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SPACES
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Abstract. This paper introduces new results on doubly stochastic Poisson processes, with log-Gaus-
sian Hilbert-valued random intensity (LGHRI), defined from the Ornstein-Uhlenbeck process (O-U
process) in Hilbert spaces. Sufficient conditions are derived for the existence of a counting measure
on �2, for this type of doubly stochastic Poisson processes. Functional parameter estimation and
prediction is achieved from the discrete-time approximation of the Hilbert-valued O-U process by an
autoregressive Hilbertian process of order one (ARH(1) process). The results derived are applied to
functional prediction of spatiotemporal log-Gaussian Cox processes, and an application to functional
disease mapping is developed. The numerical results given, from the conditional simulation study
undertaken, are compared to those ones obtained, when the random intensity is assumed to be a
spatiotemporal long-range dependence (LRD) log-Gaussian process (see [19]).

1. Introduction

The Doubly Stochastic Poisson Processes (DSPPs) were introduced by Cox [9], con-
sidering a positive random variable in the definition of the intensity instead of a de-
terministic function. This generalization allows the exogenous process to the model to
influence transitions in the point process. The standard construction, and main proba-
bilistic properties of DSPPs were introduced in [24]. Alternatively, in the books [8] and
[13], martingale theory is applied for the description of DSPPs. The drawback of the
mentioned approaches is the reduced number of applications they open, since they focus
on general properties of DSPP, without exploring the functional form of the intensity
of the process. The analytical expressions of the probability density functions for dif-
ferent types of DSPPs are obtained, when the functional form of the random intensity
is explicitly defined (see [14]). In this context, restrictions and limitations, arising from
the non-negativity condition of the intensity, were overcome in [3], and [26], suggesting
a lognormal model for the intensity process. The shot-noise type process, guaranteeing
the non-negativity of intensity, is proposed in [15]. On the other hand, in [38] is assumed
that the intensity is governed by a one-dimensional Feller process, and the functional
form of the probability density function for the corresponding DSPP is also derived.
Feller processes were introduced and studied in the financial literature, after the pioneer
work [10]. One of the properties of Feller process is that it lives in R+. Hence, the
non-negativity condition is fulfilled.
In the present paper, we adopt the log-Gaussian intensity model approach to define

Cox processes in real separable Hilbert spaces, under certain spectral diagonalization
conditions. Particularly, �2 space is considered, given the well-known isometry with real
separable Hilbert spaces. We assume that the logarithmic transform of the intensity is
controlled by a Hilbert-valued diffusion process, the Hilbert-valued O-U process (see, for
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example, [18] and [22], where Feller processes in one or d dimensions are incorporated
as intensity models). In that sense, the family of processes introduced here extends, in
certain aspects, the models studied in [3], [26] and [38]. The above described literature
has emerged, motivated, in part, by the interest of point processes in finance, specially of
DSPPs, inducing a considerably progress at the end of the 1990s, with the development
of models of managing and pricing the credit risk. Furthermore, the theory of point
processes have applications in several additional areas (e.g., biostatistics and reliability
theory). Just to mention an example, we refer to the reader to [23], where point process
theory is applied to study the size of tumors in rats over a period of time; to [29], where
the description of occurrences of credit events is achieved from point processes; to [12],
where testing and validation of software is performed in reliability theory.
In [34], log-Gaussian Cox processes, with intensity being constant within square quad-

rants, satisfying a conditional autoregression are introduced (see also [5]). Gibbs sam-
pling can be applied to explore these discretized models. However, such models do not
converge to anything reasonable as the sides of the quadrants tend to zero (see [34]). In
[31] this difficulty is overcome. Several properties of this class of processes are analyzed,
e.g., the complete characterization of their distribution by the intensity, and the pair
correlation function. Higher-order moment properties can also be expressed in terms
of both functions. In addition, predictability properties are enhanced by the fact that
the distribution of a log-Gaussian Cox process, restricted to a bounded subset, is known.
They can be observed within a bounded window in absence of edge effects. Log-Gaussian
Cox processes then offer, in particular, a suitable framework for modeling and estimation
in disease mapping.
This paper introduces log-Gaussian Cox processes in a real separable Hilbert space H ,

deriving sufficient conditions for the proper definition of a counting measure on the space
�2 isometric to H . The main ingredient required is the diagonal spectral representation,
in terms of a common system of eigenvectors, of the operators involved in the definition of
the auto-covariance operator of a Hilbert-valued O-U process. The discrete-time approx-
imation of the H-valued O-U process, in terms of an ARH(1) process, is also obtained
from projection into such an eigenvector system. The componentwise estimation of the
autocorrelation operator, and of the auto-covariance operator of the innovation process
of an ARH(1) process then leads to the corresponding parameter estimation of the ap-
proximated O-U process. Plug-in prediction results then follow from the integral form
of the H-valued O-U process, and from the corresponding formulation of the �2-valued
predictor for the H-valued log-Gaussian Cox process. An application to disease map-
ping is showed. Specifically, a conditional simulation study is undertaken from breast,
prostate, and brain cancer data in the provinces of Spain. A comparative study with the
LRD log-Gaussian intensity case is also developed, applying the wavelet-based parameter
estimation methodology presented in [19], for spatiotemporal zero-mean LRD Gaussian
processes.
The outline of the paper is as follows. Preliminary elements are introduced in Section

2. In Section 3, numerical projection methods are applied, under suitable conditions,
for a diagonal spectral representation of the integral equation satisfied by O-U process
in Hilbert spaces. Parameter estimation and prediction of Hilbert-valued O-U process,
from its discrete-time approximation in terms of an ARH(1) process, is achieved in Sec-
tion 4. Definition and prediction of log-Gaussian Cox process in real separable Hilbert
spaces is provided in Section 5. As an application, estimation and prediction results
for spatiotemporal log-Gaussian Cox process are obtained in Section 6. A conditional
simulation study is undertaken in Section 7, to illustrate the results derived for short-
dependence log-Gaussian intensities in comparison with the LRD log-Gaussian case, in
the context of functional disease mapping. Final comments are given in Section 8.
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In the remaining sections, we will consider that all the stochastic processes introduced
below are defined on the basic probability space (Ω,A, P ).

2. Preliminaries

The preliminary definitions and results required for the subsequent development of
this paper are now provided.

2.1. Homogeneous Poisson process in �2 space. The Poisson process in �2 space,
and its classical parameter estimation and prediction is now introduced (see [7]).
Let {Nt,j, t ∈ R+, j ≥ 1} be a sequence of independent homogeneous Poisson processes

with respective intensities λj > 0, j ≥ 1, such that
∑

j λj < ∞. Since

E

⎛⎝∑
j

N2
t,j

⎞⎠ =
∑

j

E
(
N2

t,j

)
=
∑

j

[
λjt+ (λjt)2

]
<∞,

it follows that
∑

j N2
t,j < ∞ almost surely. Then, Mt = {Nt,j, j ≥ 0} defines a ran-

dom variable with values in �2, and satisfying E‖Mt‖2�2 < ∞. Thus, {Mt, t ≥ 0} is a
continuous time �2- valued process.

