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Abstract. The so-called bispectrum is a widely used construction for analyzing nonlinear time series.
In this paper the generalized bispectrum of a homogenous and isotropic stochastic field in 3D is
introduced. The isotropy is considered in third order, and we give some necessary and sufficient
conditions for isotropy of homogenous random fields. The spatial three-point correlation function
(bicovariance function) is given by the bispectrum in terms of a kernel function, which is a superposition
of spherical Bessel-functions and Legendre-polynomials. In return, the same kernel function is used
in expressing the bispectrum by the bicovariance function. As an example, we generalize a model for
non-Gaussian fields, which is the sum of a Gaussian-field and its 2nd degree Hermite-polynomial. This
model can be applied as an alternative to the Gaussian one used in Cosmology for non-Gaussian CMB
temperature fluctuations.

1. Introduction

Homogenous and isotropic stochastic fields have got some growing attention recently
in several fields of science, including Cosmology [31]. Data coming from the cosmic mi-
crowave radiation background – a courtesy of NASA (http://lambda.gsfc.nasa.gov/) –
are available for statistical analysis. The data are placed into a particular pixel struc-
ture on the surface of a 2D sphere. Stochastic modeling of the data includes isotropic
stochastic fields on spheres with small perturbations of gravitational potential fields on
R

3, according to Newtonian Cosmology, [30], [11], [31, p. 139].
The basic theory of homogenous and isotropic stochastic fields in frequency domain

was developed by [32], and several interesting results has been published ever since, see
e.g. [16], [17], [18], [7], and [15]. Another line of investigation is summarized in [3], and a
general one in [33]. All these studies concern to either the Gaussian-case, or the one which
is equivalent to second order structure (covariance function and spectrum) of the fields,
see [20] for application in Geophysics. For instance, the problem of testing Gaussianity
of cosmic microwave background temperature fluctuations on a sphere, involves higher
order spectra, see [27] and the references therein.

In this paper the bispectrum for a homogenous and isotropic stochastic field in 3D is
introduced as a generalization of the bispectrum widely used in time series analysis, [5],
[25]. In this respect we introduce the isotropy in third order, and give some necessary
and sufficient conditions for isotropy for a homogenous field. The spatial three-point
correlation function (bicovariance function) will be given by the bispectrum in terms of
a kernel function, which is a superposition of spherical Bessel-functions and Legendre-
polynomials. In return, the same kernel function serves for expressing the bispectrum by
the bicovariance function. We generalize the model which is the sum of a Gaussian-field
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and its 2nd degree Hermite-polynomial. This model is applied as an alternative to the
Gaussian one used in Cosmology for non-Gaussian CMB temperature fluctuations for
instance, see [14], [10], [2]; and also in signal processing context, see e.g. [22].

We note that the further generalization of the bispectrum to higher order spectra is
not straightforward at all, at least the trispectrum is necessary for understanding the
general pattern, see [26] and [28] for 2D fields.

2. Homogenous and isotropic field

We consider homogenous stochastic real-valued fields X (x) on R
3, let us suppose that

X (x) is continuous (in mean square sense) and apply Rayleigh plane wave expansion in
3D in terms of spherical harmonics Y m

� , see (B.1), (B.6), and spherical Bessel-function
j� (z) of the first kind, (B.7),

X (x) =
∫

R3
eix·ωZ (dω)

= 4π

∞∑
�=0

�∑
m=−�

Y m
� (x̂) i�

∫ ∞

0

j� (ρr)
∫

S2

Y m
� (ω̂)∗ Z

(
Ω (dω̂) ρ2dρ

)
= 4π

∞∑
�=0

�∑
m=−�

Y m
� (x̂)

∫ ∞

0

j� (ρr) Zm
�

(
ρ2dρ

)
, (2.1)

where ω, x ∈ R
3, r = |x| =

√
x2

1 + x2
2 + x2

3, ρ = |ω|, x̂ = x/ |x|, ω̂ = ω/ |ω|, S2 denotes
the unit sphere, Ω (dω̂) = sin ηdηdζ is Lebesgue element of surface area on S2 and

Zm
�

(
ρ2dρ

)
= i�

∫
S2

Y m
� (ω̂)∗ Z

(
Ω (dω̂) ρ2dρ

)
. (2.2)

The second order isotropy of X (x) is defined by Cov
(
X (x) , X

(
y
))

= C
(∣∣x− y

∣∣), i.e.
the covariance does not depend on direction but only the distance. This implies and
implied by that the spectral measure F (dω) / (2π)3 = E |Z (dω)|2 = E

∣∣Z (
Ω (dω̂) ρ2dρ

)∣∣2
is separated F

(
Ω (dω̂) ρ2dρ

)
= Ω (dω̂)F

(
ρ2dρ

)
. There will be no confusion if the unit

vector ω̂ = ω̂ (η, ζ), in frequency domain denotes also the Euler-angles (η, ζ), similarly
(ϑ, ϕ) corresponds to the space unit vector x̂ where η, ϑ ∈ [0, π] are co-latitudes and ζ, ϕ ∈
[0, 2π] are longitudes. In this way the isotropic random field X (x) can be decomposed into
a countable number of mutually uncorrelated stationary processes with a one dimensional
parameter, since

Cov
(
Zk

�1

(
ρ2
1dρ1

)
, Zm

�2

(
ρ2
2dρ2

))
= δ�1−�2δk−mδ (ρ1 − ρ2)F

(
ρ2dρ

)
/ (2π)3 ,

where δk−m and δ (ρ1 − ρ2) denote the Kronecker and Dirac-delta respectively.
An important characterization of the isotropy (in Gaussian-case it concerns to the

covariance function) is the invariance under rotation. Let us consider a rotation g ∈
SO (3), it is known that the spherical harmonics Y m

� at the rotated location are given in
terms of the Wigner D-matrix, more precisely

Λ (g)Y m
� (x̂) =

�∑
k=−�

D
(�)
k,m (g)Y k

� (x̂) ,
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where Λ (g) denotes the operator according to the rotation g, Λ (g)Y k
� (x̂) = Y k

�

(
g−1x̂

)
.

Hence the rotated field has the following form

Λ (g)X (x) = 4π

∞∑
�=0

�∑
m=−�

Y m
�

(
g−1x̂

) ∫ ∞

0

j� (ρr) Zm
�

(
ρ2dρ

)
= 4π

∞∑
�=0

�∑
k=−�

Y k
� (x̂)

∫ ∞

0

j� (ρr)
�∑

m=−�

D
(�)
k,m (g)Zm

�

(
ρ2dρ

)
= 4π

∞∑
�=0

�∑
k=−�

Y k
� (x̂)

∫ ∞

0

j� (ρr)Zk
�

(
ρ2dρ

)
. (2.3)

Definition 1. A homogenous field X (x) called strictly isotropic if X (x) equals to
Λ (g)X (x) in distribution for each rotation g ∈ SO (3).

