−
n∑

r=1

sr(κε(tr)− κε(tr−1)}

=
∑
i0∈X

qε,i0

k∏
l=1

∑
il∈X

Ψε,il−1il
([tlvε]− [tl−1vε], sl)

×
n∏

l=k+1

∑
il∈X

ψε,il−1il
([tlvε]− [tl−1vε], sl). (42)

Relation (41) readily implies asymptotic relation, Ψε,i([t′vε] − [t′′vε], s) ∼ Ψε,i([(t′ −
t′′)vε], s) → e−(t′−t′′)e−A(s)(t′−t′′) as ε → 0, for s > 0, 0 ≤ t′′ ≤ t′ < ∞. Also
the proposition (iii) of Lemma 7 implies asymptotic relation, ψε,i([t′vε] − [t′′vε], s) ∼
ψε,i([(t′ − t′′)vε], s) → e−A(s)(t′−t′′) as ε → 0, for s > 0 and 0 ≤ t′′ ≤ t′ < ∞. Using
these asymptotic relations and representation (42) we get recurrently, for 0 = t0 ≤ t1 <
· · · tk = t ≤ tk+1 ≤ · · · ≤ tn <∞, 1 ≤ k < n <∞ and s1, . . . , sn > 0,

EI(ν∗ε > tk) exp{−
n∑

r=1

sr(κε(tr)− κε(tr−1))}

∼ EI(ν∗ε > tk) exp{−
n−1∑
r=1

sr(κε(tr)− κε(tr−1))}e−A(sn)(tn−tn−1)

· · · ∼ EI(ν∗ε > tk) exp{−
k∑

r=1

sr(κε(tr)− κε(tr−1))}

× exp{
n∑

r=k+1

−A(sr)(tr − tr−1)}

∼ EI(ν∗ε > tk−1) exp{−
k−1∑
r=1

sr(κε(tr)− κε(tr−1))}

× exp{−(tk − tk−1)} exp{
n∑

r=k

−A(sr)(tr − tr−1)}

· · · ∼ exp{−
k∑

r=1

(tr − tr−1)} exp{
n∑

r=1

−A(sr)(tr − tr−1)}

= exp{−t} exp{
n∑

r=1

−A(sr)(tr − tr−1)} as ε→ 0. (43)

This relation is equivalent an form of the asymptotic relation given in Lemma 8. �
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Now, we can complete the proof of proposition (iii) of Theorem 1.
The asymptotic relation given in Lemma 8 can, obviously, be rewritten in the following

equivalent form,

(tν∗ε , κε(t)), t ≥ 0 d−→ (tν0, θ0(t)), t ≥ 0 as ε→ 0,

where the random variable ν0 and the stochastic process θ0(t), t ≥ 0 are described in
Lemma 8. This asymptotic relation and the asymptotic relation given in proposition
(iii) of Lemma 7 let us apply Theorem 3.4.1 from Silvestrov (2004) to the compositions
of stochastic processes κε(t), t ≥ 0 and tν∗ε , t ≥ 0 that yield the following relation,
ξε(t) = κε(tν∗ε ), t ≥ 0 J−→ θ0(tν0), t ≥ 0 as ε→ 0. �

As a concluding remark, I would like to say that getting of necessary and sufficient
conditions of convergence without a gap between their necessary and sufficient parts is
usually a challenging and difficult problem. Here, I would like to mention some prospec-
tives directions for further studies of such conditions of convergence for first-rare-event-
type functionals. It would be interesting to try to weaken the model ergodicity condition
B, i.e., to expand studies to singularly perturbed models. Another model condition C,
seems, also can be weaken. This can cause appearance of additional non-trivial com-
ponents for limiting first-rare-event processes. It would also be interesting to generalize
the above results to the model of first-rare-event reward functionals and processes with
real-valued random summands in defining relations. A generalization of the above results
to the model with countable and general phase spaces X is another open problem. A
conjecture is that some additional compactness conditions for averaging stationary distri-
butions should be involved in this case. Applications of the above results to queuing and
reliability models, communication networks, models of population dynamics, insurance
models, etc. is a prospective and unbounded direction for future studies.
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