Classical prediction. Assume that MT is observed and we want to predict MT+h (h > 0).
For this purpose, we first define a MLE for {λj , j ≥ 1}. Let N ⊂ �2 be the family of
sequences {xj , j ≥ 1} = (xj) such that xj is an integer for each j, and xj = 0, for
sufficiently large j. We may write

N =
⋃
k

Nk,

where Nk = {(xj) : (x1, . . . xk) ∈ Nk;xj = 0, j > k}. Clearly, Nk is countable for every k.
It then follows thatN is countable since it is the countable union of countable sets. Thus,
one may define the counting measure μ on N , and extend it by setting μ(l2 − N ) = 0.
The obtained measure is then σ- finite.
Now Mt is considered as N -valued random variable. Actually, since N2

t,j is an integer,∑
j N2

t,j < ∞ (a.s.) implies that Nt,j = 0, a.s. for j large enough. More precisely: There
exists Ω0 such that P (Ω0) = 1, and for all ω ∈ Ω0, there exists a j0(ω, λ, T ) such that
NT,j(ω) = 0, for j > j0. Therefore, one may define the likelihood of MT with respect to
μ by setting

L(MT (ω), λ) =
j0(ω,λ,T )∏

j=1

exp (−λjT )
(λjT )NT,j(ω)

NT,j(ω)!
.

Hence, the MLE of (λ) is given by:

(λ̂)T =
(

NT,j

T
, j ≥ 1

)
= (λ̂T,j , j ≥ 1). (1)

Clearly,
∑∞

j=1 λ̂T,j < ∞ (a.s.) and (λ̂)T is unbiased ((λ) being considered as a para-
meter with values in �2). It follows that

f(MT ) =
T + h

T
MT (2)

is an unbiased efficient predictor of Eλ (MT+h|MT ) = h(λ) +MT , (λ) ∈ �2 (see [7]).
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2.2. Strongly cylindrical Wiener process induced by a Hilbert-valued Wiener
process. We restrict here out attention to the real separable Hilbert space case. Let H
and H∗ respectively be a real separable Hilbert space and its dual. Denote by B(H) the
Borel σ-algebra in H . For f∗1 , . . . , f∗n ∈ Γ ⊆ H∗, and B ∈ B(Rn), we define a cylindrical
set or cylinder with respect (H,Γ) as follows:

Z(f∗1 , . . . , f∗n, B) := {g ∈ H : (〈g, f∗1 〉 , . . . , 〈g, f∗n〉) ∈ B}.
The set of all cylindrical sets is denoted by Z(H,Γ), which turns out to be an algebra.

The generated σ-algebra is denoted by C(H,Γ), and it is called cylindrical σ-algebra
with respect to (H,Γ). If Γ = H∗, we write C(H) := C(H,Γ). Since H is separable,
then, both the Borel B(H) and the cylindrical σ-algebra C(H) coincide.
A function μ : C(H)→ [0,∞] is called cylindrical measure on C(H), if for each finite

subset Γ ⊆ H∗, the restriction of μ on the σ–algebra C(H,Γ) is a measure. A cylindrical
measure is called finite if μ(H) < ∞. For every function ϕ : H → R, being measurable
with respect to C(H,Γ), for a finite subset Γ ⊆ H∗, the integral

∫
f(u)μ(du) is well

defined as a real-valued Lebesgue integral if it exists.
Given a probability space (Ω,A, P ) with a filtration {Ft}t≥0, a cylindrical random

variable on H is defined as a linear map X : H∗ → L0(Ω), with L0(Ω) denoting the
linear space of all real valued random variables, which are defined from X(f)(μ), the
image of the cylindrical measure μ on H , under the map X(f), for each f ∈ H .
A cylindrical process X in H is a family {Xt = X(t), t > 0} of cylindrical random

variables in H . Note that the characteristic function ϕX : H∗ → C, with ϕX(f∗) =
E[exp(iXf∗)], f∗ ∈ H∗, of a cylindrical random variable is positive-definite, and con-
tinuous on finite subspaces. Then, there exists a cylindrical measure μX with the same
characteristic function. We call μX the cylindrical distribution of X . Reciprocally, for
every cylindrical measure μ on C(H), there exists a probability space (Ω,A, P ), and
a cylindrical random variable X : H∗ → L0(Ω), such that μ = μX is the cylindrical
distribution of X . A strongly Gaussian cylindrical measure μ, has characteristic function
ϕ given by

ϕ(f∗) = exp
(
−1
2
〈Qf∗, f∗〉)

)
, ∀f∗ ∈ H∗,

for certain symmetric positive operator Q : H∗ → H . A weakly cylindrical Wiener
process {W (t) : t > 0} is strongly cylindrical if the cylindrical distribution μW (1) of
W (1) is strongly Gaussian (see, for example, Definition 6.7 in [35]).
An adapted H-valued stochastic process {W (t) : t > 0} is called a Wiener process if

(a) W (0) = 0 P-a.s.;
(b) W has independent, stationary increments;
(c) there exists Q, a symmetric positive operator such that Q : H∗ −→ H , and W (t) −
W (s) ∼ N (0, (t− s)Q), for all 0 ≤ s ≤ t. A strongly cylindrical Wiener process {W (t) :
t > 0}, with covariance operator Q = iQi∗Q, is induced by an H-valued Wiener process if
and only if iQ is Hilbert-Schmidt, where iQ denotes the continuous inclusion of the range
of Q, with the norm ‖f‖Q = Q(f)(f) = 〈Q(f∗), f〉H , f ∈ H , into H (see Theorem 8.1 in
[35], for a wider characterization of this class of strongly cylindrical Wiener processes).

2.3. The Ornstein-Uhlenbeck process in Hilbert spaces. LetH be a real separable
Hilbert space. Consider the Ornstein-Uhlenbeck process (O-U process), defined by

X(t, f) = exp(tA)(f) +
∫ t

0

exp((t− s)A)dW (s), t ≥ 0, f ∈ H, (3)

where W is a strongly cylindrical Wiener process in H , induced by an H-valued Wiener
process (see Theorems 8.1 in [35]), with covariance operator Q : H∗ −→ H , such that,
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for 0 ≤ s ≤ t,
W (t)−W (s) ∼ N (0, (t− s)Q).

The following assumptions are considered (see [11]; [22]):
(i) The operator A is the infinitesimal generator of a strongly continuous semigroup

exp(tA), t ≥ 0, of linear operators in H satisfying ‖ exp(tA)‖ ≤ M exp(−ωt),
t ≥ 0, for some M and ω > 0.

