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SPECTRAL ESTIMATION IN THE PRESENCE OF MISSING DATA
UDC 519.21

NATALIA BAHAMONDE AND PAUL DOUKHAN

Abstract. In this article we propose a quasi-Whittle estimator for parametric families of time series
models in the presence of missing data. This estimator extends results to the incompletely observed
case. This extension is valid to non-Gaussian and non-linear models. It also allows to bound the
variance of an associated quasi-periodogramm. A simulation study validates empirically the proposed
estimate for mixing and non-mixing models.

1. Introduction

A common problem in parametric time series analysis is the estimation of a finite
variance stationary ARMA model in the presence of missing observations. Missing data
appear either by nature, or because aberrant data were detected and thus eliminated. A
large number of such data appear in the literature, including hydrology and environmen-
tal sciences.
In most of the literature, the asymptotic properties of estimators in time series with

missing observations is concerned with linear processes with normal innovations. Some
extensions to linear processes also exclude heteroscedasticity which is a standard feature
of financial time series.
We first quote that stationarity does essentially not hold for real data: however the

spectrum takes its signification for 2nd order stationary processes and we shall restrict
to the stationary frame. For locally stationary processes [4] introduced an analogue of
the Whittle estimate which will be addressed in a further paper in presence of missing
observations; this was processed in [18] for the case of independently distributed missing
data who accurately achieved by a localization through a wavelet transform. Anyway
the latter reference is more methodological in § 5.1 this is indeed mentioned that results
are not rigorously stated: asymptotic limit theory remains thus to be processed.
In order to omit independence many proposals have been suggested as strong mixing

properties in [22]. Weak dependence in [9] includes wider classes of models used in
econometrics and in statistics. Financial time series often exhibit heteroscedasticity e.g.
ARCH type processes introduced in [16] are commonly used in the financial econometrics
literature, because of their stylistic properties.
The Whittle approximation of the likelihood yields suitable estimates for parametric

models such as ARMA, LARCH, GARCH or Bilinear models. The Whittle contrast does
not depend on marginal distributions but only on spectral densities. It has quicker to
calculate that other parametric estimates such as MLE; moreover the latter based on the
likelihood is only accessible for Markovian time series. The seminal paper [25] proved
asymptotic normality of Whittle estimates for Gaussian and linear causal sequences, in
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the Gaussian case again [15] provides oracle bounds for its convergence. Moreover [23]
considered strong mixing processes. The case of LARCH(1) processes is in [17] and
more general GARCH models are considered in [24] for completely observed ARCH type
models.
Here a stationary sequence with Bernoulli marginal distributions is designed for setting

the fact that data are missing or not.
We obtain the asymptotic normality of a quasi-periodogram and the asymptotic prop-

erties of the quasi-Whittle estimator under stationary missing data. A very rich class of
weakly dependent time series, including those previously quoted (with independent miss-
ing data procedures) is considered. Our technique also includes never studied non-causal,
non-linear and non-mixing processes such as the simple AR(1)-model with Bernoulli in-
novations.
Besides proving the CLT for quasi-Whittle estimates the present work yields L

2-
bounds for its MSE (Mean Squares Error) which is a quite challenging question since the
proposed quasi-periodogram essentially writes as linear combinations of ratios. Covari-
ance estimation results into a ratio, due to the fact that data are incompletely observed,
thus the considered quasi-periodogram take now a complicated form. This is widely
known that ratios moments are not easy to compute but [7] provides us with an essential
tool for deriving bounds for ratios moments. We thus bound the MSE of the involved
quasi-periodogram.
The paper is organized as follows. In Section 2 we first introduce the estimates of

the autocovariances under missing data. Then we recall features and results concerning
Whittle estimation for completely observed data.
Section 3 is devoted to the the asymptotic properties of the quasi-periodogram built

from the estimation of the covariances. This quasi-periodogram is integrated over a
Sobolev class, we obtain an uniform L

2-convergence with
√

N−rate which implies an
uniform SLLN. An uniform CLT is also proved for the normalized process.
In section 4, a.s. consistency and asymptotic normality are proved for the quasi-

Whittle estimate by applying results for section 3.
A simulation example for an ARCH(1)-model with discrete innovations (which does

not exhibit mixing properties) demonstrates the performances of this quasi-Whittle es-
timate.
A last section 6 gives proofs and technical results of a proper interest are given in the

last section. Among the technical results we prove SLLN, CLT and L
2-convergence of

the autocovariances estimates as well as a Donsker type CLT which allows to consider
change point procedures.