The assumption of strict isotropy is equivalent to that of the distribution of the rotated
array

Zk
�

(
ρ2dρ

)
=

�∑
m=−�

D
(�)
k,m (g)Zm

�

(
ρ2dρ

)
, (2.4)

equals to the distribution of the array Zm
�

(
ρ2dρ

)
for each g ∈ SO (3). In Gaussian-

case, isotropy (strictly) follows directly from the orthogonality of Wigner D-matrices, see
Appendix (B.13), (B.14).

It is well known, see [32] for instance, that the covariance function

C2 (r) = Cov
(
X (x) , X

(
y
))

= C
(∣∣x− y

∣∣)
of a homogenous and isotropic field X (x) is expressed by the spectrum

C2 (r) =
1

2π2

∫ ∞

0

j0 (ρr) F
(
ρ2dρ

)
,

in terms of spherical Bessel-function j� (z), actually j0 (ρ) = sin ρ/ρ. In turn, when
F

(
ρ2dρ

)
= S2 (ρ) ρ2dρ we also have the inversion

S2 (ρ) = 4π

∫ ∞

0

j0 (ρr) C2 (r) r2dr.

3. Bispectrum

A Gaussian homogenous and isotropic field X (x) is invariant under translations and
rotations, moreover, distributional properties are equivalent to the same properties of co-
variance function. It follows from (2.3) that a homogenous field X (x) is strictly isotropic
if and only if the distribution of rotated stochastic measures Zm

� , see (2.4) equal in dis-
tribution to Zm

� . From now on we assume the existence of third order moments, at least.
Similarly to the second order case, we refer to the third order cumulants as spatial three-
point covariance functions, or simply bicovariances. Strict isotropy implies the invariance
under rotations of the bicovariances as well. If the bicovariances of X (x) are invariant
under rotations, then X (x) will be called isotropy in third order.

Lemma 1. Let us assume the absolute continuity of third order cumulants

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
, Zm2

�2

(
ρ2
2dρ2

)
, Zm3

�3

(
ρ2
2dρ2

))
of stochastic measures Zm

� . The necessary and sufficient condition of isotropy in third
order of a homogenous field X (x) is that the triangle array Zm

� of the spectral measures
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fulfil equation

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
, Zm2

�2

(
ρ2
2dρ2

)
, Zm3

�3

(
ρ2
3dρ3

))
=

(

1 
2 
3

m1 m2 m3

)
B�1,�2,�3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk,

(3.1)

such that

B�1,�2,�3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk

=
∑
p,q,r

(

1 
2 
3

p q r

)
Cum

(
Zp

�1

(
ρ2
1dρ1

)
, Zq

�2

(
ρ2
2dρ2

)
, Zr

�3

(
ρ2
3dρ3

))
,

where
(


1 
2 
3

m1 m2 m3

)
denotes the Wigner 3j-symbols (see Appendix B, 5).

See Appendix A.1 for the proof.
Now, we return to the bicovariance, assume absolute continuity of bispectral measure

Cum (X (x1) , X (x2) , X (x3)) =
∫∫∫

R3×3
ei(Σ3

1xk·ωk)S0
3 (ω1, ω2, ω3) δ

(
Σ3

1ωk

) 3∏
k=1

dωk,

in this way we define the bispectrum S0
3 for a homogenous process. It is translation

invariant, hence it writes

Cum (X (x1) , X (x2) , X (0)) =
∫∫

R2×3
ei(x1·ω1+x2·ω2)S0

3 (ω1, ω2,−ω1 − ω2)
2∏

k=1

dωk.

Let us assume isotropy in third order, we rotate first x2 into the North Pole N =
(0, 0, 1), it becomes r2N , then x1 into the plane ϕ = 0. The result is that the bicovari-
ances are defined by the triplet (r1, r2, ϑ), r1, r2 ≥ 0, ϑ ∈ [0, π], hence C3 (r1, r2, ϑ) =
Cum (X (r1x̂) , X (r2N) , X (0)), where x̂ = (sin ϑ, 0, cosϑ). The consequence for the bis-
pectrum is that for each g ∈ SO (3)

Cum (X (gx1) , X (gx2) , X (gx3))

=
∫∫∫

R3×3
ei(Σ3

1xk·ωk)S0
3 (gω1, gω2, gω3) δ

(
Σ3

1ωk

) 3∏
k=1

dωk

= Cum (X (x1) , X (x2) , X (x3)) ,

hence S0
3 (gω1, gω2, gω3) = S0

3 (ω1, ω2, ω3), this yields that S3 depends on ρ1, ρ2, ρ3 and
ω̂k · ω̂m only, more precisely it depends on the angles between the vectors, and all these
angles belong into [0, π]. In addition ω1, ω2, ω3 fulfill the equation Σ3

1ωk = 0, i.e. ω1,
ω2, ω3 form a triangle. Now, a triangle is defined by its sides ρ1, ρ2, ρ3 and is invariant
under the movement of a rigid body, hence S0

3 (ω1, ω2, ω3) = S3 (ρ1, ρ2, ρ3) / (4π)3. By
the law of cosines a side, let’s say ρ3, is expressed by the two other sides ρ1, ρ2, and
the angle η contained between these sides; ρ3 =

√
ρ2
1 + ρ2

2 − 2ρ1ρ2 cos η, η ∈ [0, π].
Hence S3 (ρ1, ρ2, ρ3) = S3 (ρ1, ρ2, η), where 0 < ρ1, ρ2, and η ∈ [0, π], we shall use both
equivalent notations S3 (ρ1, ρ2, ρ3) and S3 (ρ1, ρ2, η). Let us consider the cumulant of
spectral measure, we have

Cum (Z (dω1) , Z (dω2) , Z (dω3)) = δ
(
Σ3

1ωk

)
S3 (ω1, ω2, ω3) dω1dω2dω3

= δ
(
Σ3

1ρkω̂k

)
S3 (ρ1, ρ2, ρ3)

3∏
k=1

Ω (dω̂k)
ρ2

kdρk

(2π)2
, (3.2)
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again ω1 + ω2 + ω3 = 0, hence the wave numbers ρ1, ρ2, and ρ3 satisfy the triangle
relation |ρ1 − ρ2| ≤ ρ3 ≤ ρ1 + ρ2, (they should be able to form a triangle). The equation
(3.2) implies that the stochastic measures Zm

� fulfill some particular connection with the
bispectrum.