(ii) Q is a continuous, linear self-adjoint, nonnegative operator in H .
(iii) Considering, for f ∈ H ,

Qt(f) =
∫ t

0

exp(sA)Q exp(sA∗)(f)ds (4)

we have supt>0TrQt <∞, where Tr denotes the trace.
The stochastic integral (3) takes its values in H , and is understood in the Itô sense. The
H-valued random variable X(t, f) has Gaussian distribution with mean exp(tA)f , and
covariance operator Qt for each t > 0. The associated Gaussian measure is denoted as
μexp(tA)f,Qt

. The Ornstein-Uhlenbeck transition semigroup Pt is then given by

(Ptφ)(f) =
∫

H

φ(y)μexp(tA)f,Qt
(dy), t > 0, f ∈ H,

for every bounded measurable real-valued function φ on H . The operator Q∞(f) =∫∞
0
exp(tA)Q exp(tA∗)(f)dt, f ∈ H , is in the trace class under Assumption (i), and the

Gaussian measure in H , μ0,Q∞ , is the unique invariant measure for Pt. The explicit form,
and the space where the probability density, the Radon-Nikodym derivative of μ0,Q∞ ,
lies are obtained, under certain conditions, in [22].

2.4. ARH(1) processes. In Section 4.1, we consider the discrete-time approximation
of the above-introduced O-U process in Hilbert spaces, in terms of an ARH(1) process.
The main definitions and elements on ARH(1) processes are now given (see [6]).

Definition 1. Let H be a real separable Hilbert space. A sequence Y = {Yn, n ∈ Z} of H-
valued random variables on a basic probability space (Ω,A, P ) is called an autoregressive
Hilbertian process of order one, associated with (η, ε, ρ), if it is stationary and satisfies

Xn = Yn − η = ρ(Yn−1 − η) + εn = ρ(Xn−1) + εn, n ∈ Z, (5)

where the expectation η = E[Yn] ∈ H is constant, ε = (εn, n ∈ Z) is a Hilbert-valued
white noise in the strong sense (i.e., a zero-mean stationary sequence of independent
H-valued random variables with E‖εn‖2H = σ2 < ∞, for every n ∈ Z), and ρ ∈ L(H),
with L(H) being the space of linear bounded operators on H. For each n ∈ Z, εn and
Xn−1 are assumed to be uncorrelated.

If there exists a positive j0 ≥ 1 such that ‖ρj0‖L(H) < 1, then, the ARH(1) process
X = {Xn, n ∈ Z} in (5) is standard, and there exists a unique stationary solution to
equation (5) (see, for example, [6], Chapter 3).
The auto-covariance and cross-covariance operators are given by

CX = E[Xn ⊗Xn] = E[X0 ⊗X0], n ∈ Z,

DX = E[Xn ⊗Xn+1] = E[X0 ⊗X1], n ∈ Z,
(6)

where, for f, g ∈ H ,
f ⊗ g(h) = f 〈g, h〉H , ∀h ∈ H,

defines a Hilbert-Schmidt operator on H . Operator CX is assumed to be in the trace
class. In particular, E‖Xn‖2H < ∞, for all n ∈ Z.
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3. Projection of Hilbert-valued O-U process

Let X = {Xt, t ≥ 0} be a Hilbert-valued process satisfying equation (3), and the con-
ditions (i)–(iii) formulated in Section 2.3. Here, we also assume the following additional
condition:

Assumption A1 Operators A, in equation (3), and Q, the covariance operator char-
acterizing the distribution of the strongly cylindrical Wiener W , in such an equation,
are positive operators, admitting a diagonal spectral decomposition, with respect to a
common orthonormal basis of eigenvectors {φj}j≥1 in H . That is,

A =
∞∑

j=1

λj(A)φj ⊗ φj (7)

Q =
∞∑

j=1

λj(Q)φj ⊗ φj . (8)

Remark 1. Assumption A1 holds, in particular, when operators A and Q are related
by a continuous function (see [16], pp. 119-140). Unconditional basis, like wavelet bases,
also allow the diagonal spectral series representation, for example, of the distributional
kernels of Calderón-Zygmund operators (see, for example, [25], pp. 664–665).

In particular,

exp(tA)(f) =
∞∑

j=1

exp(−λj(A)t) 〈f, φj〉H φj , ∀f ∈ H. (9)

From Theorems 7.1 and 8.1 in [35], under Assumption A1, from equations (7)–(9),
keeping in mind that

{ψj = λ
1/2
j (Q)φj}j≥1 (10)

defines an orthonormal basis of the reproducing kernel Hilbert space of Q, W admits the
following series expansion:

W (t)(g∗) =
∞∑

j=1

〈iQ(ψj), g〉H Bj(t), ∀g∗ ∈ U∗ = [Q1/2(H)
‖·‖Q

]∗, (11)

where U∗ denotes the dual space of U = Q1/2(H)
‖·‖Q

, the completion of Q1/2(H), with
respect to the norm ‖ · ‖Q, induced by Q, i.e., ‖f‖Q = Q(f)(f) = 〈Q(f∗), f〉H , for
all f ∈ H , with, as before, f∗ ∈ H∗ denoting the dual element of f , given by Riesz
Representation Theorem. Here, {Bj(t), t ≥ 0}j≥1 are independent standard real-valued
Wiener processes, and, as before, iQ is the continuous inclusion mapping of the range of
Q into H .

Theorem 1. Under the conditions (i)–(iii) assumed in Section 2.3, and Assumption
A1, for every j ≥ 1, {Yp(t) = 〈X(t, φj), φp〉H , t ∈ R+}p≥1 defines a sequence of indepen-
dent real-valued O-U processes, with respective parameters {λp(A)}p≥1 and {λ1/2

p (Q)}p≥1,
such that Yp(0) ≡ 1, for each p ≥ 1.
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Proof. Under Assumption A1, from equations (9) and (11), projection of equation
(3) into the orthonormal eigenvector system {φj}j≥1 leads to the following identities:
For each t > 0, and p ≥ 1, and for any j ≥ 1,

〈X(t, φj), φp〉H = 〈exp(tA)(φj), φp〉H +
〈∫ t

0

exp((t− s)A)dW (s), φp

〉
H

=
∞∑

k=1

exp(−λk(A)t) 〈φk, φj〉H 〈φk, φp〉H

+
∞∑

k=1

〈φk, φp〉H
∞∑

l=1

∫ t

0

exp(−λk(A)(t− s)) 〈φk, iQ(ψl)〉H Bl(ds)

= exp (−λp(A)t) + λ1/2
p (Q)

∫ t

0

exp(−λp(A)(t − s))Bp(ds),

(12)

where the integral is interpreted as a one-parameter Wiener–Itô stochastic integral with
respect to the Wiener measure Bp(ds), for each p ≥ 1. The last identity of equation (12)
means that, for each p ≥ 1, and for every j ≥ 1, {Yp(t) = 〈X(t, φj), φp〉H , t ∈ R+} is a
real-valued O-U process satisfying the Langevin equation:

dYp(t) = −λp(A)Yp(t)dt+ λ1/2
p (Q)Bp(dt). (13)

That is, for each p ≥ 1, {Yp(t), t ∈ R+} is an O-U process starting at t = 0, with initial
condition Yp(0) ≡ 1, and parameters λp(A) and λ

1/2
p (Q). Indeed, {Yp}p≥1 is a sequence

of independent real-valued O-U processes.