2. Preliminaries

2.1. Time series process with missing observations. Let (Xk)k∈Z be a stationary
time series with zero mean and autocovariance function γX(�). The aim of this article is
to study autocovariance and spectral estimation when in the time series (Xk)k∈Z some
observations may be missed. In this context, the data Xk are not observed for each
k = 1, 2, . . . , N but rather only for k = k1, k2, . . . , km, where kj − kj−1 ≥ 1. Following
[20], we introduce the amplitude modulated observations

Yk = CkXk, k = 1, . . . , N (1)

where

Ck =
{

1, if Xk is measured,
0, if Xk is missing.

We assume throughout the paper that (Xk)k∈Z and (Ck)k∈Z are independent sequences.
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In order that the following convergence holds

CN = N−1
N∑

k=1

Ck
a.s.−→ μC .

we shall assume that the sequence (Ck)k∈Z is ergodic.
We set μC = EC0 and γC(�) = Cov(C0, C�) and for notational convenience, we set

ν(�) = EC0C� = γC(�) + μ2
C .

In order to be able to estimate covariances we shall need the following assumption
throughout the paper
Assumption (A). EC0 �= 0 and EC0C� �= 0 for each � = 0, 1, . . .

Remark 1. The Assumption (A) essentially means that we indeed to observe a reaso-
nable amount of data. The condition (A) holds if EC0 = P(C0 = 1) �= 0.

This follows from ergodicity which holds eg. for the case of independently distributed
C.

We denote by XN , Y N the sample means. Usual estimates of the autocovariance
coefficients γY (�) = Cov(Yk, Yk+�) are empirical estimates γ̂Y,N (�) and ν̂N (�) as follow:

γ̂Y,N (�) =

{
1

N−�

∑N−�
k=1 YkYk+�, if 0 ≤ � < N.

1
N−�

∑N
k=1−� YkYk+�, if −N < � < 0,

ν̂N (�) =

{
1

N−�

∑N−�
k=1 CkCk+�, if 0 ≤ � < N.

1
N−�

∑N
k=1−� CkCk+�, if −N < � < 0.

Both estimates are obtained from the observations {Y1, . . . , YN} = {X1C1, . . . , XNCN}
according to Equation (1) and they are unbiased. The following estimator of the theo-
retical ACF of interest is defined under the Equation (1) and was introduced by [20],

γ̃X,N (�) =
γ̂Y,N(�)
ν̂N (�)

, if ν̂N (�) �= 0. (2)

Quote that Assumption (A) entails together with any type law of large number that

lim
N→∞

P(ν̂N (�) = 0) �= 0

thus this empirical covariances are ultimately well defined.
The correlation function ρX(�) is estimated by ρ̂X,N (�) = γ̃X,N (�)/γ̃X,N (0).
The asymptotic properties of the estimator (2) were investigated under various as-

sumptions on the noise of the linear representation (εk)k∈Z and assuming that (Ck)k∈Z

is asymptotically stationary in [13] for stationary processes of the form

Xk =
∞∑

j=0

βjξk−j ,

∞∑
j=0

β2
j < ∞,

where the white noise process (ξk)k∈Z consists of uncorrelated random variables with
mean zero and variance 1.
More recently [26] compare three estimators of the autocorrelation function for a

stationary process with missing observations. The first estimator is (2) and the other
estimators are extensions of this one. The authors derive the asymptotic distribution for
both short memory and long memory models for those three estimators of the ACF with
missing observations. They impose the same assumptions on the innovations (ξk)k∈Z as
those in [13].
The construction of the estimator γ̃X,N (�) defined by (2) assumes that the observed

process (Yk)k∈Z is centered. This assumption is convenient for deriving the asymptotic
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behavior, but it is not necessarily the best formulation from the theoretic viewpoint and
it is unrealistic. An alternative estimate representation for the sample ACF of time series
in presence of missing observations can be proposed

γ̆X,N (�) = γ̃X,N (�)−
{
Y N

}2
(3)

Using the fact that Ck is a non-negative and bounded random variables we derive that
γ̆X,N (�) − γ̃X,N (�) is arbitrarily small. Therefore γ̆X,N (�) − γ̃X,N (�) = oP(1) so that
limiting distributional results proved for γ̃X,N (�) will hold for γ̆X,N (�).
We thus may assume that Xk has zero-mean in order to simplify proofs: this problem

is directly addressed in [13], Chapter 5; those authors prove that the same results hold
true also in case a mean correction has been performed.
On the other hand,

Z
(�)
k = CkCk+�(XkXk+� − γX(�)), (4)

then δ(�) ≡ EZ
(�)
k = γX(�)ν(�) and δ̂N (�) = γ̂Y,N(�)− γX(�)ν̂N (�).

