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ON FLUCTUATION THEORY FOR SPECTRALLY NEGATIVE LÉVY
PROCESSES WITH PARISIAN REFLECTION BELOW, AND

APPLICATIONS
UDC 519.21

FLORIN AVRAM AND XIAOWEN ZHOU

Abstract. As well known, all functionals of a Markov process may be expressed in terms of the
generator operator, modulo some analytic work. In the case of spectrally negative Markov processes
however, it is conjectured that everything can be expressed in a more direct way using the W scale
function which intervenes in the two-sided first passage problem, modulo performing various integrals.
This conjecture arises from work on Levy processes [7, 50, 12, 29, 28, 30, 6, 16], where the W scale
function has explicit Laplace transform, and is therefore easily computable; furthermore it was found
in the papers above that a second scale function Z introduced in [7] (this is an exponential transform
(8) of W ) greatly simplifies first passage laws, especially for reflected processes.

Z is an harmonic function of the Lévy process (like W ), corresponding to exterior boundary condi-
tions w(x) = eθx (9), and is also a particular case of a ”smooth Gerber-Shiu function” Sw. The concept
of Gerber-Shiu function was introduced in [26]; we will use it however here in the more restricted sense
of [15], who define this to be a ”smooth” harmonic function of the process, which fits the exterior
boundary condition w(x) and solves simultaneously the problems (17), (18).

It has been conjectured that similar laws govern other classes of spectrally negative processes, but
it is quite difficult to find assumptions which allow proving this for general classes of Markov processes.
However, we show below that in the particular case of spectrally negative Lévy processes with Parisian
absorption and reflection from below [6, 21, 16], this conjecture holds true, once the appropriate W
and Z are identified (this observation seems new).

This paper gathers a collection of first passage formulas for spectrally negative Parisian Lévy
processes, expressed in terms of W , Z and Sw, which may serve as an ”instruction kit” for com-
puting quantities of interest in applications, for example in risk theory and mathematical finance. To
illustrate the usefulness of our list, we construct a new index for the valuation of financial companies
modeled by spectrally negative Lévy processes, based on a Dickson–Waters modifications of the de
Finetti optimal expected discounted dividends objective. We offer as well an index for the valuation
of conglomerates of financial companies.

An implicit question arising is to investigate analog results for other classes of spectrally negative
Markovian processes.

1. Introduction

It is a great pleasure to have this opportunity to thank Nikolai Leonenko for all the
energy, kindness and patience he put in our mathematical collaborations. He put things
into my mind which will remain there, like for example the Kolmogorov–Pearson–Wong
diffusions, a topic at the crossroads of probability and analysis.

As well known, the fluctuation/first passage theory of diffusions reduces to the com-
putation of two non-negative monotone functions in the kernel of the associated Sturm-
Liouville operator [22], which are related to the first passage times τ±b (2). A similar
situation occurs for spectrally one sided Lévy processes, when one basic function, the
so-called W scale function [19], suffices.
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SPECTRALLY NEGATIVE PARISIAN LÉVY PROCESSES, AND APPLICATIONS 15

In the joint paper [8], we tried to put these two “solvable models” together and study
first passage problems for KPW diffusions with one-sided jumps. The hope was to unify
the two theories, and I still hope to go back to this project one day.

The paper below is a modest step in a different direction: it illustrates the fact that the
fluctuation theory for spectrally negative Lévy processes with Parisian reflection below
[38, 6, 5, 47, 21, 16] is formally identical with the classical one [7, 50, 12, 29, 28, 30, 4, 15],
once appropriate scale functions are introduced. Our hope is to stimulate further work on
the intriguing question of whether this continues to be true for other classes of spectrally
negative Markovian processes. We also hope to provide an easily accessible summary of
the general ideas, hoping to make more accessible this evolving literature with a huge
potential for applications (mathematical finance, risk, inventory and queueing theory,
reliability, etc).

Fluctuation theory (the study of maxima, minima and reflected processes) reduces in
the case of spectrally one-sided Lévy processes to the calculation of scale functions. The
name scale function in this context and the realization of the importance of the concept
should be attributed to Bertoin [19]. The idea was further developed in [7, 50, 12, 15]
who illustrated that the answers to a wide variety of first passage problems may be
ergonomically expressed in terms of the so called W , Z and Sw scale functions, informally
defined as the harmonic functions of the process corresponding to exterior boundary
conditions 0, eθx and w(x), respectively. These functions are common to the free process
X , to the process reflected below X [0 or above Xb], and to the doubly reflected process
X [0,b], making thus natural to study these processes simultaneously. Subsequently, [29,
28, 30] showed that the Lévy formulas apply also in the much more general context of
spectrally negative Markov additive processes, once appropriate matrix scale functions
are introduced.

Somewhat surprisingly, we show here in section 5, Proposition 1, that the classic
formulas apply also to spectrally negative Lévy processes with Parisian absorbtion or
reflection below, once one identifies the appropriate scale functions W , Z (this is true at
least for the first passage formulas we collected, and will probably be true for others).
In principle, similar formulas may hold for other classes of spectrally negative Markov
processes, for example Lévy processes with refraction [33, 35, 47] or with a Parisian buffer
[16], or KPW diffusions with jumps, and this topic deserves further investigation.

Contents. We start with a review in section 2 of some basics first passage results for
spectrally negative Lévy processes, following [7, 28, 15].

We sketch then in section 3, as an appetizer, an interesting financial application worth
further study: a dynamic valuation index (22) for the constituents of a conglomerate of
financial companies, which generalizes the de Finetti optimal dividends objective (21).
Section 4 proceeds with a review of some classic financial optimization problems, solved
using scale functions: the de Finetti and Shreve–Lehoczky–Gaver optimization objec-
tives, and the American put option. These motivate their Parisian generalizations in the
next section 5, the most important one, which gathers together eight recent first passage
results for Parisian spectrally negative Lévy processes [3, 6, 16]. The goal is to provide a
concise reference, and to illustrate the fact that these results are formally identical with
those for classic spectrally negative Lévy processes, up to identifying the correct scale
functions.

In theorem 1. section 6 we illustrate the usefulness of our list of formulas by calculating
a static valuation index for financial companies modelled by Parisian spectrally negative
Lévy processes, based on their ”readiness to pay dividends”.

As a second application, we provide in Section 7 a dynamic valuation index for ”central
branch networks” (conglomerates of financial companies with centralized decision taking).

A typical example of proof is included in Section 8.
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2. First passage theory for spectrally negative Lévy processes, via the
scale functions

A Lévy process X(t)t≥0 may be characterized by its Lévy-Khintchine/Laplace expo-
nent, defined by

E0

[
eθX(t)

]
= etκ(θ).

In applied probability we are often confronted with the case of spectrally negative
processes with negative jumps only (of course, spectrally positive processes only require
a change of sign), and with Lévy-Khintchine decomposition of the form

κ(θ) =
σ2

2
θ2 + pθ +

∫
R+\{0}

[e−θy − 1 + θy]Π(dy), θ ≥ 0. (1)

Here the Lévy measure (of −X) ‡ satisfies Π(−∞, 0) = 0 and
∫

R+\{0}(1∧y2)Π(dy) < ∞,
and furthermore the drift (or profit rate) p = E0[X(1)] = κ′(0+) > −∞ is finite (this
requires that the large negative jumps of the process have a finite mean, which is quite
sensible, say in modeling of catastrophes) § .

A further particular case to bear in mind is when the Lévy measure has finite mass
Π(0,∞) = λ < ∞. Writing Π(dz) = λF (dz) allows decomposing the resulting ”Cramér-
Lundberg” process as

X(t) = x + ct−
Nλ∑
i=1

Ci, c = p + λ

∫ ∞

0

zF (dz).

where Ci, i = 1, 2, . . . are i.i.d. nonnegative jumps with distribution F (dz), arriving after
exponentially distributed times with mean 1/λ.

First passage theory concerns the first passage times above and below, and the hitting
time of a level b, defined by

τ+
b = inf{t ≥ 0 : X(t) > b}, τ−b = inf{t ≥ 0 : X(t) < b},

τ{b} = inf{t ≥ 0 : X(t) = b}
(2)

(with inf ∅ = +∞). We write sometimes τ for the ”ruin time” τ−0 .
In applications, we are often interested in versions of X(t) which are constrained/regu-

lated at first passage times below or/and above:

X [0(t) = X(t) + R∗(t), Xb](t) = X(t)−R(t).