4. Parameter estimation and prediction of Hilbert-valued O-U process

In this section, we consider the discrete-time ARH(1) approximation of H-valued
O-U process introduced in Section 2.3, for its componentwise parameter estimation, and
plug-in prediction.

4.1. Discrete-time ARH(1) approximation of the Hilbert-valued O-U. In the
discrete-time approximation of equation (3), several difficulties related to the definition of
a suitable concept of derivative (e.g., total derivative like Fréchet derivative, directional
derivative like Gâteaux derivative, H-derivative, etc.) can be found. This is the reason
why we do not adopt the approach related to considering, in equation (5), the operator
γ = I − ρ, and the innovation process εn defined as εn = σ(W (n) −W (n − 1)), for all
n ∈ N∗, with, as before, W denoting a strongly cylindrical and H-valued Wiener process,
leading to

Xt+1 −Xt = −γXt + σ(Wt+1 −Wt), t = 1, 2, . . . (14)

However, under Assumption A1, Theorem 1 allows us to obtain a discrete-time pro-
jection approximation, in terms of a sequence of independent AR(1) processes, defined
from equation (13). Specifically, for each t = 1, 2, . . . , and p ≥ 1,

Yp(t+ 1)− Yp(t) = −λp(A)Yp(t) + λ1/2
p (Q)(Bp(t+ 1)−Bp(t)),

where, for each τ > 0, we can now consider

Yp,τ (n+ 1) = γτYp,τ (n) +
√

τεn, (15)
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with γτ = 1− λp(A)τ . For each t > 0, and p ≥ 1, we then have

Yp,τ ([t/τ ]) = γ[t/τ ]
τ Yp(0) + λ1/2

p (Q)
√

τγ[t/τ ]−1

∫ [t/τ ]

0

γ−[s]dBp(s)

∼ exp(−λp(A)t) + λ1/2
p (Q) exp(−λp(A)t)

∫ t

0

exp(λp(A)s)dBp(s),

(16)

where, in the last step, the scaling property of Brownian motion is used
√

τBp(s) ∼
Bp(τs). Note that, γτ ∼ (1 − λp(A))τ = γτ , as τ → 0. This argument can be stated
in a rigorous way to arrive to the weak-convergence of the process Yp,τ ([t/τ ]) to the
continuous real-valued O-U process, when τ → 0 (see [21] and [32]) for more details).
The conclusion is that if the interval between successive observations is taken to going
to zero, and the coefficients are adjusted properly, then, each element (15)–(15) of the
obtained sequence of AR(1)-processes has the continuous real-valued Ornstein-Uhlenbeck
process (see (13) and (16)) as its scaling limit.
On the other hand, under the following assumption, the AR(1) process sequence in-

troduced in (15) also defines an ARH(1) process. This is the reason why we refer to the
ARH(1) discrete-time approximation of H-valued O-U process in this section.

Assumption A2. The autocorrelation operator ρ, in equation (5), admits the following
diagonal spectral representation, in the weak sense: For all f ∈ H ,

ρ(f) =
∞∑

k=1

λk(ρ) 〈φk, f〉H φk, (17)

where the series (17) is finite for every f ∈ H , and, as before, {φj}j≥1 denotes the system
of eigenvectors of the auto-covariance operator CX in (6).

From equations (15)–(16), Assumption A1 implies Assumption A2, when the
ARH(1) process considered is constructed as the discrete-time approximation of an H-
valued O-U process, i.e., when both processes are characterized by a sequence of inde-
pendent AR(1) processes as given in equations (15)–(15), and equation (18) below in the
following result.

Lemma 1. Under Assumption A2, projection of the ARH(1) equation (5) into {φj}j≥1

leads to the following expression: For each p ≥ 1,

Xp(n) = 〈Xn, φp〉H = λp(ρ) 〈Xn−1, φp〉H + 〈εn, φp〉H
= λp(ρ)Xp(n− 1) + εp(n), n ∈ Z, (18)

where {Xp(n), n ∈ Z} is an AR(1) process.

Proof. The proof follows straightforward from the weak-sense diagonal spectral repre-
sentation of ρ in equation (17), and from the series expansion

CX(h) =
∞∑

k=1

λk(CX) 〈φk, h〉H φk, ∀h ∈ H,

which holds from the trace property of CX .

4.2. Parameter estimation and prediction of H-valued O-U. The aim of this
section is the formulation of respective componentwise parameter estimators of operators
A and Q, characterizing the distribution of H-valued O-U process in equation (3), from
the moment-based parameter estimation of the AR(1) process sequence introduced in
(15), under Assumptions A1. Note that, under this assumption, the eigenvalues of
operators A and Q, in (7)–(8), with respect to {φj}j≥1, characterize the probability
distribution of {Yp = 〈X(t, φ·), φp〉H}p≥1(see Theorem 1). Furthermore, from Lemma
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1, under Assumption A2, the AR(1) process sequence (15) also defines an ARH(1)
process as given in equation (18).

Under the assumption that the eigenvectors of CX , the auto-covariance operator of
ARH(1) process in equation (5), are known, the following componentwise estimators for
ρ and Rε = E[ε1 ⊗ ε1] = E[εn ⊗ εn], for every n ∈ N∗, based on a sample of size T , are
considered (see, for example, [2] and [37]):

ρ̂kT =
kT∑
k=1

λ̂T,k(ρ)φk ⊗ φk, λ̂T,k(ρ) =

1
T−1

T−2∑
i=0

Xk(i)Xk(i+ 1)

1
T

T−1∑
i=0

X2
k(i)

,

k = 1, . . . kT ,

R̂ε =
kT∑
k=1

λ̂T,k(Rε)φk ⊗ φk, λ̂T,k(Rε) =
1
T

(
T−1∑
i=0

X2
k(i)

)(
1− [λ̂T,k(ρ)]2

)
,

k = 1, . . . kT ,

(19)

where Xk(i) satisfies equation (18), for i = 0, . . . , T − 1, and for each k = 1, . . . kT .
The truncation order kT should satisfy suitable conditions in relation to the relative
magnitude of λkT (CX) and T in order to ensure consistency, since kT → ∞, when
T →∞ (see, for example [2] and [6]).
Finally, under Assumptions A1–A2, from equations (15) and (18), operators A and

Q, in equations (7) and (8), characterizing the distribution of H-valued O-U process in
(3), can be approximated as follows:

ÂT =
kT∑
k=1

(1 − λ̂T,k(ρ))φk ⊗ φk (20)

Q̂T =
kT∑
k=1

λ̂T,k(Rε)φk ⊗ φk, (21)

where, in this case, {φj}j≥1 denotes the common system of eigenvectors of A and Q
in equations (7) and (8), and equations (17) and (18), considering ρ = I − A. Note
that, under Assumption A1, {φj}j≥1 also coincides with the known eigenvector system
involved in the series representation (11) of the H-valued Wiener process W .
From equations (3), (20) and (21), the following plug-in predictor of H-valued O-U

process can be considered:

X̂T (t, f) = exp(tÂT )(f) +
∫ t

0

exp((t− s)ÂT )dŴT (s), t ≥ 0, f ∈ H, (22)

where ŴT (t)− ŴT (s) ∼ N (0, (t− s)Q̂T ), i.e., ŴT (t)− ŴT (s) has Gaussian probability
distribution μ0,(t−s) �QT

in H , with zero mean and covariance operator (t − s)Q̂T , with

Q̂T given in (21).

5. Log-Gaussian Cox process in infinite dimensional spaces

This section provides the main elements and theoretical results, involved in the in-
troduction, parameter estimation and prediction of Cox processes with log-Gaussian
intensity, defined from H-valued O-U process.
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First, sufficient conditions are derived for the definition of {C(t), t ∈ R+} = {Cp(t), p ≥
1, t ∈ R+} as an �2-valued doubly stochastic Poisson process, with �2-valued random
intensity {λt = exp (Yp(t)) , p ≥ 1, t ∈ R+}, where Yp satisfies equations (12) and (13),
for each p ≥ 1. To compute the variance of Λp(t) =

∫ t

0
exp(Yp(s))ds, in Proposition 1

below, the system of Hermite polynomials is considered.
It is well-known that Hermite polynomials form a complete orthogonal system of the

Hilbert space L2(R, ϕ(u)du), the space of square integrable functions with respect to the
standard normal density ϕ. They are defined as follows:

Hk(u) = (−1)ke
u2
2

dk

duk
e−

u2
2 , k = 0, 1, . . . .

In particular, for a zero-mean Gaussian process Y , for k ≥ 1,

E Hk(Y (x)) = 0, E (Hk(Y (x)) Hm(Y (y))) = δm,k m! (E[Y (x)Y (y)])m (23)

(see, for example, [33]).

Proposition 1. Assume that

λp(Q) < 2λp(A), p ≥ 1. (24)

Then, for each p ≥ 1, considering the conditional covariance of Yp, and assuming that
t is sufficiently large, to ensure that the difference with the unconditional covariance of
the real-valued O-U process Yp is negligible, the following identity then holds:

Var
(∫ t

0

exp (Yp(s)) ds

)
=

∞∑
k=1

C2
k

k!

∫ t

0

∫ t

0

[
λp(Q)
2λp(A)

exp (−λp(A)|u − v|)
]k

dudv < ∞,

(25)

where

Ck =
∫

R

exp(u)Hk(u)ϕ(u)du, k ≥ 1,

and

G(u) = exp(u) =
∞∑

k=1

Ck

k!
Hk(u),

for all u ∈ R, in L2(R, ϕ(u)du).

Proof. Equation (25) follows straightforward from (23), and the definition of Yp in
equation (13), for each p ≥ 1. In addition, G(u) = exp(u) ∈ L2(R, ϕ(u)du) implies

‖G‖2L2(R,ϕ(u)du) =
∞∑

k=1

[
Ck

k!

]2

< ∞. (26)

From Cauchy–Schwarz inequality, equation (26), and condition (24), leading to[
λp(Q)
2λp(A)

]2

< 1,
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we obtain
∞∑

k=1

C2
k

k!

∫ t

0

∫ t

0

[
λp(Q)
2λp(A)

exp (−λp(A)|u − v|)
]k

dudv

≤
√√√√ ∞∑

k=1

[
C2

k

k!

]2

√√√√ ∞∑
k=1

[∫ t

0

∫ t

0

[
λp(Q)
2λp(A)

exp (−λp(A)|u − v|)
]k

dudv

]2

≤
√√√√ ∞∑

k=1

[
C2

k

[k!]2

]2

√√√√ ∞∑
k=1

[∫ t

0

∫ t

0

[
λp(Q)
2λp(A)

exp (−λp(A)|u − v|)
]k

dudv

]2

≤ K̃

√√√√ ∞∑
k=1

[
Ck

k!

]2

t2

√√√√ ∞∑
k=1

[
λp(Q)
2λp(A)

]2k

=

√√√√ ∞∑
k=1

[
Ck

k!

]2
t2√

1−
[

λp(Q)
2λp(A)

]2 < ∞,

(27)

where K̃ is a positive constant, keeping in mind that (26) implies the sequence{[
Ck

k!

]2
}

k≥1

is convergent to zero, and, in particular, for k sufficiently large,
[

Ck

k!

]4
<
[

Ck

k!

]2
< 1.

The following condition is now considered.
Assumptions A3 The following asymptotic holds:

2λp(A)√
[2λp(A)]2 − [λp(Q)]2

= O (
p−α

)
, p →∞, α > 1.

Proposition 2. Under the conditions (i)–(iii) formulated in Section 2.3, considering
also Assumptions A1, A3, and (24) to hold, we have, for every t ∈ R+,

∞∑
p=1

C2
p(t) <∞, a.s.

Proof. From equation (27), under condition (24), and Assumptions A1 and A3,

E

[ ∞∑
p=1

C2
p(t)

]
=

∞∑
p=1

E
[C2

p(t)
]

≤ K̃

∞∑
p=1

√√√√ ∞∑
k=1

[
Ck

k!

]2
t2√

1−
[

λp(Q)
2λp(A)

]2
= K̃t2

√√√√ ∞∑
k=1

[
Ck

k!

]2 ∞∑
p=1

[
1−

[
λp(Q)
2λp(A)

]2
]−1/2

= K̃t2

√√√√ ∞∑
k=1

[
Ck

k!

]2 ∞∑
p=1

2λp(A)√
[2λp(A)]2 − [λp(Q)]2

< ∞.

(28)

From Proposition 2, C = {Cp(t), p ≥ 1, t ∈ R+} is a �2-valued doubly stochastic Poisson
process. With a similar reasoning to the case of �2-valued homogeneous Poisson process
in Section 2.1, we arrive to the existence of a σ-finite counting measure μC associated
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with such a process, with respect to which, in particular, the likelihood of {Cp(T ), p ≥ 1}
can be defined for every T > 0. Furthermore, for each p ≥ 1, and for any 0 < t1 < t2,
the following identity holds, given the values Yp(ω, s), ω ∈ Ω, and t1 ≤ s ≤ t2, with, as
before, Yp satisfying (13) for each p ≥ 1,

Pr (Cp(t2)− Cp(t1) = k|Yp(ω, s); t1 ≤ s ≤ t2)

=
exp

(
− ∫ t2

t1
exp(Yp(ω, s)ds

) [∫ t2
t1
exp(Yp(ω, s))ds

]k

k!
.