Lemma 2. Let us assume the absolute continuity of third order cumulants
Cum (Z (dω1) , Z (dω2) , Z (dω3)). Then

Cum
(
Zn1

�1

(
ρ2
1dρ1

)
, Zn2

�2

(
ρ2
2dρ2

)
, Zn3

�3

(
ρ2
3dρ3

))
=

(

1 
2 
3

n1 n2 n3

)
J�1,�2,�3 (ρ1, ρ2, ρ3)S3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk

(2π)2

where J�1,�2,�3 is defined by (A.4).

See Appendix A.2 for the proof.

Remark 1. We have some more specific form for the function B�1,�2,�3 in Lemma 1,
more precisely the equation (A.3) shows that

B�1,�2,�3 (ρ1, ρ2, ρ3) = J�1,�2,�3 (ρ1, ρ2, ρ3)S3 (ρ1, ρ2, ρ3) .

We shall use the following particular case

Cum
(
Zm

�1

(
ρ2
1dρ1

)
, Z0

�2

(
ρ2
2dρ2

)
, Z0

0

(
ρ2
3dρ3

))
= (−1)Σ�k

√
πδρ�

ρ1ρ2ρ3

(

1 
2 0
0 0 0

)2

√√√√ 2∏
k=1

(2
k + 1)S3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk

4π

= δ�1−�2δm

√
πδρ� (2
1 + 1)

ρ1ρ2ρ3
S3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk

(2π)2
,

where ρ� = 0, if and only if the wave numbers ρ1, ρ2, and ρ3 do not satisfy the triangle
relation, and 
1 = 
2 since the triangular inequality |
1 − 
3| ≤ 
2 ≤ 
1 + 
3 should be
valid, see selection rules, Appendix B, 5.

The bicovariances for a homogenous and isotropic field

C3 (r1, r2, ϑ) = Cum(X(r1x̂), X(r2N), X(0)).

For deriving the bispectrum we shall use the series representation of the field (2.1) in the
following locations

X (rN) = 4π

∞∑
�=0

√
2
 + 1

4π

∫ ∞

0

j� (ρr) Z0
�

(
ρ2dρ

)
, (3.3)

X (0) =
∫

R3
Z (dω) =

√
4π

∫ ∞

0

Z0
0

(
ρ2dρ

)
, (3.4)

where we applied the specific values Y m
� (N) = δm

√
�+1
4π , Y 0

0 (x̂) =
√

1
4π , of the spherical

harmonics.
The main result of this paper is the construction of kernel functions

T (r1, r2, ϑ|ρ1, ρ2) =
1

8π4

∞∑
�=0

(2
 + 1)2 P� (cosϑ) j� (ρ1r1) j� (ρ2r2) (3.5)

T (r1, r2|ρ1, ρ2,η) = 32π2
∞∑

�=0

(2
 + 1)−1 P� (cos η) j� (ρ1r1) j� (ρ2r2) , (3.6)

such that it provides correspondence between bicovarince and bispectrum, and vica versa.
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Theorem 1. Assume isotropy in third order and the integrals below exist then

C3 (r1, r2, ϑ) =
∫∫ ∞

0

∫ π

0

T (r1, r2, ϑ|ρ1, ρ2)S3 (ρ1, ρ2, η) ρ2
1dρ1ρ

2
2dρ2 sin ηdη, (3.7)

and conversely

S3 (ρ1, ρ2, η) =
∫∫ ∞

0

∫ π

0

T (r1, r2|ρ1, ρ2,η) C3 (r1, r2, ϑ) r2
1dr1r

2
2dr2 sin ϑdϑ.

See Appendix A.3 for the proof.

Remark 2. The kernel (3.5) provides an orthogonal series expansion in terms of Leg-
endre-polynomials for both bicovariance C3 and for bispectrum S3.

4. Laplacian-fields

Consider a homogeneous isotropic field X on R
3 which fulfills the equation(

∇2 − c2
)
X = ∂W, (4.1)

where ∇2 denotes the Laplace-operator on R
3, and ∂W is white noise, possible non-

Gaussian. The stochastic equation (4.1) is meant by L2 sense, see [32] p.16.
The Laplacian in spherical coordinates acts on X (x), as

∇2X (x) =
(

1
r2
�B +

2
r

∂

∂r
+

∂2

∂r2

)
X (x)

= −4π

∞∑
�=0

�∑
m=−�


 (
 + 1)
r2

Y m
� (x̂)

∫ ∞

0

j� (ρr) Zm
�

(
ρ2dρ

)
+ 4π


 (
 + 1)
r2

X (x)− 4π
∞∑

�=0

�∑
m=−�

Y m
� (x̂)

∫ ∞

0

j� (ρr) ρ2Zm
�

(
ρ2dρ

)
,

where �B denotes the Lapalce–Beltrami-operator. Such that the solution of (4.1) is

X (x) = −4π

∞∑
�=0

�∑
m=−�

Y m
� (x̂)

∫ ∞

0

j� (ρr)
1

ρ2 + c2
Wm

�

(
ρ2dρ

)
,

with E
∣∣Wm

�

(
ρ2dρ

)∣∣2 = ρ2dρ. Its spectral density (according to measure ρ2dρ), see [32],
Example 6, p. 24, is

S (ρ) =
1

(ρ2 + c2)2
, ρ2 = ‖ω‖2 ,

with covariance function of Matérn Class

C (r) =
1

(2π)2
(cr)1/2

K1/2 (cr)
c

,

where K1/2 is the modified Bessel (Hankel) function, see [1]. A differential operator(
∇2 − c2

)ν with ν > 0 can also be considered In this case the covariance function is pro-
portional to (cr)1/2−ν/2 K1/2−ν/2 (cr), see [23] p. 179, 2.12.4.28 This can be generalized
further by similar methods of the paper [13].

Bispectrum with measure
∏3

k=1

(
ρ2

kdρk/4π
)

is

S3 (ρ1, ρ2, ρ3) =
3∏

k=1

1
ρ2

k + c2
, ρ2

3 = ρ2
1 + ρ2

2 − 2ρ1ρ2 cos η,
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Theorem 1 gives the series representation

C3 (r1, r2, ϑ) =
∫∫ ∞

0

∫ π

0

T (r1, r2, ϑ|ρ1, ρ2)S3 (ρ1, ρ2, η) ρ2
1dρ1ρ

2
2dρ2 sin ηdη

=
1

8π4

∞∑
�=0

(2
 + 1)2 P� (cosϑ)

×
∫∫ ∞

0

j� (ρ1r1)
ρ2
1 + c2

j� (ρ2r2)
ρ2
2 + c2

ln
(ρ1 − ρ2)

2 + c2

(ρ1 + ρ2)
2 + c2

ρ1dρ1ρ2dρ2,

for the bicovariance function of the Laplacian-field (4.1), since∫ π

0

1
ρ2
3 + c2

sin ηdη =
1

2ρ1ρ2
ln

(ρ1 − ρ2)
2 + c2

(ρ1 + ρ2)
2 + c2

.