2.2. Whittle estimator for totally observed time series. After [25] working with
Gaussian data, [8] and [2] introduced Whittle’s parametric estimation in a framework
general dependence. We consider here situations with non totally observed data. Let
X = (Xk)k∈Z be a zero mean fourth-order stationary time series with real values. Denote
(γX(s))s the covariogram of X , and κ4(a, b, c) the fourth order cumulants of X , such that
for all a, b, c ∈ Z:

γX(a) = Cov(X0, Xa) = E (X0Xa),
κ4(a, b, c) = EX0XaXbXc − EX0XaEXbXc − EX0XbEXaXc − EX0XcEXaXb.

The following assumptions on the process X are used to define the limit variance of the
periodogram:

Assumption (M): X is such that:

γ =
∑
�∈Z

γ2
X(�) < ∞, and, κ4 =

∑
a,b,c

|κ4(a, b, c)| < ∞.

The periodogram of X writes as:

IX,N (λ) =
1

2π ·N

∣∣∣∣∣
N∑

k=1

Xke−ikλ

∣∣∣∣∣
2

, for λ ∈ [−π, π[.

Now, let g : [−π, π[→ R a 2π-periodic function such that g ∈ L
2([−π, π[) and define the

integrated periodogram and spectrum of X :

JX,N (g) =
∫ π

−π

g(λ)IX,N (λ) dλ, J(g) =
∫ π

−π

g(λ)fX(λ) dλ (5)

We denote here by fX spectral density of X , that exists in L
2([−π, π[) from Assumption

(M):

f(λ) =
1
2π

∑
�∈Z

γX(�) ei�λ, for λ ∈ [−π, π[.

Recall that

IX,N (λ) =
1
2π

∑
|�|<N

γX,N (�)e−i�λ), γX,N (�) =
1
N

(N−�)∧N∑
j=1∨(1−�)

XjXj+�
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which is a biased estimate of γX(�), and

EγX,N (�) =
N − �

N
· γX(�)

(
=

N − �

N
Eγ̂X,N (�)

)
.

A special case of the integrated periodogram is the Whittle contrast

β 
→ Jn(hβ)

where hβ belongs to a class of regular functions: the Whittle estimate minimizes this
contrast.
Hence uniform limit theorems (over a class of function G) for the integrated peri-

odogram (Jn(g))g∈G are an appropriate tool to derive uniform limit theorems of the
Whittle contrast.
Additional conditions with respect to the regularity of the spectral density are needed

to obtain a reasonable limit theory for this Whittle estimate.
Let X = (Xk)k∈Z be a time series satisfying Assumption (M). We denote by f the

spectral density of X (see eqn. (12) if Ck ≡ 1). Define

σ2 = exp
(
1
2π

∫ π

−π

log f(λ) dλ

)
. (6)

Following Rosenblatt (1985) we shall assume that the one-step prediction error variance
satisfies 2πσ2 > 0. Assume that f belongs to the family of functions defined in the form

f(λ) = f(β,σ2)(λ) = σ2 · gβ(λ) for all λ ∈ [−π, π[, (7)

the function f thus depends on a finite number of unknown parameters, a variance
term σ2 and a R

p-vector β, where β = (β(1), . . . , β(p)). The normalization condition (6)
implies: ∫ π

−π

log gβ(λ) dλ = 0. (8)

Denote also σ∗ and β∗ = (β(1)∗, . . . , β(p)∗) the true value of σ and β. As a consequence,
for all λ ∈ [−π, π[, we will now denote σ∗2gβ∗(λ) the spectral density of X .
In order to prove the asymptotic properties of the Whittle estimator we consider

a space G of functions regular enough to contain hβ for each acceptable value of the
parameter β.
The Sobolev space G = Hs for s > 1

2 is such a nice space because of its simple Hilbert
structure:

Hs =
{
g ∈ L

2[−π, π[ ; g(−x) = g(x), ‖g‖2Hs
<∞}, with ‖g‖2Hs

=
∑
�∈Z

(1 + |�|)2s|g�|2.

for g a 2π–periodic function such that g ∈ L
2([−2π, 2π[) and g(λ) =

∑
�∈Z

g�e
i�λ.