Here,

R∗(t) = −(X(t) ∧ 0), R(t) = Rb(t) =
(
X(t)− b

)
+

,

X(t) = inf
0≤s≤t

X(t), X(t) := sup
0≤s≤t

X(t),

are the minimal Skorohod regulators constraining X(t) to be nonnegative, and to be
smaller than b, respectively ‡ . Also interesting are processes reflected at 0 and refracted

‡Note that even though X has only negative jumps, for convenience we choose the Lévy measure to
have mass only on the positive instead of the negative half line.

§X(t) is a Markovian process with infinitesimal generator G, which acts on f ∈ C2
c (�+) as [54, Thm.

31.5]

Gh(x) =
σ2

2
h′′(x) + ph′(x) +

�
�+\{0}

[h(x− y) − h(x) + yh′(x)]Π(dy);

incidentally, this may be formally written as G = κ(D), where D denotes the differentiation operator.
‡Instead of Xb](t) one may study the ”unused capacity” process Y b(t) := b−Xb](t) = (X(t)∨b)−X(t)
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at the maximum (or taxed) with coefficient δ, staring from τ+
b [33, 35, 47], [4, (1)]:

Xδ(t) = X
[0,b[
δ (t) = X(t) + R∗(t)− δRb(t), δ ≤ 1.

The regulators R∗(t), R(t), defined by having points of increase contained in {t ≥ 0 :
Xδ(t) = 0} and {t ≥ 0 : Xδ(t) = Xδ(t)∨b} respectively, are more complicated to describe
explicitly in this case; for a recursive construction, see [4, Appendix].

Remark 1. The process δR(t) may be interpreted as cumulative tax or dividends paid
to some beneficiary.

2.1. The W and Z scale function for spectrally negative Lévy processes. Solving
first passage problems involving Markovian processes requires analytic work with their
generator operator. In the case of Lévy processes, the analytic work may be replaced
by the Wiener-Hopf factorization of the Laplace exponent with killing κ(θ)− q (i.e. the
identification and separation of its positive and negative roots).

For spectrally negative Lévy process, the factorization involves only one nonnegative
root

Φq := sup{θ ≥ 0 : κ(θ)− q = 0}, (3)

and everything reduces finally to the determination of one family of functions Wq(x) :
R− > [0,∞), q ≥ 0, defined on the positive half-line by the Laplace transform:∫ ∞

0

e−θxWq(x)dx =
1

κ(θ) − q
, ∀θ > Φq (4)

and taking the value zero on the negative half-line. Note that the singularity Φq plays a
central role – see for example [19, Thm VII.1], stating that Φq is the Lévy exponent of
the subordinator τ+

x , x ≥ 0.
The answers to many first passage problems may be ergonomically expressed in terms

of this function, starting with the classic gambler’s winning problem. For any a < b
and x ∈ [a, b],

Ex

(
e−qτ+

b 1{τ+
b <τ−a }

)
=

Wq(x− a)
Wq(b− a)

=
∫ ∞

0

e−qtdP
{
τ+
b < min[t, τ−a ]

}
.§ (5)

Remark 2. Note that establishing the equivalence between (5) and (4), ”up to a con-
stant”, is not trivial. One solution when q = 0, via excursion theory, is provided in [19,
Thm VII.8] by using the representation

W (x) = W (∞)e−
�∞

x
W ′(h)
W (h) dh = W (∞)e−

�∞
x

ν(h)dh, (6)

where ν(h) = W ′(h)
W (h) = n[ε > h] is the characteristic measure of the Poisson process n

of excursion heights (informally, ν(h) is the rate of excursions starting at the moment
τ+
h which are bigger than h, and thus cause ruin). Later, [46] used a Kennedy type

martingale, and [50, (3)] constructed the scale function using potential theory

Wq(x) = Φ′qe
Φqx − uq(−x) = u+

q (−x)− uq(−x) = eΦqx[uq(0)−
u+

q (x)uq(−x)
uq(0)

],

x ≥ 0,

(7)

where Φq is the inverse of the Lévy exponent (4) and uq is the potential density, which
is exponential for nonnegative x, given by u+

q (x) = Φ′qe−Φqx, x ≥ 0.

A second Zq scale function introduced recently [15, 28] ‖

Zq(x, θ) = eθx

(
1−

(
κ(θ)− q

) ∫ x

0

e−θyWq(y)dy

)
. (8)

‖generalizing (10) from [7]
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further simplifies the solution of many first passage problems.
For 
(θ) large enough to ensure integrability, it holds that

Z(x, θ) =
(
κ(θ)− q

) ∫ ∞

0

e−θyW (x + y)dy.

Thus, the Z(x, θ) scale function is up to a constant an analytic extension of the Laplace
transform of the shifted scale function W (also called Dickson-Hipp transform), and the
normalization ensures that Z(0, θ) = 1. Zq(x, θ) is a ”smooth Gerber-Shiu function”
with penalty w(x) = eθx in the sense of [15], i.e. the unique ”smooth” solution of{

(G − qI)Zq(x, θ) = 0, x ≥ 0
Z(x, θ) = eθx, x ≤ 0

, (9)

where G is the Markovian generator of the process X(t) – see [15, (1.12),(5.23), Sec 5] and
section 2.2. Indeed, consider the general solution g(x, θ) = Zq(x, θ) + kWq(x) and note
that continuity at 0, i.e. g(0, θ) = 1 implies k = 0 when Wq(0) �= 0, and differentiability
at 0, i.e. g′(0, θ) = θ implies k = 0 when Wq(0) = 0 (since W ′

q(0) > 0).
Here are some useful relatives of Zq(x, θ) [36]:

W q(x) :=
∫ x

0

Wq(y)dy,

Zq(x) := Zq(x, 0) = 1 + qW q(x) =
σ2

2
W ′

q(y) + cWq(y)−
∫ x

0

Wq(y)Π(x− y)dy,(10)

Zq(x) :=
∫ x

0

Zq(z)dz = x + q

∫ x

0

∫ z

0

Wq(w)dwdz (11)

(the second definition of Zq(x) holds since G
(
W q

)
(x) = 0). Note that for −∞ < x < 0

we have Zq(x, Φq) = eθx, and for x ≤ 0 W q(x) = 0, Zq(x) = 1, Zq(x) = x.
The Z function may be also characterized by its respective Laplace transform

Ẑq(s, θ) =
1

κ(s)− q

κ(s)− κ(θ)
s− θ

(and Ẑq(s) = 1
κ(s)−q

κ(s)
s ).

Here are some examples of the utility of the Zq(x, θ) function.

Lemma 1. Severity of ruin for a process absorbed or reflected at b > 0.
A) The joint Laplace transform of the first hitting time at 0 and the undershoot is

given by [15], [28, Cor 3], [6, (5)]

Sq(x, θ) := Ex

(
e−qτ−0 e

θX
τ
−
0 ; τ−0 < τ+

b

)
= Zq(x, θ)− Wq(x)

Wq(b)
Zq(b, θ), θ ≥ 0. (12)

B) The joint Laplace transform of the first hitting time at 0 and the undershoot in the
presence of reflection at a barrier b ≥ 0 is [15, Prop 5.5], [28, Thm 6]

Sb]
q (x, θ) = E

b]
x

(
e−qτ−0 e

θX
τ
−
0

)
= Zq(x, θ)− Wq(x)

W ′
q(b)

Z ′q(b, θ), θ ≥ 0, (13)

where E
b] denotes expectation for a process reflected from above at b, using Skorokhod

reflection.

Remark 3. Note the similar structure of (12) and (13); formally, switching form ab-
sorbtion at b to the measure E

b] involving reflection at b only requires adding derivatives
in the b dependent coefficient. This follows easily from the respective boundary conditions
S(b) = 0,

(
Sb]

)′
(b) = 0.
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Remark 4. By using limb→∞
Zq(b,θ)
Wq(b) = q−κ(θ)

Φq−θ , we recover Ex[e−qτ−0 +θX(τ−0 )] = Zq(x, θ)−
Wq(x)κ(θ)−q

θ−Φq
[6, (7)]. For θ = 0 this is the famous ruin time transform Ex[e−qτ−0 ] =

Zq(x) −Wq(x) q
Φq

. Note also the similar transform of the ”recovery time” Ex[e−qτ{0} ] =

Ex[e−qτ−0 +ΦqX(τ−0 )] = Zq(x, Φq)−Wq(x) q
Φq

.