5. A nonlinear model: Homogenous isotropic field with Hermite rank 2

We consider a Gaussian-field

X (x) =
∫

R3
eix·ωa (ρ)W (dω)

= 4π
∞∑

�=0

�∑
m=−�

Y m
� (x̂)

∫ ∞

0

j� (ρr) a (ρ)Wm
�

(
ρ2dρ

)
,

where W (dω) is Gaussian, E |W (dω)|2 = 1
(2π)3

dω. A model which is non-Gaussian is

H (x) = X (x) + fNL

(
X2 (x)− EX2 (x)

)
,

see [14]. The coefficient fNL is measuring the nonlinearity of the CMB observations for
instance. Notice that X2 (x)−EX2 (x) is Hermite polynomial of degree 2 of the Gaussian
random variable X (x), and H (x) is an elementary, very simple case of a chaotic field

H (x) =
∞∑

k=0

∫
R3×k

exp(itΣω1:k)fk(ω1:k)W (dω1:k) , (5.1)

where ω1:k = [ω1, ω2, . . . , ωk], W (dω1:k) is the multiple Wiener-Itô stochastic spectral
measure, see [6], [21]. H (x) is subordinated to the complex Gaussian white noise spectral
measure.

Consider a quadratic field

H2 (X (x)) = X2 (x)− EX2 (x) ,

and use the bipolar spherical harmonics Y �,m
�1,�2

(ω̂1:2) =
[
Y �1 (ω̂1)⊗ Y �2 (ω̂2)

]
�,m

, see B,
7, hence we can rewrite

H2 (X (x)) = (4π)2
∑
�,m

Y m
� (x̂)

∞∑
�1:2=0

√
(2
1 + 1) (2
2 + 1)

4π (2
 + 1)
C�,0

�1,0;�2,0 (5.2)

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)W �,m
�1,�2

(
2∏

q=1

ρ2
qdρq

)
where

W �,m
�1,�2

(
2∏

q=1

ρ2
qdρq

)
=

∫
S2
2

Y �,m
�1,�2

(ω̂1:2)
∗
W

(
2∏

q=1

ρ2
qdρqΩ

(
dω̂q

))
,

see B, A.4 for details. Here the stochastic integral would not change if we replace Y �,m
�1,�2

with its Ỹ �,m
�1,�2

(ω̂1:2) symmetrized version (according to ω̂1 and ω̂2).
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The nonlinear model we shall consider is

H (x) = X1 (x) + X2 (x)

=
∫

R3
eix·ωa (ρ)W (dω) +

∫
R3×2

eix·(ω1+ω2)a2 (ρ1:2)W (dω1:2) ,

where the quadratic transfer function a2 (ρ1:2) is symmetric function of its variables. We
put H (x) in series expansion according to

X1 (x) = 4π

∞∑
�=0

�∑
m=−�

Y m
� (x̂)

∫ ∞

0

j� (ρr) a1 (ρ)Wm
�

(
ρ2dρ

)
, (5.3)

and

X2 (x) = (4π)2
∞∑

�=0

�∑
m=−�

Y m
� (x̂)

∞∑
�1:2=0

√
(2
1 + 1) (2
2 + 1)

4π (2
 + 1)
C�,0

�1,0;�2,0

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a2 (ρ1:2)W �,m
�1,�2

(
2∏

q=1

ρ2
qdρq

)
, (5.4)

see A.4.

Remark 3. The linear transfer function a1 could be a function of ω, in this case as we
have seen above, the isotropy requires that |a1 (ω)|2 should only depend on ρ.

Remark 4. One can show that if the quadratic transfer function a2 is a function of
(ρ1:2, ω̂1 · ω̂2) (ω̂1 · ω̂2 is the cosine of angle contained between ω̂1 and ω̂2) then the field
X2 is still isotropic. In this case we do not have the orthogonal series representation
(5.4).

Let us consider the rotation of the field Λ (g)X2 (x)

Λ (g)X2 (x) = (4π)2
∑
�,m

Y m
�

(
g−1x̂

) ∞∑
�1:2=0

√
(2
1 + 1) (2
2 + 1)

4π (2
 + 1)
C�,0

�1,0;�2,0

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)
∫

S2
2

a2 (ρ1:2)Y �,m
�1,�2

(ω̂1:2)
∗ dW

×
(

2∏
q=1

ρ2
qdρqΩ (dω̂k)

)

= (4π)2
∑
�,n

Y n∗
� (x̂)

∞∑
�1:2=0

√
(2
1 + 1) (2
2 + 1)

4π (2
 + 1)
C�,0

�1,0;�2,0

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)

×
∫

S2
2

a2 (ρ1:2)
�∑

m=−�

D(�)
n,m (g)Y �,m

�1,�2
(ω̂1:2)

∗
dW

(
2∏

q=1

ρ2
qdρqΩ (dω̂k)

)
,

The rotated spherical harmonics
∑�

m=−� D
(�)
n,m (g)Y �,m

�1,�2
(ω̂1:2)

∗ = Y �,n
�1,�2

(
g−1ω̂1:2

)∗,
and Wiener-Ito measure W

(∏2
q=1 ρ2

qdρqΩ (dω̂k)
)

is rotational invariant therefore we

obtain Λ (g)X2 (x) d= X2 (x), hence the field is rotational invariant.
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Once we have established that X2 (x) is homogenous and isotropic, the covariance
of X2 (x) depends on distance r between two locations, and it can be calculated by
CX2 (r) = Cov (X2 (rN) , X2 (0)), these particular values are

X2 (0) = 4π

∫∫ ∞

0

a2 (ρ1:2)W 0,0
0,0

(
2∏

q=1

ρ2
qdρq

)
, (5.5)

and

X2 (rN) = 4π
∑

�

∞∑
�1:2=0

√
(2
1 + 1) (2
2 + 1)C�,0

�1,0;�2,0

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a2 (ρ1:2)W �,0
�1,�2

(
2∏

q=1

ρ2
qdρq

)
, (5.6)

We have

CX2 (r) = (4π)2
∫ ∞

0

∫ ∞

0

j0 (ρ1r) j0 (ρ2r) |a2 (ρ1:2)|2 ρ2
2dρ2ρ

2
1dρ1,

the inversion formula is used for the spectrum

SX2 (ρ) = 4π

∫ ∞

0

j0 (ρr) C2 (r) r2dr

= 64π3

∫ ∞

0

∫ ∞

0

∫ ∞

0

j0 (ρ1r) j0 (ρ2r) j0 (ρr) r2dr |a2 (ρ1:2)|2 ρ2
2dρ2ρ

2
1dρ1

= 16π4

∫ ∞

ρ

1
ρ1

∫ ρ1+ρ2

ρ1−ρ2

|a2 (ρ1:2)|2 ρ2
1dρ1ρ

2
2dρ2

= (2π)4
∫ ∞

ρ

∫ ρ1+ρ

ρ1−ρ

|a2 (ρ1:2)|2 ρ1dρ1ρ
2
2dρ2,

see (B.9).
Now the spectrum of H (x) is simple, it is the sum of spectra, since – because of the

orthogonality of multiple Wiener-Itô integrals – we have

C2 (r) =
1

2π2

∫ ∞

0

j0 (ρr)
(
|a1 (ρ)|2 + SX2 (ρ)

)
ρ2dρ,

therefore the spectrum is
(
|a1 (ρ)|2 + SX2 (ρ)

)
/2π2.