This space Hs is included in the space C� of continuous and 2π–periodic functions
and ‖g‖∞ = sup[−π,π[ |g| ≤

√
cs · ‖g‖Hs with

cs =
∑
�∈Z

1
(1 + |�|)2s

. (9)

We thus introduce the following conditions (C):
• Condition C1: the true values σ∗ and β∗ are such that σ∗ > 0 and β∗ lies in a

region K ⊂ R
p where K is an open and relatively compact set.

• Condition C2: if β1, β2 are distinct elements of K, the set {λ ∈ [−π, π[, gβ1(λ) �=
gβ2(λ)} has positive Lebesgue measure.

• Condition C3: for all β ∈ K, g−1
β ≡ 1

gβ
∈ Hs and supβ∈K ‖g−1

β ‖Hs < ∞ with
s > 1/2.

• Condition C4: for all λ ∈ [−π, π[, the function β 
→ g−1
β (λ) is continuous on K.
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• Condition C5: for all λ ∈ [−π, π[, the function β 
→ g−1
β (λ) is twice continuously

differentiable on K and β 
→ ∫ π

−π
log(gβ(λ)) dλ can be differentiated twice under

the integral sign.
• Condition C6: there exists s > 1/2 such that for all β ∈ K and (i, j) ∈ {1, . . . , p},(

∂g−1
β

∂β(i)

)
β

,
(

∂2g−1
β

∂β(i)∂β(j)

)
β

∈ Hs and supβ∈K
∥∥∥ ∂2g−1

β

∂β(i)∂β(j)

∥∥∥
Hs

< ∞.

• Condition C7: for all β ∈ K, the function λ 
→ gβ(λ) is continuously differen-
tiable on [−π, π[.

Let (X1, . . . , XN ) be a sample from the process X . As usual define Whittle estimator
of β∗ and σ∗2 as:

βN = Argminβ∈KJX,N (g−1
β ) = Argminβ∈K

∫ π

−π

IX,N (λ)
gβ(λ)

dλ and σ2
N =

1
2π

JX,N (g−1
βN
)

(10)
Condition (C2) implies that βN is uniquely defined.
For a practical use those definitions βN and σ2

N are modified to answer the previous
question of centering and the integral are replaced by its approximation by Riemann
sums:

β′N = Argminβ∈K
2π
N

N∑
k=1

I ′X,N (πk/N)
gβ(πk/N)

, σ′2N =
1
N

N∑
k=1

I ′X,N (πk/N)
gβ′N (πk/N)

,

I ′X,N (λ) =
1

2π ·N
∣∣∣ N∑

k=1

(Xk −XN )e−ikλ
∣∣∣2 for λ ∈ [−π, π[.

Let us write f(λ) = f(λ, β) where β = (β(0), β(1), . . . , β(p)), we define the full Whittle’s
contrast as

UN (β) =
∫ π

−π

log f(λ, β)dλ +
∫ π

−π

IX,N (λ)
f(λ, β)

dλ.

This function is related with the following contrast function

U(β, β∗) =
∫ π

−π

log f(λ, β)dλ +
∫ π

−π

f(λ, β∗)
f(λ, β)

dλ,

assuming β∗ the true parameter value. Now:

∂U(·, β∗)
∂β(j)

⏐⏐⏐
β=β∗

= 0, j = 1, . . . , p

and also
∂UN

∂β(j)
(β) = −

∫ π

−π

∂ log f(λ, β)
∂β(j)

[IX,N (λ)− f(λ, β)]
f(λ, β)

dλ.

Whittle’s estimator βN is the only solution of the equation ∂UN

∂β(j) (βN ) = 0 for j = 1, . . . , p.
Now we must modified conditions C1-6 conveniently, to be applied to function f instead
of g. In first place by using the general theory of contrast functions, conditions C1-4 and
in theorem 1 they shows that βN → β∗ almost surely.
Moreover under the conditions C1-6 and by using a CLT [2] we are able to derive for

some suitable Σ(β):
√

N
( ∂UN

∂β(j)
(β)
)

1≤j≤p
= −

√
N

∫ π

−π

(∂ log f(λ, β)
∂β(j)

)
1≤j≤p

(IX,N (λ) − f(λ, β))
f(λ, β)

dλ

D−→
N→∞

Np(0,Σ(β)).