Hence, assuming that conditionally to {Y(t), t ∈ R+} = {Yp(t), p ≥ 1, t ∈ R+}, {C(t), t ∈
R+} = {Cp(t), p ≥ 1, t ∈ R+} defines a sequence of independent non-homogeneous Pois-
son processes, we have, for k = (k1, . . . , kn, . . . ) ∈ N∞

Pr (C(t1)− C(t2) = k|yt1,t2)
= Pr (C(t1)− C(t2) = k|Y(ω, s) = y(s); t1 ≤ s ≤ t2)

=
p0(ω,yt1,t2 ,t1,t2)∏

p=1

exp
(
− ∫ t2

t1
exp(Yp(ω, s)ds

) [∫ t2
t1
exp(Yp(ω, s))ds

]kp

(kp)!
.

(29)

Moreover, given the observations yT = {Yp(ω, t) = yp(t), p ≥ 1, 0 ≤ t ≤ T }, for
certain ω ∈ Ω, with, as before, Yp(t) = 〈X(t, φ·), φp〉H , satisfying equation (13), for each
p ≥ 1, and any j ≥ 1, we can compute, from (22) (see Sections 4.1 and 4.2), the plug-in
predictor

Ŷp(T + h) =
〈
X̂T (T + h, φj), φp

〉
H

=

〈
exp((T + h)ÂT )(φj) +

∫ T+h

0

exp((t− s)ÂT )dŴT (s), φp

〉
H

,

(30)

for h ∈ R+. Thus, for any h > 0, the following �2-valued predictor of log-Gaussian Cox
process C is formulated:

E
�YT (ω) (C(T + h)|C(ω, T )) =

p0(ω,�YT (ω),T,T+h)∏
p=1

∫ T+h

T

exp
(
Ŷp(ω, s)

)
ds+ C(ω, T ),

where ŶT (ω) = {Ŷp(ω, s), p ≥ 1, T ≤ s ≤ T + h}, with Ŷp(·) being defined in (30), for
every p ≥ 1, from the observations

{Y(ω, s), 0 ≤ s ≤ T } = {Yp(ω, s), p ≥ 1, 0 ≤ s ≤ T }
= {〈X(ω, s, φ·), φp〉H , p ≥ 1, 0 ≤ s ≤ T }
= {yp(s), p ≥ 1, 0 ≤ s ≤ T }.

6. Spatiotemporal log-Gaussian Cox process in functional disease mapping

The results given in Section 5 are applied here to the particular case whereH = L2(D),
with D ⊆ R2. Indeed, we are motivated by the problem of functional estimation and
prediction of disease maps. In the next section, in the conditional simulation study
undertaken, we will focus on estimation and prediction of breast, prostate, and brain
cancer risk maps in Spain.
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6.1. Observation of the functional rate of disease incidences. Let {Ct, t ∈ R+}
be a log-Gaussian Cox process with L2(D)-valued random intensity

{λt = Et exp(βt +Xt), t ∈ R+}, (31)

with Xt being L2(D)-valued O-U process, satisfying the conditions assumed in the previ-
ous section, and, with, for each t ∈ R+, Et being a L2(D)-valued deterministic function,
providing the map of expected cases of the disease in the analyzed sub-regions of D, in
that time t. Hence, Et has functional values being positive on D, and βt is a L2(D)-
valued fixed effect parameter, for each t ∈ R+ (see [36]). In particular, for each t ∈ R+,
and for every xi = (xi

1, x
i
2), representing the spatial location of the subregion i analyzed

in D,

ln(λt(xi)) = ln(Et(xi)) + βt(xi) +Xt(xi), i = 1, . . . , N. (32)

Our L2(D)-valued observation model is obtained from equation (32) by adding an
observation noise, as follows: For i = 1, . . . , N ,

Zt(xi) = ln(λt(xi)) + εt(xi) = ln(Et(xi)) + βt(xi) +Xt(xi) + εt(xi),

where, for each t ∈ R+, Zt, λt, Et, εt, βt, Xt ∈ L2(D). In particular, {εt, t ∈ R+} is a
zero-mean L2(D)-valued Gaussian process with independent components, and diagonal
auto-covariance operator.
For any h > 0, the functional estimate of a disease risk map at time T + h, based on

functional intensity observations up to time T , is constructed from

Φ( ̂C(T + h))(xi)
ET+h(xi)

, i = 1, . . . , N,

whereΦ denotes the inverse of the projection operator into the known eigenvector system
{φj}j≥1 of Q and A, and

̂C(T + h) =
p0(ω,�YT (ω),T,T+h)∏

p=1

∫ T+h

T

λ̂p(ω, s)ds+ C(ω, T ), (33)

with, for every p ≥ 1,

{λ̂p(ω, s) = 〈Es, φp(·)〉H exp
(〈

β̂s(ω, ·), φp(·)
〉

H
+
〈
X̂T (ω, s, φ·), φp

〉
H

)
,

for ω ∈ Ω denoting, as before, the sample point associated with the observed realization
of the functional random sample. Here for each s ∈ (T, T + h], β̂s is a nonparametric
functional estimate of βs (see equation (36) below), and X̂T is defined as in equation
(22), based on functional observations up to time T .

7. Conditional simulation study

Three functional samples are generated, under Assumptions A1, A2 and A3, con-
ditionally to the available records on expected cases of breast, prostate, and brain cancer
diseases in the provinces of Spain. Moreover, from (31)–(32), our observation model
is defined from the following equation, derived by considering the Taylor expansion of
ln of function Ct(x

i)
Et(xi) at the observed value λt(xi), for each t = 1, . . . , T , and for any
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i = 1, . . . , N ,

Z̃t(xi) = ln
( Ct(xi)

Et(xi)

)
= ln(Ct(xi)) − ln

(
Et(xi)

)
= ln(λt(xi)) +

Ct(xi)− λt(xi)
λt(xi)

− ln
(
Et(xi)

)
= ln

(
Et(xi)

)
+ βt(xi) +Xt(xi)− ln

(
Et(xi)

)
+
Ct(xi)− λt(xi)

λt(xi)

= βt(xi) +Xt(xi) +
Ct(xi)− λt(xi)

λt(xi)
= βt(xi) +Xt(xi) + ξt(xi),

(34)

where, from Gaussian approximation of the Poisson distribution, for each t = 1, . . . , T ,
and for any i = 1, . . . , N ,

ξt(xi) =
{Ct(xi)− λt(xi)

λt(xi)
, i = 1, . . . , N, t = 1, . . . , T

}
(35)

are approximately distributed as independent normal random variables with respective
variances {

1
λt(xi)

, i = 1, . . . , N, t = 1, . . . , T
}

.