5.1. Bispectrum. Since we have established homogeneity and isotropy of H (x), the
bispectrum is derived by finding an expression the bicovariance

Cum (H (r1x̂) , H (r2N) , H (0))

= Cum (X1 (r1x̂) + X2 (r1x̂) , X1 (r2N) + X2 (r2N) , X1 (0) + X2 (0)) .

The results for cumulants of Hermite-polynomials of Gaussian-processes applies here
([25]), and we get

Cum (H (r1x̂) , H (r2N) , H (0)) = Cum (X1 (r1x̂) , X1 (r2N) , X2 (0))

+ Cum (X1 (r1x̂) , X2 (r2N) , X1 (0))

+ Cum (X2 (r1x̂) , X1 (r2N) , X1 (0))

+ Cum (X2 (r1x̂) , X2 (r2N) , X2 (0)) .
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It turns out that

Cum

(
Wm1

�1

(
ρ2
1dρ1

)
, W 0

�2

(
ρ2
2dρ2

)
, W 0,0

0,0

(
2∏

q=1

ρ2
qdρq

))
= 2δ�1δm1δ�2

2∏
q=1

ρ2
qdρq

Cum

(
Wm3

�3

(
ρ2
1dρ1

)
, W �,0

�1,�2

(
2∏

q=1

ρ2
pdρp

)
, W 0

0

(
ρ2
2dρ2

))
= 2δ�1δm3δ�2−�3δ�−�2

2∏
q=1

ρ2
qdρq

Cum

(
W �,m

�1,�2

(
2∏

q=1

ρ2
qdρq

)
, W 0

�3

(
ρ2
2dρ2

)
, W 0

0

(
ρ2
1dρ1

))
= 2δ�1δmδ�2−�3δ�−�2

2∏
q=1

ρ2
qdρq,

where we applied the identity C�,0
0,0;�,0 = 1. These cumulants imply readily

Cum (X1 (r1x̂) , X1 (r2N) , X2 (0)) + Cum (X1 (r1x̂) , X2 (r2N) , X1 (0))

+ Cum (X2 (r1x̂) , X1 (r2N) , X1 (0))

= 6 (4π)
∫∫ ∞

0

a1 (ρ1) a1 (ρ2) a2 (ρ1:2) j0 (ρ1r1) j0 (ρ2r2)
2∏

q=1

ρ2
qdρq.

Similar calculation can be found in [5] Example 4. The third order cumulants according
to the field X2 are given by

Cum

(
W �,m

�1,�2

(
2∏

q=1

ρ2
qdρq

)
, W k,0

k1,k2

(
2∏

q=1

ρ2
pdρp

)
, W 0,0

0,0

(
2∏

q=1

ρ2
qdρq

))

= 8
∫

S
2×3
2

Y �,m
�1,�2

(ω̂1:2)Y k,0
k1,k2

(ω̂3:4) δ (ω̂2 + ω̂3) δ (ρ2 − ρ3) δ (ω̂4 + ω̂5)

× δ (ρ4 − ρ5) δ (ω̂6 + ω̂1) δ (ρ6 − ρ1)
6∏

q=1

ρ2
pdρpΩ

(
dω̂p

)
= 8 (4π) δ�1δk2δ�2−k1δ�2−�δk−�δmδ (ρ2 − ρ3) δ (ρ4 − ρ5) δ (ρ6 − ρ1)

6∏
q=1

ρ2
pdρp,

since ∫
S3
2

Y �,m
�1,�2

(ω̂1:2)Y k,n
k1,k2

(−ω̂2, ω̂3)
3∏

q=1

Ω
(
dω̂q

)
=

�1:2∑
m1:2=−�1:2

k1:2∑
n1:2=−k1:2

C�,m
�1,m1;�2,m2

Ck,n
k1,n1;k2,n2

×
∫

S3
2

Y m1
�1

(ω̂1)Y m2
�2

(ω̂2)Y n1
k1

(−ω̂2)Y n2
k2

(ω̂3)
3∏

q=1

Ω
(
dω̂q

)
= 4π

�1:2∑
m1:2=−�1:2

δ�1δm1δ�2−k1δm2+n1δk2δn2C
�,m
�1,m1;�2,m2

Ck,n
k1,n1;k2,n2

= 4π
(
C�,m

0,0;�,m

)2

δ�1δk2δ�2−k1δ�2−�δk−�δn−m.



148 GYÖRGY TERDIK AND LÁSZLÓ NÁDAI

It follows from the above

Cum (X2 (r1x̂) , X2 (r2N) , X2 (0))

= 8 (4π)4
∑

�

(2
 + 1)P� (cosϑ)
∫∫∫ ∞

0

j0 (ρ1r1) j0 (ρ2r2) j� (ρ2r1) j� (ρ3r2)

a2 (ρ1:2) a2 (ρ2, ρ3) a2 (ρ3, ρ1)
3∏

q=1

ρ2
qdρq.

The nonlinear model H which containes a linear Gaussian term X1 and a nonlinear
term X2 has a non-zero bispectrum (as far as X2 
= 0). This bispectrum is showing up
expressing the bicovariance function of H in terms of transfer functions a1 and a2.

Lemma 3.

Cum (H (r1x̂) , H (r2N) , H (0))

= 6 (4π)
∫∫ ∞

0

a1 (ρ1) a1 (ρ2) a2 (ρ1:2)
2∏

q=1

j0 (ρqr)
2∏

q=1

ρ2
qdρq

+ 8 (4π)4
∑

�

(2
 + 1)P� (cosϑ)

×
∫∫∫ ∞

0

j0 (ρ1r1) j� (ρ2r1) j0 (ρ2r2) j� (ρ3r2)

× a2 (ρ1:2) a2 (ρ2, ρ3) a2 (ρ3, ρ1)
3∏

q=1

ρ2
qdρq.

Appendix A. Proofs

A.1. Proof for Lemma 1.

Proof. It follows from (2.3) that a homogenous field X (x) is isotropic in third order iff
the bicovariances of the rotated Zm

� (2.4) equal to the bicovariances of Zm
� , i.e.