Remark 5. The functions Zq(x) and Zq(x, θ) appeared first in [7] and in [15, (5.23)],
respectively. In the second paper (first submitted in 2012) Zq(x, θ) was introduced as a
particular case of smooth Gerber-Shiu function associated to an exponential payoff
eθx, as in Lemma 1, and as a generating function for the smooth Gerber-Shiu functions
associated to power payoffs.

Subsequently, the ground-breaking papers [28, 6, 4] revealed several other first passage
laws involving Zq(x, θ).

We turn now to a result which we may be seen as the fundamental first passage law
for reflected spectrally negative Lévy processes.

Lemma 2. The Laplace transform of the discounted capital injections/bail-
outs until reaching an upper level. Let X(t) denote a spectrally negative Lévy
process, let R∗(t) = −(0 ∧ X(t)) denote the regulator at 0, let X [0(t) = X(t) + R∗(t)
denote the process reflected at 0, and let E

[0
x denote expectation for the process reflected

at 0. The total capital injections into the reflected process, until the first up-crossing of
a level b, satisfy [28, Thm 2]:

L
[0
∗ (x, b) := E

[0
x [e−qτ+

b −θR∗(τ+
b )] =

{
Zq(x, θ)Zq(b, θ)−1 θ < ∞
Ex[e−qτ+

b Iτ+
b

<τ ] = Wq(x)Wq(b)−1 θ = ∞ , (14)

where W is the classic scale function (4).

Remark 6. This result may be viewed as the fundamental law of spectrally negative Lévy
processes, since it implies the smooth two-sided exit formula (5). It is proved in [28, Thm
2] as a consequence of a more general result [28, Thm 13], but is essentially equivalent
to (12), by using [28]

E
[0
x [e−qτ+

b −θR∗(τ+
b )] = Ex[e−qτ+θX(τ−0 ); τ < τ+

b ] E
[0
0 [e−qτ+

b −θR∗(τ+
b )] + Wq(x)Wq(b)−1 (15)

If the first term is known one gets an equation for the severity of ruin

Z(x, θ)Z(b, θ)−1 = Wq(x)Wq(b)−1 + Ex[eθX(τ−0 ); τ−0 < τ+
b ]Z(b, θ)−1,

with the known solution

Ex

(
e−qτ+θX(τ); τ < τ+

b

)
= Zq(x, θ)−Wq(x)Wq(b)−1Zq(b, θ).

And if the severity of ruin is known, one may use (15) with x = 0 to solve for

E
[0
0 [e−qτ+

b −θR∗(τ+
b )],

provided that Wq(0) �= 0. When Wq(0) = 0, one must start with a ”perturbation ap-
proach”, letting x→ 0 – see for example Section 8.

Here is a generalization of Lemma 1 B):

Lemma 3. The dividends- penalty law for a process reflected at b is [28, Thm 6]:

Sb
ϑ(x, θ) := E

b]
x

[
e−qτ−0 +θX(τ−0 )−ϑ

� τ
−
0

0 e−qtdR(t)

]
= Zq(x, θ) −Wq(x)

Z ′q(b, θ) + ϑZq(b, θ)
W ′

q(b) + ϑWq(b)
.

(16)
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Remark 7. The function Sb
ϑ(x, θ) is q- harmonic, i.e. (G − q)Sb

ϑ(x, θ) = 0, and satisfies
(Sb

ϑ)′(b, θ)+ϑSb
ϑ(b, θ) = 0. Minimizing it when ϑ �= 0, with respect to all possible dividend

policies is an example of risk sensitive dividends optimization. It is expected that the
last maximum of the barrier function G(b) = Z′q(b,θ)+ϑZq(b,θ)

W ′
q(b)+ϑWq(b) will play a key role in the

answer (note when θ = ϑ = 0, this is tantamount to maximizing the de Finetti barrier
function Wq(b)

W ′
q(b)).

Extensions to other classes of spectrally negative Markov processes. For-
mulas with a similar structure in terms of scale functions must hold for other Markov-
ian processes, and some recent papers showed indeed that generalizations of the W , Z
functions were still manageable computationally for other types of Markovian processes
besides Lévy: for example, see [12, 42, 15] for reflected Lévy processes, and [34, 29] for
spectrally negative Markov additive processes, and [6, 16] for spectrally negative Lévy
process with Parisian reflection (bailouts). These results increase considerably the arsenal
of financial optimization tools.

2.2. Nonhomogeneous problems and the Gerber–Shiu function Sw. When
eθX(τ−0 ) is replaced by an arbitrary penalty function w(X(τ−0 )), w : (−∞, 0] → R which
is ”admissible” (satisfies certain integrability condition) in (12), (13), extensions of these
formulas still hold if one replaces Zq(x, θ) by a ”smooth Gerber–Shiu function” Sw [15].
More precisely, given 0 < b < ∞, x ∈ (0, b), there exists a unique ”smooth GS function”
Sw so that the following hold:

Sw(x) = E
b]
x

[
e−qτ−a w

(
X(τ−a )

)
1{τ−a <τ+

b }
]

= Sw(x) −Wq(x)
Sw(b)
Wq(b)

, (17)

Sb]
w(x) = E

b]
x

[
e−qτ−a w

(
X(τ−a ))

)]
= Sw(x) −Wq(x)

S′w(b)
W ′

q(b)
. (18)

Stated informally, this amounts to the fact that both these problems admit decompo-
sitions involving an identical ”non homogeneous solution” Sw.

The ”smoothness” required is:{
Sw(0) = w(0),
S′w(0+) = w′(0−), in the case σ2 > 0 or Π([0, 1]) =∞.

(19)

Under these conditions, the function Sw is unique and may be represented as [15, (5.13)]:

Sw(x) = w(0)Zq(x) +
σ2

2
w′(0−)Wq(x) + (20)∫ x

0

Wq(x− y)
∫ ∞

z=y

[w(0)− w(y − z)]Π(dz)dy

= w(0)
(

σ2

2
W ′

q(x) + cWq(x)
)

+ w′(0−)
σ2

2
Wq(x)−

∫ x

0

Wq(x− y)w(Π)(y)dy,

where w(Π)(y) =
∫∞

z=y
[w(y − z)]Π(dz) is the expected liquidation cost conditioned on a

pre-ruin position of y and on a ruin causing jump bigger than y.

Remark 8. The first two parts of (20) may be viewed as boundary fitting terms, and
the last part as a ”non-local Gerber-Shiu/nonhomogeneous component”.

Lemma 4. For w(x) = eθx, the Gerber–Shiu function is Z(x, θ) and the decomposition
(20) becomes:

Zq(x, θ) = Zq(x) + θ
σ2

2
Wq(x) +

∫ x

0

Wq(y)
∫ ∞

x−y

[1− eθ(x−y−z)]Π(dz)dy.
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This maybe easily checked by taking Laplace transforms, since

Ŵ (s)
κ(s)− κ(θ)

s− θ
= Ŵ (s)

(κ(s)
s

+ θ
σ2

2
+

π̂(s)− π̂(θ)
s− θ

− π̂(s)− π̂(0)
s

)
3. An appetizer: a dynamic index for valuation of spectrally negative

Lévy subsidiaries, built from the scale functions

In this section we introduce a valuation index for subsidiaries. Note that in classic
valuation in risk theory, by the de Finetti objective for example, one fixes a prescribed
liquidation point o (usually o = 0), in which case the index can be expressed using
the scale function methodology started in [7] and illustrated in this paper. Here
we propose however to further optimize the liquidation point, as is done for example in
mathematical finance, for valuing American put options.