As before, the ARH(1) approach is adopted to obtain the functional parameter esti-
mation of the L2(D)-valued O-U process Xt, with D being the Iberian peninsula (see
Section 4, and in particular, Sections 4.1 and 4.2). In the last identity in (34), for each
t ∈ R+, L2(D)-valued parameter βt is estimated, in a nonparametric framework, from
the following equation:

β̂t = Φ(Φ∗(Q̂t + Ĉξt)
−1Φ)−1Φ∗(Q̂t + Ĉξ)−1Z̃t, (36)

where, as before, Z̃t is defined from (34), Φ∗ denotes the projection operator into the
known eigenvector system {φj}j≥1 of Q and A, which also coincides with the common
eigenvector system of the autocorrelation operator ρ, and the autocovariance operator CX

of the ARH(1) process, providing the discrete-time approximation of the H-valued O-U
process. Here, Q̂t denotes the componentwise estimator of the auto-covariance operator
Qt, in equation (4), of Xt, computed from the componentwise estimators (20) and (21)
of operators A and Q, respectively. Finally, Ĉξt denotes the empirical finite-dimensional
approximation of the auto-covariance operator Cξt of the L2(D)-valued process ξt, intro-

duced in equation (35), based on the observed values
{

1
λt(xi) , i = 1, . . . , N, t = 1, . . . , T

}
.

Note that, in practice, a truncation order is considered in the implementation of equation
(36), which should be smaller than the functional sample size T (see, for example, [6]).
The Kalman filtering is applied to obtain the prediction of the functional values of the

ARH(1) process at times t = T +h, h > 0, approximating the corresponding H-values of
O-U process. Specifically, for a given truncation order M < T , considering the diagonal
approximation (18) of the ARH(1) state equation, the following finite-dimensional model
is formulated: For n = 1, . . . , T ,

XM×1(n) = ΛM×M (ρ)XM×1(n− 1) + εM×1(n), (37)

where, for each t = 1, . . . , T , XM×1(t) is a M × 1 vector with entries

Xp(t) = 〈Xt, φp〉H , p = 1, . . . , M, ΛM×M (ρ)

is a M ×M diagonal matrix with entries λp(ρ), p = 1, . . . , M , and εM×1(t) is a M × 1
vector with entries εp(t) = 〈εt, φp〉H , p = 1, . . . , M . Kalman filtering equations are then
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implemented, from (34) and (37), as follows:

X̂(t | t) = X̂(t | t− 1) +Kt

(
Zt −ΦMX̂(t | t− 1)

)
where X̂(t | t) = E (X(t) | Zt, ..., Z1) is the (a-posteriori) updated projection esti-
mate of the random coefficients Xp(t), p = 1, . . . , M , at time t, and X̂(t | t − 1) =
E (X(t) | Zt−1, ..., Z1) is the corresponding (a-priori) projection estimate, previously com-
puted, for time t. Here, Zt is obtained from the observed values (34) by subtracting the
nonparametric estimate (36) at that time t. Operator Kt denotes the operator of earn-
ings, reflecting the smoothing performed on functional data, given by

Kt = Pt|t−1Φ
∗
M

(
Cξt +ΦMPt|t−1Φ

∗
M

)−1

where Φ∗M and Cξt respectively denote the projection operator into φ1, . . . , φM , and the
auto-covariance operator of ξt, the observation noise. Furthermore,

Pt|t−1 = Cov (X(t) | Zt−1, ..., Z1) = ΛM×M (ρ)Pt−1|t−1ΛM×M (ρ) +Rεt

with Rεt being the covariance matrix of the random vector εM×1(t), with components
εp(t) = 〈εt, φp〉H , p = 1, . . . , M , and

Pt|t = E
(
(X(t)− X̂(t | t))(X(t) − X̂(t | t))∗

)
= Pt|t−1 −KtΦMPt|t−1.

Thus, the finite-dimensional approximation of the Kalman filter predictor, for each time
t of interest, is given by

X̂t = ΦMX̂(t | t− 1) = ΦMΛ(ρ)X̂(t− 1 | t− 1). (38)

The initial values considered are

X̂(0 | 0) = 0

P0|0 = E
[
XM×1(0)[XM×1(0)]T

]
,

with XM×1(0) = (X1(0), . . . , XM (0))T = (〈X0, φ1〉H , . . . , 〈X0, φM 〉H)T .
In practice, ΛM×M (ρ) is estimated by the diagonal matrix with entries λ̂T,k(ρ), k =

1, . . . , M , defined in (19), and M ×M matrix Rεt is approximated by a diagonal matrix
with entries λ̂T,k(Rε), k = 1, . . . , M , also defined in (19).
Functional prediction of risk maps, at each time t of interest, is then obtained from

r̂t = exp(β̂t + X̂t), (39)

with β̂t in (36), and X̂t computed from the above Kalman filtering equations, in terms
of the projected residuals, associated with the estimation of L2(D)-valued fixed effect
parameter βt, for each time t of interest. The spatial averaged empirical mean-square
errors, for each one of the years studied, computed from 100 realizations of the Kalman
predictor (38), and the fixed effect nonparametric estimator (36), are displayed in Table
1, for the three types of cancer data generated, breast, prostate, and brain cancer data. It
can be observed that Prostate and Breast cancer data are better generated and estimated
from the log-Gaussian ARH(1) intensity approach.

7.1. LRD spatiotemporal intensity. In this section, we consider the case where the
random intensity (31), {λt, t ∈ R+}, of the log-Gaussian Cox process studied is defined
from a LRD spatiotemporal Gaussian process, satisfying the following integral equation,
in the mean-square sense:

Xt(xi) =m.s.

∫
R+

∫
D

K(t, s,xi,y, θ)V (s,y)dsdy, (40)

for i = 1, . . . , N , and t ∈ R+. Here,
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Table 1. Spatial averaged Empirical Mean Square Errors (EMSEs) by
year, obtained from 100 generations of the functional sample of size T
of the ARH(1) intensity process, for the three cancer-type data gener-
ated.