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
,Zm2

�2

(
ρ2
2dρ2

)
,Zm3

�3

(
ρ2
2dρ2

))
= Cum

(
Zm1

�1

(
ρ2
1dρ1

)
, Zm2

�2

(
ρ2
2dρ2

)
, Zm3

�3

(
ρ2
3dρ3

))
.

(A.1)

The left side is written by (2.4)

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
,Zm2

�2

(
ρ2
2dρ2

)
,Zm3

�3

(
ρ2
2dρ2

))
=

�1,�2,�3∑
p,q,r=−�1,�2,�3

D(�1)
m1,p (g)D(�2)

m2,q (g)D(�3)
m3,r (g)

× Cum
(
Zp

�1

(
ρ2
1dρ1

)
, Zq

�2

(
ρ2
2dρ2

)
, Zr

�3

(
ρ2
3dρ3

))
.

Now from third order isotropy follows

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
, Zm2

�2

(
ρ2
2dρ2

)
, Zm3

�3

(
ρ2
3dρ3

))
=

�1,�2,�3∑
p,q,r=−�1,�2,�3

D(�1)
m1,p (g)D(�2)

m2,q (g)D(�3)
m3,r (g)

× Cum
(
Zp

�1

(
ρ2
1dρ1

)
, Zq

�2

(
ρ2
2dρ2

)
, Zr

�3

(
ρ2
3dρ3

))
,
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integrate both sides over the sphere according to the invariant Haar-measure, and by
Gaunt-integral (B.16) we have

Cum
(
Zm1

�1

(
ρ2
1dρ1

)
, Zm2

�2

(
ρ2
2dρ2

)
, Zm3

�3

(
ρ2
3dρ3

))
=

(

1 
2 
3

m1 m2 m3

)
B�1,�2,�3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk,

where

B�1,�2,�3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk

=
∑
p,q,r

(

1 
2 
3

p q r

)
Cum

(
Zp

�1

(
ρ2
1dρ1

)
, Zq

�2

(
ρ2
2dρ2

)
, Zr

�3

(
ρ2
3dρ3

))
.

In other way around from (3.1) using (B.15) follows (A.1). �

A.2. Proof for Lemma 2.

Proof. We apply the Rayleigh plane wave expansion (B.6) for eiλ·Σ3
1xkand get

δ
(
Σ3

1ρkω̂k

)
=

1
(2π)3

∫ ∞

0

∫
S2

eiλ·Σ3
1ωkΩ

(
dλ̂

)
λ2dλ

= 23

∫ ∞

0

∫
S2

∞∑
g1:3=0

g1:3∑
m1:3=−g1:3

3∏
a=1

igajga (ρkλ)Y ma
ga

(ω̂k)Y ma
ga

(
λ̂
)

× Ω
(
dλ̂

)
λ2dλ.

(A.2)

The bicovariance of the stochastic measure

Zm
�

(
ρ2dρ

)
= i�

∫
S2

Y m
� (ω̂)∗ Z

(
Ω (dω̂) ρ2dρ

)
,

according to (3.2) is

Cum
(
Zn1

�1

(
ρ2
1dρ1

)
, Zn2

�2

(
ρ2
2dρ2

)
, Zn3

�3

(
ρ2
3dρ3

))
=

∫∫∫
S2

3∏
k=1

i�kY nk

�k
(ω̂k)∗ δ

(
Σ3

1ρkω̂k

) 3∏
k=1

Ω (dω̂k)S3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk

(2π)2

= 23

∫ ∞

0

∫
S2

∞∑
g1:3=0

g1:3∑
m1:3=−g1:3

3∏
a=1

igajga (ρkλ) Y ma
ga

(
λ̂
)

Ω
(
dλ̂

)
λ2dλ

×
∫∫∫

S2

i�k

3∏
k=1

Y nk

�k
(ω̂k)∗

3∏
a=1

Y ma
ga

(ω̂k)
3∏

k=1

Ω (dω̂k)S3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk

(2π)2

=
(−1)Σ�k

√
4π

√√√√ 3∏
k=1

(2
k + 1)G�1,�2,�3
n1,n2,n3

∫ ∞

0

3∏
k=1

j�k
(ρkλ) λ2dλS3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk

(2π)2
,

since the spherical harmonics are orthogonal, where G�1,�2,�3
n1,n2,n3

is the Gaunt integral
G�1,�2,�3

n1,n2,n3,0,0,0, see (B.16), based on Condon and Shortley phase convention (B.12) which

gives the connection between Wigner rotation D
(�)
k,m (g) and spherical harmonics Y m

�

(
λ̂
)
,
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namely

∫
S2

Y n1
�1

(
λ̂
)

Y n2
�2

(
λ̂
)

Y n3
�3

(
λ̂
)

Ω
(
dλ̂

)
=

1√
4π

√√√√ 3∏
k=1

(2
k + 1)G�1,�2,�3
n1,n2,n3

.

The integral of the spherical Bessel-functions included in the bicovariance has a clear
form, see [12] 6.578.8, p. 709. Introduce δρ� = δρ2

1+ρ2
2−2ρ1ρ2 cos η−ρ2

3
, equivalently the

wave numbers ρ1, ρ2, and ρ3 should satisfy the triangle relation: |ρ1 − ρ2| < ρ3 < ρ1+ρ2,
ρ1, ρ2 > 0, ρ2

3 = ρ2
1 + ρ2

2 − 2ρ1ρ2 cos η, then∫ ∞

0

j� (ρ1λ) j� (ρ2λ) j0 (ρ3λ) λ2dλ = δρ�
π

4ρ1ρ2ρ3
,

see (B.10), replace this into the bicovariance, we have

Cum
(
Zn1

�1

(
ρ2
1dρ1

)
, Zn2

�2

(
ρ2
2dρ2

)
, Zn3

�3

(
ρ2
3dρ3

))
(A.3)

=
(


1 
2 
3

n1 n2 n3

)
J�1,�2,�3 (ρ1, ρ2, ρ3) S3 (ρ1, ρ2, ρ3)

3∏
k=1

ρ2
kdρk

(2π)2

where

J�1,�2,�3 (ρ1, ρ2, ρ3) = (−1)Σ�k

√
πδρ�

ρ1ρ2ρ3

√√√√ 3∏
k=1

(2
k + 1)
(


1 
2 
3

0 0 0

)
. (A.4)

This completes the proof. �

A.3. Proof for Theorem 1.

Proof.