The central limit theorem for Whittle estimates is then based upon a careful use of the
Δ−method.
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3. Uniform limit theorems for the quasi-periodogram under missing

observations

In this section we consider the estimation of functionals of the spectral density function
from time series in presence of missing observations. Using the estimator of the covariance
of (Xk)k∈Z given by γ̃X,N (�), we introduce estimates of the spectral density.
More precisely, we introduce a quasi-periodogram defined with the empirical covari-

ance γ̃X,N (�) of the process in presence of missing observations

ĨX,N (λ) =
∑
�∈Z

γ̃X,N (�)e−i�λ =
∑
|�|<N

γ̂Y,N(�)
ν̂N (�)

e−i�λ. (11)

A new feature of this quasi-periodogram is that it includes ratios. This is a main point of
the paper that [7]’s results allow us to bound moments of those expressions. For example
the mean square error is evaluated contrary to what was proved in all the previous papers.
This provides us with a general proof including mean squares convergences. The proofs
are then simple adaptations of those in [2].
Assume now that we wish to estimate JX(g) (see (5), quote here that the spectral

density fX of X coincides with f in eqn. (12) in case of totally observed data, Ck ≡ 1),
we use the estimates of the covariance of (Xk)k∈Z, γ̃X,N (�), to build an estimate of the
integrated periodogram of (Xk)k∈Z:

J̃X,N (g) =
∫ +π

−π

g(λ)ĨX,N (λ)dλ.

Under general conditions the integrated periodogram is a consistent estimator of the
JX(g) provided the spectral density fX(λ) is well defined.
We consider the asymptotic behavior of E|J̃X,N (g)− JX(g)|2 for g ∈ Hs if s > 1

2 .
The dual space H′s of Hs is equipped with the norm

‖T ‖2H′s = sup
‖g‖Hs≤1

|T (g)|2 =
∑
�∈Z

1
(1 + |�|)2s

|T (ei�λ)|2.

Note that JX ∈ H′s and it will be proved in Theorem 1 that (a.s.) J̃X,N ∈ H′s under
additional assumptions.
We shall use dependence conditions as follows. Let (Zk)k∈Z be a random process.

Rosenblatt (1956) and Dedecker and Doukhan (2003) respectively define strong mixing
and θ-weak dependence through sequences of coefficients from the respective relations

αZ(i)→i→∞ 0, θZ(i)→i→∞ 0

(below we will set those conditions for resp. Zk = Xk, Ck, Yk or Zk = (Xk, Ck).)

Theorem 1 (Uniform Spectral SLLN). Assume that conditions (M)-(A) hold, and that
E|X0|r < ∞, s > 1 + 2/r. Moreover assume

• either that the sequence C is strong mixing and:
∞∑

i=1

i
8

r−4 · αC(i) < ∞,

• or that the sequence C is θ-weakly dependent and:
∞∑

i=1

i
8

r−4 · θC(i) < ∞.

Then
‖J̃X,N − JX‖H′s

a.s.−→
N→∞

0, and in L
2.
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In order to prove this main result we need the following essential Lemma based on [7].
Here indeed division is a tricky argument.

Lemma 1 (Spectral moment inequality). Assume that conditions of Theorem 1 hold,
then there exists some a > 0 such that

E‖J̃X,N − JX‖2H′s ≤
a√
N

.

The proof of those laws of large numbers are reported in § 6.1.

The previous assumptions are needed for those laws of large numbers for J̃X,N . We shall
need additional dependence conditions on the stationary processes (Xk), and (Ck) to
prove central limit theorems. They follow

Assumptions (D): E|X0|r <∞ for some r > 4, that condition (A) holds.
Moreover the independent processes X and C are either

• strongly mixing with
∞∑

i=0

i
4

r−4 · αX(i) < ∞, and
∞∑

i=0

i
8

r−4 · αC(i) <∞,

or they are

• θ-weakly dependent with
∞∑

i=0

i
2

r−4 · θ
r−2
r−1
X (i) < ∞, and

∞∑
i=1

i
8

r−4 · θC(i) < ∞.

Quote that the process C admits marginals bounded by 1.

In order to describe the limiting behavior of WN =
√

N(J̃X,N − J) in distribution we
need some further notations. Under Assumption (M), we may define for any λ, μ, ζ ∈ R,
the quasi-spectral and quasi-bispectral densities:

f(λ) =
1
2π

∞∑
�=−∞

EC0C� · γX(�)ei�λ (12)

f4(λ, μ, ζ) =
1

(2π)3

∞∑
a=−∞

∞∑
b=−∞

∞∑
c=−∞

EC0CaCbCc · κ4(a, b, c)ei(aλ+bμ+cζ) (13)

and for g1 and g2 in Hs, the limiting covariance Γ of the process WN writes:

Γ(g1, g2) = 4π
∫ π

−π

g1(λ)g2(λ)f2(λ) dλ + 2π
∫ π

−π

∫ π

−π

g1(λ)g2(μ)f4(λ,−μ, μ) dλ dμ. (14)

Theorem 2 (Uniform Spectral CLT). Assume that the dependence assumptions (M),
and (D) hold true with s > 1 + 2/r, then the following functional central limit theorem
holds

WN ≡
√

N
(
J̃X,N − JX

) D−→
N→∞

W, in the space H′s.