Consider a subsidiary with liquidation value w(x) and a policy π = (R, R∗, τ)
involving some dividend process R, bailout process R∗, and a liquidation/reevaluation
stopping time τ . If dR∗(t) consists of a single payoff at the liquidation time τ , then the
modified De-Finetti objective (26) is

V F (x) = Ex

[∫ τ

0

e−qtdR(t) + e−qτw(X(τ))
]

(21)

Subtracting now from the optimal value obtained by continuing until some stopping
time the immediate stopping value yields the following continuation index alluded to
in the title:

I(x) = sup
τ

Ex

[∫ τ

0

e−qtdR(t) + e−qτw(X(τ))
]
− w(x) (22)

Remark 9. This is similar to the concept of Gittins index, in which we modify a value
function by subtracting a constant subsidy I = I(x) for stopping, and choose this subsidy
so that the decisions of whether to continue or stop yield equal payoffs.

When the stopping time is prescribed by forced stopping, for example at τ = τ−0 , an
explicit formula is available in terms of the scale functions W , Z and the Gerber-Shiu
function Sw [42, 15]:

V F (x) = Sw(x) + Wq(x)
1 − S′w(b)

W ′
q(b)

, (23)

With linear liquidation costs for example w(x) =

{
kx−K, x < 0
x−K, x ≥ 0

, the smooth

Gerber-Shiu function is [42, 15]:

Sw(x) = kZ1,q(x) −KZq(x), Z1,q(x) = Zq(x)− pW q(x). (24)

Optimizing (23) in b is tantamount to optimizing the ”barrier function”

G(b) =
1− S′w(b)

W ′
q(b)

. (25)

Furthermore, the ”barrier policy” at the last maximum b∗ is often optimal among all
dividend policies, and, when barrier policies are not optimal, an iterative procedure with
starting point b∗ may be used to obtain the optimal ”multi-bands policy” [55, 15].

Remark 10. Several variations of the index (23) may be obtained replacing absorption
at τ by Parisian absorbtion or reflection, or by adding refraction or other boundary
mechanisms, which do not destroy the property of smooth passage upwards.
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Note that these problems do not require separate treatment: the valuation index I is
again of the form (23), with appropriate definitions of the scale functions W , Z. Thus,
finding two scale functions replaces the work necessary for many first passage problems
[33, 6, 16].

Remark 11. The optimization of the bailout point o has been less studied, and deserves
further attention.

4. Some applications of the W and Z functions to financial optimization

We turn now to reviewing applications of the W and Z functions to the optimization of
several financial objectives involving paying dividends and liquidation expenses, which
seem relevant for the problem of evaluating the rentability/efficiency of a subsidiary
company.

The De Finetti objective with Dickson-Waters modification consists in max-
imizing expected discounted dividends until the classic ruin time, amended by a modifi-
cation [25] penalizing the final liquidation:

V (x) = sup
π

Ex

[∫ τ−0

0

e−qtdRπ(t) + e−qτ−0 w(X(τ−0 ))

]
= V F (x) + Sw(x). (26)

Here π represents an ”admissible” dividend paying policy, Lπ(t) are the cumulative
dividend payments, and w(x) is a bail-out penalty function. The value function must
satisfy, possibly in a viscosity sense, the HJB equation [17, (1.21)]:

H(V )(x) := max[GqV (x), 1 − V ′(x)] = 0, x ≥ 0, V (x) = w(x), x < 0, (27)

where GqV (x) denotes the discounted infinitesimal generator of the uncontrolled surplus
process, associated to the policy of continuing without paying dividends. The second
operator 1 − V ′F (x) corresponds to the possibility of modifying the surplus by a lump
payment. The most important class of policies is that of constant barrier policies πb,
which modify the surplus only when X(t) > b, by a lump payment bringing the surplus
at b, and than keep it there by Skorokhod reflection, until the next negative jump § ,
until the next claim.

Under such a reflecting barrier strategy πb, the dividend part of the De-Finetti objec-
tive has a simple expression in terms of the W scale function:

V F (x, b) = E
|0,b]
x

[∫
[0,τ−0 ]

e−qsdR(s)

]
= Wq(x)W ′

q(b)
−1, (28)

where E
|0,b] denotes the law of the process reflected from above at b, and absorbed at 0

and below.
The penalty part can be expressed in terms of Sw(x); finally, the modified de Finetti

value function is:

V (x, b) =

{
Sw(x) + Wq(x)1−S′w(b)

W ′
q(b) x ≤ b

x− b + V (b, b) x ≥ b
(29)

where Sw is the smooth Gerber-Shiu associated to the penalty w [15].
The ”barrier function”

GF (b) :=
1− S′w(b)

W ′
q(b)

, b ≥ 0 (30)

plays a central role in financial optimization.

§in the absence of a Brownian component, this amounts to paying all the income while at b
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The most important cases of bail-out costs w(x) are
(1) exponential w(x) = eθx, when Sw(x) = Zq(x, θ), and
(2) linear w(x) = kx + K. For x < 0, the constants k > 0 and K ∈ R may be

viewed as proportional and fixed bail-out costs, respectively. The cases k ∈ (0, 1]
and k > 1 correspond to management being held responsible for only part of
the deficit at ruin, and to having to pay extra costs at liquidation, respectively.
When K < 0, late ruin is rewarded; when K > 0 early liquidation is rewarded.

In this case Sw(x) may be obtained by using Zq(x, θ) as generating function
in θ, i.e. the coefficients of K, k in F (x) are found by differentiating the Z(x, θ)
scale function 0 and 1 times respectively, with respect to θ. This yields

Sw(x) = k
(
Zq(x) − pW q(x)

)
+ KZq(x) := kZ1,q(x) + KZq(x). (31)

4.1. The Shreve–Lehoczky–Gaver infinite horizon objective, with linear penal-
ties. Suppose a subsidiary must be bailed out each time its surplus is negative, and
assume the penalty costs are linear w(x) = kx. The optimization objective of interest
combines discounted dividends R(t), and cumulative bailouts R∗(t)

V S(x) = sup
b

E
[0,b]
x

[∫ ∞

0

e−qtdR(t) + k

∫ ∞

0

e−qtdR∗(t)
]

. (32)

Since in a diffusion setting this objective has first been considered by Shreve, Lehoczky,
and Gaver (SLG) [56] – see also [20, 44] – we will call it the SLG objective.

The expected discounted dividends over an infinite horizon for the doubly reflected
process, with expectation denoted E

[0,b], are provided in [12, (4.3)]

V S,D(x, b) = E
[0,b]
x

[∫ ∞

0

e−qtdR(t)
]

= Zq(x)Z ′q(b)
−1. (33)

The capital injections part of the infinite horizon doubly reflected ”SLG objective” is

V S,w(x, b) = Sw(x) − Zq(x)
Z ′q(b)

S′w(b) (34)

Remark 12. The Gerber-Shiu function Sw(x) is common to three distinct nonhomoge-
neous problems involving a process X:

(1) severity of ruin with absorbtion at an upper barrier (17)
(2) severity of ruin with reflection at an upper barrier (18)
(3) cumulative bailouts at the lower barrier with reflection at an upper barrier, for

the doubly reflected process (34).

Remark 13. Note that in (33), (34), just as in the relation Exe−qτ+
b = Zq(x)Zq(b)−1

[7], the second scale function Zq(x) acts for the process reflected at 0 just as first scale
function for the process absorbed at 0.

In particular, with linear costs w(x) = kx, (34) becomes:

V S,w(x) = −kE
[0,b]
x

[∫ ∞

0

e−qtdR(t)
]

= k
(
Z1,q(x)− Zq(x)Z ′q(b)

−1Z ′1,q(b)
)
,

and the optimal dividend distribution is always of constant barrier type [12, (4.4)].

4.2. Optimal dividend barrier strategies. The modified De Finetti dividend
barrier function and the optimality of barrier strategies. The last global maxi-
mum b∗ achieving the max in

max
b

V (x, b) = Sw(x) + Wq(x)
1 − S′w(b)

W ′
q(b)
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plays a central role in the optimal dividends distribution policy (even when this is not of
single barrier type). To determine b∗, it suffices to study the barrier influence function
GF (b) = 1−S′w(b)

W ′
q(b) (30). For example with linear costs w(x) = kx + K, this becomes

GF (b) =
1− kZ ′1,q(b)−KZ ′q(b)

W ′
q(b)

, (35)

with Z1,q(b) defined in (31); [42, Lem. 4.1, Lem. 4.2] show that this barrier function
does attain a global maximum b∗ ∈ [0,∞), and that it is increasing-decreasing if W ′

q(b)
is log-convex.