Year Prostate Cancer Breast Cancer Brain Cancer
1 4.587e-002 4.197e-002 9.337e-001
2 4.150e-002 3.516e-002 6.712e-001
3 3.410e-002 3.001e-002 3.264e-001
4 3.586e-002 3.089e-002 4.651e-001
5 3.227e-002 2.688e-002 3.823e-001
6 3.216e-002 3.058e-002 1.766e-001
7 3.391e-002 2.797e-002 4.192e-001
8 2.891e-002 3.304e-002 3.921e-001
9 3.128e-002 2.886e-002 3.182e-001
10 3.096e-002 3.127e-002 1.744e-001
11 3.070e-002 3.137e-002 2.977e-001
12 2.989e-002 3.248e-002 2.250e-001
13 3.052e-002 3.263e-002 6.456e-001
14 2.809e-002 3.462e-002 2.350e-001
15 2.866e-002 3.489e-002 1.209e+000
16 2.814e-002 3.419e-002 2.742e-001
17 2.627e-002 3.397e-002 3.685e-001
18 2.858e-002 3.629e-002 1.244e-001
19 3.101e-002 3.637e-002 2.864e-001
20 3.556e-002 3.677e-002 1.857e-001
21 3.528e-002 3.497e-002 6.199e-001
22 3.715e-002 3.167e-002 3.545e-001
23 3.337e-002 3.344e-002 2.227e-001
24 3.432e-002 2.605e-002 1.223e+000
25 3.405e-002 3.184e-002 1.396e-001
26 3.171e-002 2.634e-002
27 3.165e-002 3.126e-002
28 3.156e-002 2.438e-002
29 2.998e-002 2.771e-002
30 2.892e-002 2.809e-002
31 2.593e-002 2.387e-002
32 2.671e-002
33 2.459e-002
34 2.206e-002

K(t, s,xi,y, θ) = |t− s|−1+ν |xi
1 − y1|−1+�1 |xi

2 − y2|−1+�2 ,

with θ = (ν, �1, �2) ∈ (0, 1)3 (see [19]). Process V is regular zero-mean Gaussian
process such that the integral (40) is finite in the mean-square sense. Data are then
generated, considering the observation model (34), but replacing Xt by process given in
(40). L2(D)-valued parameter βt is estimated from equation (36). The least-squared
predictor is then computed, from the associated residuals as follows:

X̂t = RXt(�Zt−�βt)
R−1

(�Zt−�βt)( �Zt−�βt)
(Z̃t − β̂t), ∀t ∈ R+, (41)
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where

RXt(�Zt−�βt)
= E[Xt ⊗ Z̃t − β̂t]

R−1

(�Zt−�βt)(�Zt−�βt)
=

[
E[(Z̃t − β̂t)⊗ (Z̃t − β̂t)]

]−1

, (42)

with Z̃t being defined as in equation (34), and with Xt being given in equation (40).
Here, as usual, ⊗ denotes the tensorial product of functions in L2(D). Parameter θ =
(ν, �1, �2), involved in the definition of the kernels characterizing the integral operators
RXt(�Zt−�βt)

and R−1

(�Zt−�βt)(�Zt−�βt)
, has been estimated from the original breast, prostate,

and brain cancer data records in the provinces of Spain, by applying the wavelet-based
methodology proposed in [19] (see also [20]). The presence of strong correlations in time
is more evident than in space for the three types of cancer data analyzed (see Table 2).

Table 2. LRD parameter estimates.

ν̂ β̂1 β̂2

Prostate Cancer 0.6997 0.4103 0.5483
Breast Cancer 0.6667 0.4441 0.4356
Brain Cancer 0.6883 0.4555 0.55435

The spatial averaged empirical mean-square errors, for each one of the years studied,
computed from 100 realizations of the least-squared predictor (41), and the fixed effect
nonparametric estimator (36), are displayed in Table 3, for the three types of cancer
data conditionally generated, breast, prostate, and brain cancer data. It can be observed
that Brain cancer data are better generated and estimated from the LRD log-Gaussian
intensity approach.

7.1.1. Mortality log-risk maps. An over smoothing from the LRD log-Gaussian intensity
approach is observed, while a weaker smoothing is obtained from the application of
the log-Gaussian ARH(1)-based estimation, allowing a larger degree of heterogeneity in
the spatial patterns. Consequently, it is expected, in the generations and estimations
performed, a larger number of false negatives, when the LRD log-Gaussian intensity
approach is implemented. While a larger number of false positives are expected, from
the implementation of the ARH(1) discrete-time approximation of the log-Gaussian H-
valued-O-U-based random intensity approach (see Figures 1 and 2).

8. Final Comments

This paper presents new results, in the context of doubly stochastic Poisson processes
in infinite-dimensional spaces, to cover some limitations arising in the parameter estima-
tion and prediction of log-Gaussian Cox processes in space and time (see, for example,
[17]). Note that, Assumption A1, which plays a key role in the approach adopted in
this paper, in the derivation of the main results (i.e., Theorem 1, and Propositions 1
and 2), is satisfied, for a wide class of operators, as reflected in Remark 1. To illustrate
the application of the theoretical results derived, in this paper, to the context of spa-
tiotemporal log-Gaussian Cox processes, a conditional simulation study is undertaken,
where log-Gaussian ARH(1) and LRD random intensity frameworks are compared, in
the analysis of spatiotemporal prostate, breast and brain cancer data from the provinces
of Spain.
The presented approach can also be extended to the framework of fractional Poisson

processes (see, for example, [4], [27] and [30]). Indeed, the infinite-dimensional framework
can be considered for reformulation of recent results in this topic, like the ones presented
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Table 3. Spatial averaged Empirical Mean Square Errors (EMSEs) by
year, obtained from 100 generations of the functional sample of size T
of the LRD random intensity model, for the three cancer-type data gen-
erated.

Year Prostate Cancer Breast Cancer Brain Cancer
1 2.715e-001 4.238e+000 2.539e-001
2 2.492e+001 5.445e-002 7.854e-002
3 2.742e+000 2.530e-002 6.705e-002
4 6.400e+000 6.835e-002 6.445e-002
5 8.250e-001 2.399e-001 1.089e-001
6 4.614e-002 1.549e+001 9.699e-002
7 4.589e-001 3.204e-002 2.633e-001
8 5.280e-001 7.784e-002 9.773e-002
9 4.348e-001 5.195e-002 7.650e-002
10 5.723e-002 3.386e+000 6.673e-002
11 1.919e-002 1.168e-001 7.677e-002
12 1.427e+000 2.654e-002 8.259e-002
13 1.610e-002 2.723e-002 7.083e-002
14 3.094e+000 4.607e-002 5.450e-002
15 1.495e-002 2.165e+000 8.851e-002
16 3.012e-001 6.044e-002 4.365e-002
17 4.050e-002 4.107e-002 5.732e-002
18 1.409e-002 1.848e-002 5.499e-002
19 2.185e-001 1.178e+000 3.053e-002
20 2.088e-002 2.170e-001 3.951e-002
21 1.027e+000 4.749e-002 2.638e-002
22 1.574e-002 4.337e-002 5.691e-002
23 9.894e-002 6.459e-002 2.416e-002
24 1.254e-002 1.791e+000 4.403e-002
25 1.391e-001 3.138e-002 2.506e-002
26 2.559e-001 3.077e-002
27 1.532e-002 2.021e-002
28 4.820e-002 2.019e-002
29 2.951e-002 2.623e-001
30 1.298e-001 2.447e-002
31 3.505e-002 1.050e-002
32 3.021e-002
33 7.394e-002
34 5.161e-002

in [1] and [28], and their extension to the doubly stochastic fractional Poisson process
context.
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