Here (W (g))g∈Hs denotes a centered Gaussian process such that

EW (g1)W (g2) = Γ(g1, g2)

with Γ defined in eqn. (14).
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Remark 2. Since this theorem makes use of [7]’s division trick (see Lemma 1) we observe
that assumptions (D) are assymmetrical with respect to the random processes X and
C. Let us assume Riemaniann decays αX(i) ∼ i−αX , αC(i) ∼ i−αC and θX(i) ∼ i−θX ,
θC(i) ∼ i−θC for either the strong mixing coefficients or the weak dependence coefficients,
then those assumptions need:

αX >
r

r − 4
, αC >

r + 4
r − 4

,

and for the θ-weak coefficients they we ask:

θX >
r − 1
r − 4

, θC >
r + 4
r − 4

.

Now consider corollary 2 in [2] then it is clear that the same assumptions are essentially
needed for this uniform CLT in case of power rate decays if Ck ≡ 1.

A careful attention proves in fact that we slightly improve on this previous work; see
Remarks 5 and 6 second items, for the needed tools related to quantile functions.

The proofs of those central limit theorems are reported in § 6.2.
4. Quasi-Whittle estimation of irregularly sampled data

Define now quasi-Whittle estimates by mimicking (10) as:

β̂N = Argminβ∈KJ̃X,N (g−1
β ) = Argminβ∈K

∫ π

−π

ĨX,N (λ)
gβ(λ)

dλ, and σ̂2
N =

1
2π

J̃X,N (g−1
�βN
)

(15)
Condition C2 implies that β̂N a.s. uniquely defined.

Theorem 3. Let X satisfy the assumptions of Theorem 1 and also that EX0 = 0.
Under Conditions (A) and C1-4:

β̂N
a.s.−→

N→∞
β∗ and σ̂2

N
a.s.−→

N→∞
σ∗2.

Proof. From Theorem 1 and Condition C3 with probability 1,

lim
N→∞

JN (g−1
β ) = J(g−1

β ),

uniformly on β ∈ K. From Conditions C2 and normalization condition (8),

J(g−1
β ) > 2πσ∗2 = J(g−1

β∗ ) for all β �= β∗

The proof follows the lines in theorem 4 [2]. �
Now again the discretized and centered version of the estimates write:

β̆N = Argminβ∈K
2π
N

N∑
k=1

ĬX,N (πk/N)
gβ(πk/N)

, σ̆2
N =

1
N

N∑
k=1

ĬX,N (πk/N)
gβ̆N

(πk/N)
,

Now the estimate of X ’s covariances makes use of eqn. (3), and the quasi-periodogram
(11) is replaced by its centered version:

ĬX,N (λ) =
∑
|�|<N

γ̆Y,N(�)
ν̂N (�)

e−i�λ.

Corollary 1 (Corrected estimates). Let X satisfy the assumptions of Theorem 1, then

β̆N
a.s.−→

N→∞
β∗ and σ̆2

N
a.s.−→

N→∞
σ∗2.

Proof. Consider the process (Xk − EX0)k∈Z instead of X = (Xk)k∈Z and the proof is
that of corollary 4 in [2]. �
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Theorem 4. Let X satisfy either the assumptions of Theorem 2. Under Conditions
C1-6 and if the matrix W ∗ = (w∗ij)1≤i,j≤p, with

w∗ij =
∫ π

−π

g2
β∗(λ)

(∂g−1
β

∂β(i)

)
β∗
(λ)
( ∂g−1

β

∂β(j)

)
β∗
(λ) dλ

is nonsingular, then
√

N(β̂N − β∗) D−→
N→∞

Np

(
0 ,

1
σ∗4

W ∗−1Q∗W ∗−1
)
, (16)

with a matrix Q∗ = (q∗ij)1≤i,j≤p whose entries are defined by

q∗ij = 2π

(
2σ∗4w∗ij +

∫ π

−π

∫ π

−π

f4(λ, μ,−μ)
(∂g−1

β

∂β(i)

)
β∗
(λ)
( ∂g−1

β

∂β(j)

)
β∗
(μ) dλ dμ

)
.

The proof is that of theorem 5 [2] and the following result is similar to their theorem 6.