Example 1. With the SLG objective, the value function is

max
b

V S(x, b) = Sw(x) + Zq(x)
1 − S′w(b)

Z ′q(b)

and the BF is 1−S′w(b)
Z′q(b) . With linear bailout costs w(x) = kx, this becomes

GS(b) =
1− kZ ′1,q(b)

Z ′q(b)
=

1− k(Zq(b)− pWq(b))
qWq(b)

. (36)

After further removing a multiple of Wq(b) from the numerator, we arrive at the
equivalent optimization of G̃(b) = 1−kZq(b)

qWq(b) [12, (5.4)].

Remark 14. The barrier functions and their largest maxima b∗ are easy to compute and
central for solving numerically all barrier optimization problems, but determining whether
the single barrier strategy at b∗ is optimal is in many cases an open problem. However,
the condition G(0) ≥ 0 yields simple criteria, just as in the case of the modified de Finetti
objective; this motivated us to investigate also the optimality condition G′(0) ≤ 0 – see
[9, 10] and section 6.

5. A list of first passage laws for Lévy processes with Poissonian
(Parisian) detection of insolvency

A useful type of models developed recently [6, 5, 16] assume that insolvency is only
observed periodically, at an increasing sequence of Poisson observation times Tr =
{ti, i = 1, 2, . . .}, the arrival times of an independent Poisson process of rate r, with
r > 0 fixed § .

The analog concepts for first passage times are the stopping times

T +
b = inf{ti : X(ti) > b}, T−a = inf{ti > 0 : X(ti) < a} (37)

We write sometimes T−0 for T−0 . Under Parisian observation times, first passage is
recorded only when the most recent excursion below a/above b has exceeded an expo-
nential rv Er of rate r.

Remark 15. We will refer to stopping at T−0 as Parisian absorbtion. A spectrally
negative Lévy processes with Parisian reflection below 0 may be defined by pushing
the process up to 0 each time it is below 0 at an observation time Ti. In both cases, this
will not be made explicit in the notation; classic and Parisian absorbtion and reflection
will be denoted in the same way (note that the first is a limit of the second).

§The concept of periodic observation may be extended to the Sparre Andersen (non Lévy) case, using
geometrically distributed intervention times at the times of claims. This deserves further investigation.
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Remark 16. Parisian detection below 0 is related to the ”time spent in the red”

T<0 :=
∫ ∞

0

I{X(t)<0}dt,

a fundamental risk measure studied by [48, 43].
Indeed, the probability of Parisian ruin not being observed (and of recovering without

bailout) when p > 0, q = 0 is [37, Cor 1,Thm 1], [6, (11)]

Px[T−0 =∞] = Px[T<0 < E(r)] = Ex

[
e−rT<0

]
= p

Φr

r
Z(x, Φr), (38)

where Φr is the inverse of the Laplace exponent . This could be viewed as a state depen-
dent extension of the profit parameter p, to measure the profitability of risk processes.
See [40, 41] for further information about the relation between Laplace transforms of occu-
pation times and the fluctuation theory of SNLP observed at independent Poisson arrival
times.

The following proposition list some basic first passage results for processes with
Parisian detection of ruin, reflected or absorbed, following [6, 21, 16]. Note that these
results coincide with the ones with classic, ”hard” detection of ruin, and imply them
when r →∞. They also suggest that the known first passage results with hard ruin for
SNMAPs [34, 29, 28, 3] might generalize to the Parisian case, provided that properly
defined scale matrix functions are introduced, and written in correct order. To facilitate
further work, we provide for each result below, besides the Lévy Parisian reference, also
the corresponding non-Parisian SNMAP reference from [29, 28, 3], and also references
from [12, 6, 4, 5] for problems where the SNMAP case is not yet resolved.

Proposition 1. First passage results for processes with Parisian detection,
followed by reflection or absorbtion. Let X be a spectrally negative Lévy process
with Parisian detection below 0, and fix b > 0. Assuming x ∈ [0, b] and q, r > 0,
0 ≤ θ <∞, the following hold:

(1) The capital injections/bailouts law for a Parisian reflected process, un-
til τ+

b [16, Cor 3.1 ii)], [28, Thm 2]. Let X [0(t) denote the SNMAP process
reflected at 0, let R∗(t) = −(0∧X(t)) denote its regulator at 0, so that X [0(t) =
X(t)+ R∗(t), and let E

[0
x denote expectation for the process with Parisian reflec-

tion at 0. Then:

Bb(x, θ) := E
[0
x [e−qτ+

b
−θR∗(τ+

b
)] =

{
Zq,r(x, θ)Zq,r(b, θ)−1 θ <∞
E[0[e−qτ+

b ; τ+
b < T−0 ] = Wq,r(x)Wq,r(b)−1 θ =∞

,

(39)
where

Zq,r(x, θ) =
r

q + r − κ(θ)
Zq(x, θ) +

q − κ(θ)
q + r − κ(θ)

Zq(x, Φq+r), (40)

with θ = Φq+r interpreted in the limiting sense, and where

Wq,r(x) := Zq(x, Φq+r)

[3], [6, (12)] § . When r → ∞, Zq,∞(x, θ) = Zq(x, θ), Wq,∞(x) = Wq(x) and
(39) reduces to classic results [28].

§The notation Wq,r(x) := Zq(x, Φq+r) has been chosen to emphasize that this replaces, for
processes with with Parisian ruin, the Wq scale function in the classic ”gambler’s winning” problem

�x [e−qτ+
b ; τ+

b < τ−
0 ] =

Wq(x)

Wq(b)
.
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(2) The severity of Parisian ruin with absorbtion at τ+
b ,

Sb(x, θ) = Ex

[
eθX(T−0 ); 1T−0 <τ+

b ∧Eq

]
is [6, (15)] [28, Cor 3]:

Sb(x, θ) = Zq,r(x, θ) −Wq,r(x)Wq,r(b)
−1

Zq,r(b, θ) = Zq,r(x, θ)− L∗,0(x, b)Zq,r(b, θ).

(3) Let U
|a,b|
q (x, B) = Ex

( ∫ τ−a ∧τ+
b

0
e−qt1{X(t)∈B}dt

)
, denote the q-resolvent of a

doubly absorbed spectrally negative Lévy process with Parisian ruin
[21, Thm 2], for any Borel set B ∈ [a, b]. Then,

U |a,b|
q (x, B) =

∫ b

a

1{y∈B}
[Wq,r(x − a)Wq,r(b − y)

Wq,r(b− a)
−Wq,r(x − y)

]
dy a < y < b (41)

(the analog classic result is Theorem 8.7 of [36]).

Remark 17. It is natural to conjecture that the resolvents for (partly) reflected
processes will also be of the same form as the classic ones [49, Thm. 1], [30, Thm
2, Cor.2].

(4) The dividends-penalty law for a process reflected at b, with Parisian
ruin [28, Thm 6], is:

Sb(x, θ, ϑ) := E
b]
x

[
e−ϑR(T−0 )+θX(T−0 ); T−0 < Eq

]
= Zq,r(b, θ)−Wq,r(b)

Z ′q,r(b, θ) + ϑZq,r(b, θ)
W ′

q,r(b) + ϑWq,r(b)

=
[
Zq(x, θ) − Zq(x, Φq+r)H(b, Φq+r)

−1H(b, θ)
]
r(r + q − κ(θ))−1,

(42)

where H(b, θ) = ϑZq(b, θ) + Z ′q(b, θ) = (θ + ϑ)Zq(b, θ)− (κ(θ)− q)Wq(b) ¶ . The
second, rather complicated formula, is [6, (23)].

Note that when r →∞, (42) recovers the classic [7, 46],[28, Thm 6], [6, (25)],
by using Zq(b, Φq+r)→Wq(b):

Sb
ϑ(x, θ) = E

b]
x [e−ϑR(τ−0 )+θX(τ−0 ); τ−0 < ∞] = EY (0)=b−x[e−ϑR(tb)−θ(Y (tb)−b)]

= Zq(x, θ)−Wq(x)
(
W ′

q(b) + ϑWq(b)
)−1 (

Z ′q(b, θ) + ϑZq(b, θ)
) ‡

where Yx(t) = X(t) −X(t) is the draw-down process/ reflection from the maxi-
mum.