Cum (X (r1x̂) , X (r2N) , X (0))

=
√

4π (4π)2
∫∫∫ ∞

0

∞∑
�1=0

�1∑
m=−�1

Y m
�1 (x̂)

√
2
2 + 1

4π

∞∑
�2=0

j�1 (ρ1r1) j�2 (ρ2r2)

× Cum
(
Zm

�1

(
ρ2
1dρ1

)
, Z0

�2

(
ρ2
2dρ2

)
, Z0

0

(
ρ2
3dρ3

))
=

∞∑
�1=0

Y 0
�1 (x̂)

√
2
1 + 1 (2
1 + 1)

×
∫∫∫ ∞

0

j�1 (ρ1r1) j�1 (ρ2r2)
√

πδρ�
4π4ρ1ρ2ρ3

S3 (ρ1, ρ2, ρ3)
3∏

k=1

ρ2
kdρk.

We rewrite the integral

∫∫∫ ∞

0

j� (ρ1r1) j� (ρ2r2)S3 (ρ1, ρ2, ρ3)
δρ�

ρ1ρ2ρ3

3∏
k=1

ρ2
kdρk

=
∫∫ ∞

0

∫ ρ1+ρ2

|ρ1−ρ2|
j� (ρ1r1) j� (ρ2r2)S3 (ρ1, ρ2, ρ3) ρ1dρ1ρ2dρ2ρ3dρ3

=
∫∫ ∞

0

∫ π

0

j� (ρ1r1) j� (ρ2r2)S3 (ρ1, ρ2, ρ3) sin ηdηρ2
1dρ1ρ

2
2dρ2,
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where ρ2
3 = ρ2

1 + ρ2
2 − 2ρ1ρ2 cos η, and ρ3dρ3 = ρ1ρ2 sin ηdη, therefore

C3 (r1, r2, ϑ) = Cum (X (r1x̂) , X (r2N) , X (0))

=
1

8π4

∫∫ ∞

0

∫ π

0

∞∑
�=0

(2
 + 1)2 P� (cosϑ) j� (ρ1r1) j� (ρ2r2)S3 (ρ1, ρ2, ρ3)

×
3∏

k=1

ρ2
kdρk

=
∫∫ ∞

0

∫ π

0

T (r1, r2, ϑ|ρ1, ρ2)S3 (ρ1, ρ2, ρ3) ρ2
1dρ1ρ

2
2dρ2 sin ηdη

kernel T (r1, r2, ϑ|ρ1, ρ2), (3.5), where x̂ = (sinϑ, 0, cosϑ) and ω̂ = (sin η, 0, cos η), ρ2
3 =

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos η. Define

T (r1, r2|ρ1, ρ2,η) = 32π2
∞∑

�=0

(2
 + 1)−1
P� (cos η) j� (ρ1r1) j� (ρ2r2) ,

and consider

I (ρ1, ρ2, η|κ1, κ2, β) =
∫∫ ∞

0

T (r1, r2, ϑ|ρ1, ρ2) T (r1, r2|κ1, κ2, β) r2
1dr1r

2
2dr2,

when x̂ = (sin ϑ, 0, cosϑ), Y 0
� (x̂) =

√
2�+1
4π P� (x̂ ·N) =

√
2�+1
4π P� (cosϑ). Use the orthog-

onality of the spherical harmonics and the Bessel-functions ((B.8) and [29]. 5.6.1.1,
p.141)

I (ρ1, ρ2, η|κ1, κ2, β) =
4
π2

πδ (ρ1 − κ1)
2ρ2

1

πδ (ρ2 − κ2)
2ρ2

2

∞∑
�=0

2
 + 1
2

P� (cosϑ)P� (cos η)

=
δ (ρ1 − κ1)

ρ2
1

δ (ρ2 − κ2)
ρ2
2

δ (ϑ− η) ,

here we have put ω̂ = (sinβ, 0, cosβ). Now∫∫ ∞

0

∫ π

0

C3 (r1, r2, ϑ) T (r1, r2|κ1, κ2, β) r2
1dr1r

2
2dr2 sinϑdϑ

=
∫∫ ∞

0

∫ π

0

(∫∫ ∞

0

∫ π

0

T (r1, r2, ϑ|ρ1, ρ2)S3 (ρ1, ρ2, ρ3) ρ2
1dρ1ρ

2
2dρ2 sin ηdη

)
× T (κ1, κ2, β|r1, r2) r2

1dr1r
2
2dr2 sinϑdϑ

=
∫∫ ∞

0

δ (ρ1 − κ1)
ρ2
1

δ (ρ2 − κ2)
ρ2
2

×
∫ π

0

∫ π

0

∞∑
�=0

2
 + 1
2

P� (cosϑ)P� (cos η) S3 (ρ1, ρ2, ϑ) sin ϑdϑ sin ηdηρ2
1dρ1ρ

2
2dρ2

=
∫

S2

S3 (κ1, κ2, κ3) δ (x̂− ω̂) Ω (dx̂) /2π

= S3 (κ1, κ2, β) ,

which completes the proof. �

A.4. Proof of (5.2).
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Proof. We have

H2 (X (x)) = (4π)2
∞∑

�1:2=0

�1:2∑
m1:2=−�1:2

Y m1
�1

(x̂)Y m2
�2

(x̂)

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)
∫

S2
2

Y m1
�1

(ω̂1)
∗ Y m2

�2
(ω̂2)

∗W

(
2∏

q=1

ρ2
qdρqΩ

(
dω̂q

))
,

now use Appendix B, 7,

H2 (X (x)) = (4π)2
∞∑

�1:2=0

�1:2∑
m1:2=−�1:2

∑
�,m

C�,m
�1,m1;�2,m2

Y �,m
�1,�2

(x̂, x̂)

×
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)
∫

S2
2

∑
�,m

C�,m
�1,m1;�2,m2

Y �,m
�1,�2

(ω̂1:2)
∗

×W

(
2∏

q=1

ρ2
qdρqΩ

(
dω̂q

))

= (4π)2
∞∑

�1:2=0

∑
�,m

Y �,m
�1,�2

(x̂, x̂)
∫∫ ∞

0

2∏
q=1

j�q (ρqr) a (ρq)

×
∫

S2
2

Y �,m
�1,�2

(ω̂1:2)
∗
W

(
2∏

q=1

ρ2
qdρqΩ

(
dω̂q

))
,

where we applied
�1:2∑

m1:2=−�1:2

C�,m
�1,m1;�2,m2

C�0,m0
�1,m1;�2,m2

= δ�−�0,δm−m0,,

and

Y �,m
�1,�2

(x̂, x̂) =

√
(2
1 + 1) (2
2 + 1)

4π (2
 + 1)
C�,0

�1,0;�2,0Y
m
� (x̂) . �

Appendix B. Formulae

(1) Orthonormal spherical harmonics with complex values Y m
� (ϑ, ϕ), 
 =

0, 1, 2, . . ., m = −
,−
 + 1, . . . − 1, 0, 1, . . . , 
 − 1, 
 of degree 
 and order m
(rank 
 and projection m)

Y m
� (ϑ, ϕ) = (−1)m

√
2
 + 1

4π

(
−m)!
(
 + m)!