Theorem 5. Let X satisfy either the assumptions of Theorem 2. Under Conditions
C1-7, then
√

N(σ̂2
N − σ∗2) D−→

N→∞
N
(
0 , 2σ∗4 + 2π

∫ π

−π

∫ π

−π

f4(λ, μ,−μ)g−1
β∗ (λ)g

−1
β∗ (μ) dλ dμ

)
. (17)

Moreover,
√

N(σ̂2
N − σ∗2) and

√
N(β̂N − β∗) are jointly asymptotically normal with co-

variance given by

lim
n→∞

√
N
(
Cov(σ̂2

N , β̂
(i)
N )
)
1≤i≤p

=
1

σ∗2W ∗ ·
(
2π
∫ π

−π

∫ π

−π

f4(λ, μ,−μ)g−1
β∗ (λ)

(
∂

∂β(j)
g−1

β∗ (μ)
)

dλ dμ

)
1≤j≤p

.

Remark 3. • We defer the reader to [2] for more precise statements of the exam-
ples.

• As in [2] we are not in position to exhibit a non-centered and discretized version
of Theorem 5. Indeed such results needs a

√
N -acurate uniform approximation

of the quasi-periodogram ĨX,N (λ).

5. Simulation experiments

In this section we analyse the finite sample behavior of the quasi-Whittle estimate by
Monte Carlo study. 5000 repetitions of samples with length 1000 were processed for each
case.
We consider here an independent sequence C Bernoulli trials with q = {Ck = 0},

probabilities q = 0 (the completely observed case), 0.05 and 0.1 of missing observation
are considered. The sample mean and Standard error (Std.) are compared for different
values of the parameters and different estimates.
We consider both a linear and a non-linear process. An alternative moment-based

technique is derived in each case. Moreover the 2 first models considered admit one
parameter while the last one has 2 parameter. For all the forthcoming examples which
are Markov processes the QMLE is a more efficient method too anyway as stated in [3]
this technique does not apply simply to the case of missing observations. We compare
estimates of their parameters. The comparison is thus not at the advantage of quasi-
Whittle method but our point is that this is a systematic technique which really work
for simulated data. Under missing data the asymptotic for such empirical estimates is
already considered in [7] and there is no doubt that it will be more efficient but this relies
on the simplicity of the considered models: the quasi-Whittle method systematically
applies.
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5.1. AR(1)–model. Set
Xk = β(Xk−1 + ξk)

for |β| < 1 and (ξk)k∈Z an iid �L2-sequence. Then [1] proves that for β = 1
2 and for

Bernoulli b(1
2 )-distributed marginal distribution this sequence is non-mixing; quote that

for β = .2 the model is not known to be non-mixing but it is still θ-weakly dependent.
A simple way to estimate the parameter is to check that here EX0 = β/2(1 − β) thus
an empirical estimate β̃ = 2m̃/(1 + 2m̃) is

√
N -consistent. An alternative is again to

consider the quasi-Whittle estimate. Both estimates behave extremely well (both in the

Parameter Estimate Estimates SD Estimate Estimates SD
Q-Whittle Q-Moment

β β̂ SD(β̂) β̃ SD(β̃) )
q=0

0.2 0.217 0.017 0.199 0.003
0.5 0.507 0.024 0.499 0.005

q=0.05
0.2 0.219 0.021 0.199 0.003
0.5 0.514 0.030 0.499 0.005

q=0.10
0.2 0.220 0.027 0.199 0.003
0.5 0.512 0.316 0.499 0.005

Table 1. AR(1) estimation under missing data, quasi-Whittle and em-
pirical estimates.

non mixing case, if β = .2). One spectacular behavior of the Q-moment is that up 10−3

the quality of the estimate does not depend on the number of missing data.

5.2. LARCH–models. In [12], LARCH(∞)–models are a vector valued equivalent of
the solution of a recursion given from an iid sequence (ξk)k∈Z and a sequence of real
parameters β0, β1, β2, . . .

Zk = ξk

⎛⎝β0 +
∞∑

j=1

βjZk−j

⎞⎠ .

If ‖ξ0‖∞
∑

j≥1 |βj | < 1 for some p ≥ 1, then there exists a stationary solution of the
previous equation which is in �Lp. Anyway the parameter β is here infinite dimensional
and does not fit the present frame so we restrict to the simplest case.
Eg. for LARCH(1)-models Zk = ξk(β0 + β1Zk−1) this simply means that |β1| < 1.