At first sight, (42) and the classic version (42) look different; however, a little
algebra will convince us that (42) may also be written as (42), with Zq, Wq

updated to their Parisian versions Zq,r, Wq,r.
When ϑ = 0 § (43) yields the severity of ruin for a regulated process

[27]:

E
b]
x [eθX(τ); τ−0 < Eq] = Z(x, θ)−W (x)W ′(b+)−1Z ′(b, θ) = Z(x, θ)− V F (x, b)Z ′(b, θ).

(43)

¶The structure of this formula reflects the fact that Φq+r is a removable singularity
§When ϑ = 0 = x, and X is Lévy with bounded variation, the joint law of an excursion with

reflection at an upper barrier, and of the final overshoot is

�
b]
0 [eθX(τ); τ−

0 < Eq] = 1 +
1

c
W ′

+(b)−1 (W (b)κ(θ)− θZ(b, θ))

and �
b]
0 [e−qτ ; τ−

0 < ∞] = 1 − �q W (b)
W ′

+(b)
, �q = q

c
. When b → ∞, we recover the Laplace transform of an

upward excursion �ρ = �ρδ = �0 [e−qτ ] = 1− �q
Φq

= λ
c
�F (Φ(q)).
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Remark 18. When x = b, we may factor the transform (42)

E
b]
b

[
eθX(T−0 )−ϑR(T−0 ); T−0 < Eq

]
as:

Ω(Ω + ϑ)−1

(
Zq(b, θ)− Ω−1

(
θZq(b, θ) + (q − κ(θ))Wq(b)

))
r(r + q − κ(θ))−1, (44)

Ω = V F (b, b)−1 = W ′
q,r(b)Wq,r(b)

−1 = Z ′q(b, Φq+r)Zq(b, Φq+r)
−1

= Φq+r − rWq(b)Zq(b, Φq+r)
−1.

Indeed,

Zq(b, θ)− Zq(b, Φq+r) ((Φq+r + ϑ)Zq(b, Φq+r)− rWq(b))
−1

H(b, θ)

= Zq(b, θ)−
(
ϑ + Φq+r − rWq(b)Zq(b, Φq+r)−1

)−1
H(b, θ)

= Zq(b, θ)− (ϑ + Ω)−1
H(b, θ),

and (44) follows by simple algebra. By (44), R(T−0 ) and X(T−0 ) are indepen-
dent when starting from b, and the former has an exponential distribution with
parameter Ω [6, (23),(26)].

(5) The expected discounted dividends (upper regulation at b) until T−0 [6,
(27)] are :

V F (x, b) = E
b]
x

[∫ T−0

0

e−qtdR(t)

]
= Wq,r(x)W ′

q,r(b)
−1

. (45)

(6) The expected discounted dividends with reflection at 0 at Parisian
times, until the total bail-outs surpass an exponential variable Eξ [4,
(15)] are

V S(x, b, θ) = E
[0,b]
x

[∫ ∞

0

e−qs1[R∗(s)<Eθ ]dR(s)
]

= Zq,r(x, θ)Z ′q,r(b, θ)
−1 (46)

When θ = 0, this becomes [16, Cor 3.3] [12, (4.3)]:

V S(x, b) = E
[0,b]
x

[∫ ∞

0

e−qtdR(t)
]

= Zq,r(x)Z ′q,r(b)
−1

, (47)

where Zq,r(x) = Zq,r(x, 0).
(7) The expected total discounted bailouts at Parisian times up to τ+

b are
given for 0 ≤ x ≤ b by [16, Cor 3.2 ii)]:

V F
∗ (x, b) := E

[0
x

[∫ τ+
b

0

e−qtdR∗(t)

]
= Zq,r(x)Zq,r(b)−1S(b)− S(x). (48)

where

S(x) = Sq,r(x) =
r

q + r

(
Zq(x) +

κ′(0+)
q

)
. (49)

(8) The total discounted bailouts at Parisian times over an infinite horizon,
with reflection at b are [16, Cor 3.4]:

V S
∗ (x, b) = E

[0,b]
x

[∫ ∞

0

e−qtdR∗(t)
]

= Zq,r(x)Z ′q,r(b)
−1S′(b)− S(x). (50)
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Remark 19. Similar results hold for processes X
b[
δ (t) with δ-refraction at a fixed point

b [33, 35, 52, 47]. The scale functions are:

wb[
q (x) = Wq(x) + δ

∫ x

b

Wq(x − y)W ′
q(y)dy, (51)

zb[
q (x, θ) = Zq(x, θ) + δ

∫ x

b

Wq(x− y)Z ′q(y, θ)dy. (52)

For example, by [35, Cor. 2], it holds that

Ex

[
e−rT<0

]
= Px[T−0 =∞] = (p− δ)

Φr

r − δΦr
zb[(x, Φr), 0 ≤ δ ≤ p. (53)

Remark 20. Some of the results above have been extended to processes X
[0[
δ (t) with

classic reflection at 0 and refraction at the maximum [4, (3)]. Thus, (39) holds with

Zq(x, θ) replaced by Z
1

1−δ
q (x, θ) [4, Thm 3.1]. The proof uses the probabilistic interpre-

tation E
[0
x [e−qτ+

b −θR∗(τ+
b )] = P [τ+

b < Eq ∧Kθ], where Kθ is the first time when the total
bail-out exceeds an independent exponential rv. Eθ. Finally, [6, (22)] extend this to the
case when τ+

b is replaced by T +
b .

Remark 21. The proof of the results above typically requires in the finite variation case
only applying the strong Markov property; however, in the infinite variation case, the
same problems require a perturbation approach– see for example the proof of Proposition
1 (A), in section 8, or the use of the beautiful Ito excursion theory.

6. Acceptance-rejection of Lévy subsidiary companies observed at
Poissonian times, based on readiness to pay dividends

Even in the one-dimensional case, the final choice of an acceptance-rejection principle
is not at all obvious. A first intuition is that an acceptable subsidiary must satisfy the
classic positive profit condition

p := E0[X(1)] > 0 (54)

or its extension involving linear liquidation/bailout costs [42]. However, these equations
only exploit the mean of the process involved and ignore its current state. To remediate
this deficiency, one could turn to model and state-dependent formulas like (38). To be
of practical use, an acceptance-rejection index should have a complexity similar to that
of the expressions above, and also intervene in some important optimization problem.

Note that the profitability/viability condition of [42] is equivalent to

G(0) ≥ 0,

where G is the barrier influence function, and interesting variations may be obtained by
replacing absorbtion at 0 with reflection or Parisian reflection, which change the scale
functions. The simplicity of all the resulting formulas comes from the fact that the
scale functions are only evaluated at 0. This suggested an acceptance-rejection criteria
introduced in [9, 10], based on the readiness of subsidiaries to pay dividends at b = 0.

Definition 1. A subsidiary will be called efficient if the barrier b = 0 is locally optimal
for paying dividends over some interval b ∈ [0, ε), ε > 0, i.e. if it holds that

G′(0) ≤ 0.

The motivation of this condition is that companies satisfying it are functional even in
the absence of cash reserves, and can contribute cash-flows to the central branch without
having to wait first until their reserves build out; efficiency is thus translated as readiness
to pay dividends. This criterion turns out to be a useful complement of the viability
concept G(0) ≥ 0 (which at its turn generalizes the classic p ≥ 0). An additional bonus
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is that un-efficient subsidiaries may be turned into efficient ones by choosing an extra
killing q′i to render the barrier b∗ = 0 locally optimal; this means that the central branch
will terminate subsidiaries deemed un-efficient by stopping bailouts after times Eq′i with
exponential law of parameters q′i; (q′i)

−1 will be referred to as “patience” parameters.
The killing rate q′i will be 0 for subsidiaries deemed efficient.

We illustrate now the application of the efficiency concept for spectrally negative Lévy
processes, under the SLG objective.