Pm
� (cosϑ) eimϕ, ϕ ∈ [0, 2π] , ϑ ∈ [0, π] , (B.1)

where Pm
� denotes associated normalized Legendre function of the first kind.

The spherical harmonics are eigenfunctions of the square of the orbital angular
momentum operator.

Y 0
� (ϑ, ϕ) =

√
2
 + 1

4π
P� (cosϑ) , (B.2)

Y 0
0 (ϑ, ϕ) =

√
1
4π

,

moreover

Y m
� (N) = δm=0

√
2
 + 1

4π
. (B.3)
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Y m
� is fully normalized∫ 2π

0

∫ π

0

|Y m
� (ϑ, ϕ)|2 sin ϑdϑdϕ = 1.

Some detailed account of spherical harmonics Y m
� can be found in [29] and [24].

some authors do not apply 1/
√

4π in the definition of Y m
� , also for a sphere with

radius R spherical harmonics are normalized additionally Y m
� (ϑ, ϕ) /R. It also

follows

Y m∗
� (ϑ, ϕ) = Y m

� (ϑ,−ϕ)

= (−1)m Y −m
� (ϑ, ϕ) ,

Y −m
� (ϑ, ϕ) = (−1)m e−i2mϕY m

� (ϑ, ϕ) .

Addition formula (see [12], 8.814, [9], 11.4(8)),

�∑
m=−�

Y m∗
� (x̃1)Y m

� (x̃2) =
2
 + 1

4π
P� (cosϑ) , (B.4)

where cosϑ = x̃1 · x̃2.

�∑
m=−�

Y m∗
� (x̃)Y m

� (x̃) =
2
 + 1

4π
, (B.5)

(2) Rayleigh plane wave expansion in 3D:

eiω·x =
∞∑

�=0

i� (2
 + 1) j� (ρr) P� (ω̂ · x̂)

= 4π

∞∑
�=0

�∑
m=−�

i�j� (ρr) Y m
� (ω̂)∗ Y m

� (x̂) , (B.6)

[1, 10.1.47],
(3) Spherical Bessel-function j� of the first kind ([1] 10.1.1), is given by the is

the Bessel-function of the first kind J�+1/2,

j� (z) =
√

π

2z
J�+1/2 (z) , (B.7)

2a2

π

∫
j� (az) j� (bz) z2dz = δ (a− b) , (B.8)

see [4, Sect 11, p.735.] and

∫ ∞

0

j0 (ρ1r) j0 (ρ2r) j0 (ρr) r2dr =

⎧⎨⎩
0, ρ2 < ρ1 − ρ, ρ2 > ρ1 + ρ,
π

8ρ1
, ρ2 = ρ1 − ρ, ρ2 = ρ1 + ρ,

π
4ρ1

, ρ1 − ρ < ρ2 < ρ1 + ρ, ρ1 ≥ ρ > 0, ρ2 > 0,

(B.9)
see [12, 3.763.2, p.438],∫ ∞

0

J�+1/2 (ρ1λ)J�+1/2 (ρ2λ)Jg+1/2 (ρ3λ) λ1/2−gdλ = δρ�
(ρ1ρ2)

g−1/2

√
2πρ

g+1/2
3

sing ηP−g
� (cos η) ,

(B.10)
by [12, 6.578.8, p.686.]



154 GYÖRGY TERDIK AND LÁSZLÓ NÁDAI

Introduce δρ� = δ
(
ρ2
1 + ρ2

2 − 2ρ1ρ2 cos η − ρ2
3

)
, equivalently the wave num-

bers ρ1, ρ2, and ρ3 should satisfy the triangle relation, we have∫ ∞

0

j� (ρ1λ) j� (ρ2λ) j0 (ρ3λ)λ2dλ

=

√
π3

8ρ1ρ2ρ3

∫ ∞

0

J�+1/2 (ρ1λ) J�+1/2 (ρ2λ) J1/2 (ρ3λ) λ1/2dλ

= δρ�
π

4ρ1ρ2ρ3
.

(B.11)

(4) Condon and Shortley phase convention, [8], (4.3.3)

Y m
� (ϑ, ϕ) =

√
2
 + 1

4π
D

(�)
0,−m (γ, ϑ, ϕ) (B.12)

=

√
2
 + 1

4π
D

(�)∗
m,0 (ϕ, ϑ, γ) .

(5) Wigner 3j-symbols (see [19]), notation(

1:3

m1:3

)
=

(

1 
2 
3

m1 m2 m3

)
.

Selection rules: a Wigner 3j symbols vanishes unless
• m1 + m2 + m3 = 0,
• Integer perimeter rule: L = 
1 + 
2 + 
3 is an integer (if m1 = m2 = m3 = 0,

then L is even).
• Triangular inequality |
1 − 
2| ≤ 
3 ≤ 
1 + 
2 is fulfilled.
• There is a one to one correspondence between Wigner 3j-symbols and

Clebsch–Gordan-coefficients

(−1)�1−�2+k

√
2
 + 1

C�,k
�1,k1;�2,k2

=
(


1:2 

k1:2 −k

)
,

(6) Wigner D-matrix Let Λ (g)Y m
� (L) = Y m

�

(
g−1L

)
,

Λ (g)Y m
� (L) =

�∑
k=−�

D
(�)
k,m (g)Y k

� (L) , (B.13)

if 
 is fixed D
(�)
m,k (g) is unitary

�∑
k=−�

D
(�)
m1,k (g)D

(�)∗
m2,k (g) = δm1,m2 , (B.14)

see [29], pp79 for details, also∑
m1,m2,m3

D
(�1)
m1,k1

D
(�2)
m2,k2

D
(�3)
m3,k3

(

1:3

m1:3

)
=

(

1:3

k1:3

)
. (B.15)

The Gaunt-type integral

G�1,�2,�3
k1,k2,k3;m1,m2,m3

=
∫

SO(3)

D
(�1)
m1,k1

D
(�2)
m2,k2

D
(�3)
m3,k3

dg

=
(


1:3

m1:3

)(

1:3

k1:3

)
, (B.16)

where dg = sin ϑdϑdϕdγ/8π2 is the Haar-measure: (see [29].
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(7) Bipolar spherical harmonics, see [29] 5.16.1, p.160,

Y �,m
�1,�2

(ω̂1:2) =
[
Y �1 (ω̂1)⊗ Y �2 (ω̂2)

]
�,m

=
�1:2∑

m1:2=−�1:2

C�,m
�1,m1;�2,m2

Y m1
�1

(ω̂1) Y m2
�2

(ω̂2) ,

∑
�,m

C�,m
�1,m1;�2,m2

[
Y �1 (x̂1)⊗ Y �2 (x̂2)

]
�,m

= Y m1
�1

(ω̂1)Y m2
�2

(ω̂2) .
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