We assume σ = 0, Π(0,∞) = λ <∞, and bail-outs at classic ruin times. This optimal
dividend problem is fully analyzed in [12, Thm. 3], and in particular [12, Lem. 2] show
that the optimal SLG constant barrier is b∗ = 0 iff

k ≤ 1 +
q

λ
⇔ q = λ(k − 1). (55)

Note this is a simple application of the optimality of 0 for the barrier function G̃(b) =
1−kZq(b)
qWq(b) . Indeed,

qG̃′(b) = −
kqW 2

q (b) + W ′
q(b)(1 − kZq(b))

W 2
q (b)

G̃′(0) ≤ 0 ⇔ kq/c2 + (1− k)(q + λ)/c2 ≥ 0⇔ q + λ ≥ kλ

Remark 22. The efficiency criterion (55) does not take into account the law of X,
beyond the total mass of its Lévy measure. However, it does have the interesting feature
of making possible to turn partially efficient subsidiaries into efficient ones, by introducing
extra killing qi. This follows from the fact that the function k(q) which solves the equation
G′(0) = 0 is increasing. This encouraging feature motivated us to remedy this by using
the SLG objective in more sophisticated environments including periodic observations,
refraction, considered here, and also by using the De Finetti objective – see [10].

The next result provides a nontrivial efficiency criteria under the SLG infinite horizon
cumulative dividends-bailouts objective with Parisian reflection

Theorem 1. a) The SLG value function with Parisian reflection and linear bailout costs
kx is:

VSLG(x) = Zq,r(x)Z ′q,r(b)
−1 − k

(
Zq,r(x)Z ′q,r(b)

−1S′(b)− S(x)
)

= kS(x) + Zq,r(x)
1 − kS′(b)

Z ′q,r(b)

b) The barrier b = 0 is a local maximum iff the influence function G(b) := 1−kS′(b)
Z′q,r(b)

satisfies

G′(0) ≤ 0⇔ k
(
S′(0)Z ′′q,r(0)− S′′(0)Z ′q,r(0)

)
≤ Z ′′q,r(0)

⇔ k
r

q + r

(
Z ′′q,r(0)− qWq(0+)Z ′q,r(0)

)
≤ Z ′′q,r(0)

⇔ k ≤ (1 +
q

r
)

Φq+r − rWq(0+)
Φq+r − (r + q)Wq(0+)

. (56)

In the finite variation case § (56) holds iff

k ≤ k(q, r) := (1 +
q

r
)

Φq+r − r/c

Φq+r − (r + q)/c

§in the infinite variation case, the first equation still holds, but the efficiency index does not reflect
the distribution, since Φq+r cancels
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Remark 23. It may be checked that k(q, r) increases in q from k(0, r) = 1 to infinity
and thus an inefficient subsidiary with high transaction cost k > k(q, r) may be turned
into efficient by increasing the killing q sufficiently. More precisely, solving the inequality
(57) yields k < 1 + q/r, or

k ≥ 1 + q/r, q + r < κ

�
(k − 1)(q + r)

c(k − 1− q/r)

�
⇔ Φq+r <

(k − 1)(q + r)

c(k − 1− q/r)
,

and inefficient subsidiaries may be made efficient by choosing an extra killing rate q′i
obtained by letting qi := q + q′i solve the equality Φq+r = (k−1)(q+r)

c(k−1−q/r) . For example, for

the Cramér-Lundberg with exponential claims and Laplace exponent κ(s) = s
(
s− λ

μ+s

)
,

this yields a cubic equation in q. The solution

q = (k − 1)

√
(r + λ + cμ)2 + 4rλ(k − 1− cμ/r)− (r + λ + cμ)

2(k − 1− cμ/r)

is increasing in k, with a removable singularity at k = 1 + cμ/r. The corresponding
maximum of the barrier influence function is:

G(0) =
1− k r

q+r

Z ′q,r(0)
=

1− k r
q+r

q
q+r Φq+r

=
q + r − kr

qΦq+r

Proof of theorem 1. The SLG objective with Parisian bail-outs and its derivative
is are:

G(b) =
1 + kS′(b)

Z ′q,r(b)
, G′(b) =

kZ ′q,r(b)S′′(b)− (1 + kS′(b))Z ′′q,r(b)
(Z ′q,r(b))2

.

Efficiency is equivalent to

G′(0+) ≤ 0 =⇒ k
(
Z ′q,r(0)S′′(0)− S′(0))Z ′′q,r(0)

)
≤ Z ′′q,r(0). (57)

Using

Z ′q(x, θ) = θZq(x, θ) + (q − κ(θ))Wq(x),

Z ′′q (x, θ) = θZ ′q(x, θ) + (q − κ(θ))W ′
q(x)

= θ2Zq(x, θ) + θ(q − κ(θ))Wq(x) + (q − κ(θ))W ′
q(x),

Z ′q,r(x) =
q

q + r

(
Φq+rZq(x, Φq+r)− rWq(x)

)
+

r

q + r
qWq(x) =

q

q + r
Φq+rZq(x, Φq+r),

Z ′′q,r(x) =
q

q + r
Φq+r

(
Φq+rZq(x, Φq+r)− rWq(x)

)
(58)

we find

Z ′q,r(b) =
q

q + r
Φq+rZq(b, Φq+r), Z ′′q,r(b) =

q

q + r
Φq+r (Φq+rZq(b, Φq+r)− rWq(b)) ,

S′(b) = − r

r + q
Zq(b),S′′(b) = − rq

r + q
Wq(b),

and finally

k (Φq+r − (r + q)Wq(0+)) ≤ (1 +
q

r
) (Φq+r − rWq(0+)) .

The result follows by noting that the coefficient of k is always positive �

Remark 24. In the finite variation case, with r → ∞, (57) becomes k
(
W ′

q(0)− q
c2

)
≤

W ′
q(0)⇔ k ≤ 1 + q

λ , which fits [12, (5.6)] (also,

lim
r→∞

Φq+r − r/c

Φq+r − (r + q)/c
= 1 + lim

r→∞
q/c

Φq+r − (r + q)/c
= 1 +

q

λ
.
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7. Heuristic valuation of CB networks, using claims line dividend policies

We consider here one of the simplest risk networks, involving a parent company/central
branch, and several subsidiary branches [9, 10, 2].

Definition 2. A central branch (CB) risk network is formed from:
(1) Several spectrally negative subsidiaries Xi(t), i = 1, . . . , I, which must be kept

above certain prescribed levels oi by bail-outs from a central branch (CB) X0(t),
or be liquidated when they go below oi.

(2) The reserve of the CB is a spectrally negative process denoted by X0(t) in the
absence of subsidiaries, and by X(t) after subtracting the bailouts. The ruin time

τ = τ−0 = inf{t ≥ 0 : X(t) < 0}
causes the ruin of the whole network and leads to a severe penalty.

(3) The CB must also cover a certain proportion αi = 1 − αi of each claim Ci,j of
subsidiary i, leaving the subsidiary to pay only αiCi,j, where αi ∈ [0, 1] are called
proportional reinsurance retention levels.

A natural approach for evaluating financial companies, going back to de Finetti
[24] and Modigliani and Miller [45] is to consider the optimal expected discounted cu-
mulative dividends/optimal consumption until ruin § – see [39] for further references on
this venerable approach.

If the liquidation time τ is also optimized

IF (u) := sup
π=(R0,R1,...,RI ,τ)

Eu

∫ τ

0

e−qt

(
I∑

i=0

dRi(t)

)
, (59)

the result IF (u) is a Gittins type valuation index.
We will propose here a heuristic multi-dimensional valuation index, based on a specific

dividends policy, which, remarkably, was found to be exact in [11], if the retention levels
are small enough .

We recall first from [14, 13] that when I = 1 and

c0 ≤ c1
α1

α1
,

i.e. if the angle of the vector α = (α1, α1) with the u1 axis is bigger than that of
c = (c1, c0), then the lower cone

C := {0 ≤ u0 ≤ u1
α1

α1
}

contains c and is invariant with respect to the stochastic flow, i.e. that starting with
initial capital (u1, u0) ∈ C, the process (X1, X0) will stay there. In particular, in the
lower cone C ruin can only happen for the CB/reinsurer X0,and the ruin probability is a
classic one-dimensional ultimate ruin probability

Ψ(u1, u0) = Ψ(α1
u0

α1
, u0) := Ψ0(u0), ∀u0

see for example [53, 1]. Furthermore, the lower cone is also invariant with respect to the
optimal discounted dividends policy [11].

Turning now to several dimensions, it is easy to check that:

§More generally, τ could be replaced by other stopping times, like the drawdown (Azema-Yor) stop-
ping time τξ := inf{t ≥ 0 : X(t) ≤ ξ sup0≤s≤t X(s)}, where ξ ∈ (0, 1) is a fixed constant.
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Lemma 5. The stochastic flow leaves invariant the cone

C := {0 ≤ u0 ≤ ui
αi

αi
, αi = 1− αi, i = 1, . . . , I},

provided the ”(extra) cheap reinsurance” condition

c0 ≤ ci
αi

αi
, i = 1, . . . , I (60)

is satisfied.

The boundary edge

u1
1− α1

α1
= · · · = ui

1− αi

αi
= u0, i = 1, . . . , I, (61)

to be called ”claims line”, plays a prominent role in two recent papers, [18] § and
[11], who solved the optimal dividends problem in the (extra) cheap reinsurance two-
dimensional case c1

1−α1
α1

> c0. The last paper showed that:

(1) Starting from the claims line, the optimal policy is to stay on this line by cashing
the excess income of the subsidiary as dividends.

(2) Starting from points away from the claims line, in the cheap reinsurance case,
the optimal policy is to reach the claims line by one lump sum payment.

(3) In the extra cheap reinsurance case, the optimal policy is more complicated,
when starting in a certain egg-shaped subset of the non-invariant cone (where
parts of the premia are cashed, following a ”shortest path”, in some sense).

The first two findings prompt us to introduce multi-dimensional ”claims line” policies
for (extra) cheap reinsurance networks, under which the network follows this line in the
absence of claims, by subsidiaries cashing part of their premia as dividends. Sub-
sequently, whenever the CB or one subsidiary drop below, all the other subsidiaries
reduce their reserves by lump sum dividend taking, bringing back the process on the
claims line.

Remark 25. These strategies may not be optimal; however, by postulating that the
subsidiary processes are just linear functions of the CB process, they greatly simplify
the problem, and the value of the network expected dividends decomposes as a sum of
one-dimensional quantities– see next Lemma.

Lemma 6. For a general CB network, and a fixed admissible dividends process R0(t),
the de Finetti value function for the equilibrium policy associated to π = (R0, τ) is:

V F
π (x) = Ex

[∫ τ

0

e−qt
[
dR0(t) + c̃dt− γdX0(t)−

I∑
i=1

(γ
αi

αi
− 1)dXi(t)

]]
,

where

γ =
I∑

i=1

αi

αi
, c̃ = γ

I∑
i=1

ci
αi

αi
.

Optimizing dividends reduces thus to a one-dimensional problem.

§who computed an explicit value function maximizing an expected exponential utility at a fixed
terminal time for multi-dimensional reinsurance model under the ”cheap reinsurance” assumption that

the drifts point along the line c1
1−α1

α1
= · · · = cI

1−αI
αI

.
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8. Proof of Proposition 1.I)

By the Markov property, we may decompose g(x, b) := Exe−qτ+
b −θR∗(τ+

b ), θ > q + r,
in three parts:

g(x, b) = Ex[e−qτ+
b ; τ+

b < τ−0 ] + Ex

[
e−qτ−0 EX

τ
−
0

[e−qτ+
0 ; τ+

0 < er]; τ−0 < τ+
b

]
g(0, b)

+ Ex

[
e−qτ−0 EX

τ
−
0

[e−qer+θXer ; er < τ+
0 ]; τ−0 < τ+

b

]
g(0, b)

=
Wq(x)
Wq(b)

+ g(0, b)
{

Ex[e
−qτ−0 +Φq+rX

τ
−
0 ; τ−0 < τ+

b ] + r

∫ ∞

0

e−θu(
Wq+r(u)Ex[e

−qτ−0 +Φq+rX
τ
−
0 ; τ−0 < τ+

b ]− Ex[e−qτ−0 Wq+r(Xτ−0
+ u); τ−0 < τ+

b ]
)

du

}
.

Noticing that

∫ ∞

0

e−θuEx[e−qτ−0 Wq+r(Xτ−0
+ u)1τ−0 <τ+

b
]du

= Ex1τ−0 <τ+
b

e
−qτ−0 +θX

τ
−
0

∫ ∞

0

e
−θ(X

τ
−
0

+u)
Wq+r(Xτ−0

+ u)du

= Ex1τ−0 <τ+
b

e
−qτ−0 +θX

τ
−
0

∫ ∞

0

e−θvWq+r(v)dv

=
1

ψ(θ)− q − r

(
Zq(x, θ) −Wq(x)

Zq(b, θ)
Wq(b)

)
,

we find

g(x, b) =
{

r

ψ(θ)− q − r

(
Zq(x, Φq+r)− Zq(x, θ)−Wq(x)

Zq(b, Φq+r)− Zq(b, θ)
Wq(b)

)
+ Zq(x, Φq+r)−Wq(x)

Zq(b, Φq+r)
Wq(b)

}
g(0, b)

+
Wq(x)
Wq(b)

=
{

Zq,r(x, θ)−Wq(x)
Zq,r(b, θ)

Wq(b)

}
g(0, b) +

Wq(x)
Wq(b)

.

Now in the finite variation case we may substitute x = 0, and, using Wq(0) > 0,
conclude that g(0, b) = 1

Zq,r(b,θ) , which yields the result.
In the infinite variation case, we may use a perturbation approach. For b > x > 0, we

have

g(0, b) = E[e−qτ+
x ; τ+

x < er]g(x, b) + E[e−qer+θXer ; er < τ+
x , Xer < 0]g(0, b)

+
∫ x

0

E[e−qer ; er < τ+
x , Xer ∈ dy]g(y, b)dy = e−Φq+rxg(x, b) + I2(x)g(0, b) + I3(x),

(62)
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I2(x) = r

∫ 0

−∞

(
e−Φq+rxWq+r(x − y)−Wq+r(−y)

)
eθydy

= r

∫ ∞

0

e−Φq+rx−θyWq+r(x + y)dy − r

ψ(θ)− q − r

= r

∫ ∞

x

e−Φq+rx−θ(z−x)Wq+r(z)dz − r

ψ(θ)− q − r

=
r

ψ(θ) − q − r
(e−Φq+rx+θx − 1)− r

∫ x

0

e−Φq+rx−θ(z−x)Wq+r(z)dz

=
r

ψ(θ) − q − r
(e−Φq+rx+θx − 1) + o(Wq(x)).

We can check that
e−Φq+rx(Zq(x, Φq+r)− Zq(x, θ))

= e−Φq+rx

[
eΦq+rx(1− r

∫ x

0

e−Φq+ryWr(y)dy)− eθx(1− r

∫ x

0

e−θyWr(y)dy)
]

= 1− e−Φq+rx+θx + o(Wq(x)),

Zq(x, Φq+r) = eΦq+rx

(
1− q

∫ x

0

e−Φq+ryWq(y)dy

)
= eΦq+rx + o(Wq(x)), and

I3(x) ≤
∫ x

0

E[e−qer ; er < τ+
x , Xer ∈ dy]dy = r

∫ x

0

e−Φq+rxWq+r(x− y)dy = o(Wq(x)).

Solving now (62) for g(0, b) and letting x → 0+, we find again

g(0, b) = lim
x→0+

e−Φq+rx Wq(x)
Wq(b)

e−Φq+rxWq(x)Zq(b,Φq+r)
Wq(b) + re−Φq+rxWq(x)Zq(b,Φq+r)−Zq(b,θ)

(ψ(θ)−q−r)Wq(b) + o(Wq(x))

=
ψ(θ)− q − r

(ψ(θ)− q)Zq(b, Φq+r)− rZq(b, θ)
=

1
Zq,r(b, θ)

.
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trally negative lévy processes with applications. Stochastic processes and their applications,
121(11):2629–2641, 2011.

38. David Landriault, Jean-Francois Renaud, and Xiaowen Zhou. An insurance risk model with
Parisian implementation delays. Methodology and Computing in Applied Probability, 16(3):583–
607, 2014.

39. Gunther Leobacher, Michaela Szölgyenyi, and Stefan Thonhauser. Bayesian dividend optimiza-
tion and finite time ruin probabilities. Stochastic Models, 30(2):216–249, 2014.



36 FLORIN AVRAM AND XIAOWEN ZHOU

40. Yingqiu Li and Xiaowen Zhou. On pre-exit joint occupation times for spectrally negative lévy
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