5.2.1. LARCH(1)-symmetric model. Assume first that β0 = 1. The current model is
a weak white noise with a symmetric marginal distribution in case ξ0 admits such a
symmetric distribution. Note that in [11] it is proved that this model is non-mixing in
the special case of Rademacher innovations P(ξ0 = ±1) = 1

2 and β ≡ β1 ∈
]

3−√5
2 , 1

2

]
.

Here the stationary distribution satisfies EZ2
0 = β2

EZ2
0 + Eξ2

0 but Rademacher rvs

satisfy Eξ2
0 = 1. Hence a consistent estimate of β writes β̃ =

√
1− 1/M̂ for M̂ the

empirical counterpart of EZ2
0 . We shall process simulations for true values β = .45

and .3, the first model is thus non-mixing again and the both are θ-weakly dependent.
In the simulation a stripking point is that even with only 50 receptions the Q-moment
behaves the same as for 5000 repetitions, contrary to the quasi-Whittle which needs a
large amount of such replications. Here again the empirical technique is better that
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quasi-Whittle without much surprise. Here again both estimates are quite reasonable
too.

Parameter Estimate Estimates SD Estimate Estimates SD
Q-Whittle Q-Moment

β β̂ SD(β̂) β̃0 SD(β̃) )
q=0

0.3 0.307 0.021 0.299 0.017
0.45 0.453 0.035 0.449 0.016

q=0.05
0.3 0.314 0.034 0.298 0.018
0.45 0.462 0.042 0.449 0.017

q=0.10
0.3 0.319 0.039 0.298 0.018
0.45 0.467 0.049 0.449 0.017

Table 2. LARCH(1)-symmetric estimation under missing data, quasi-
Whittle and empirical estimates.

5.2.2. ARCH(1)-model. We now consider a class of parametric ARCH models, in this
class of time series, Whittle estimation is based on squared observations because this
class of models has no linear correlation but exhibit dependence in their squares. All the
experiments are based on 1000 replications of the ARCH(1) model defined by

Xk = εk

√
β0 + β1X2

k−j , (18)

where (εk) is a sequence of iid zero-mean Gaussian random variables with unit variance.
Conditions for existence and uniqueness in �Lp for the ARCH(1) model have been

derived before since Zk = X2
k is again a LARCH(1)-model with innovations ξk = ε2

k.
Quote the such χ2

1−distributed innovations admit now a density and hence [6] entails
that the model is geometrically but here innovations are no more centered and a moment
method will now be based upon the empirical estimation of m = EX2

0 and M = EX4
0

(again under missing data) since this is standard to derive

β0 =

(
1−
√

M − 3m2

3(M −m2)

)
m, β1 =

√
M − 3m2

3(M −m2)
.

The quasi-Whittle estimation for β0 and β1 is efficient for all situations studied here.
Based on this simulation study, we can conclude that the proposed method is very precise
to estimate the parameters of an ARCH model with missing observations.
Both estimates are reasonable for the estimation of ’main’ coefficient β0 but the quasi-

moment method (Q-Moment) is much more efficient that the quasi-Whittle estimate.
This sounds reasonable the adapted moment techniques are more efficient that a general
Whittle type method. In order to check the quality of those Q-moment estimates we thus
consider in Table 5.2.2 the case when β0 = 1 is known and the moment technique only
relies on the only coefficient β = β1 ≡ 1− 1/M yields a simple moment based estimation
of β ∈ [0, 1[. Now both estimates seem to run analogously. This means maybe that
estimation of parameters in high dimension for this quasi-Whittle estimate may cause
some trouble. Quasi-Whittle estimate is thus a performing and general technique under
missing data which is much more natural that estimation of missing values as processed
as this was proved [3] for least square estimates under mixing assumptions.
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Parameters Estimates Estimates SD Estimates Estimates SD
Q-Whittle Q-Moment

β0 β1 β̂0 β̂1 SD(β̂0) SD(β̂0 ) β̃0 β̃1 SD(β̃0) SD(β̃0 )
q=0

0.15 0.25 0.151 0.251 0.0073 0.0987 0.155 0.225 0.016 0.079
0.15 0.30 0.153 0.263 0.0097 0.0.893 0.158 0.262 0.017 0.083
0.20 0.25 0.200 0.255 0.0084 0.991 0.207 0.226 0.021 0.077

q=0.05
0.15 0.25 0.141 0.251 0.093 0.153 0,155 0.226 0.016 0.079
0.15 0.30 0.157 0.283 0.089 0.130 0.157 0.264 0.017 0.081
0.20 0.25 0.206 0.235 0.094 0.137 0.206 0.226 0.016 0.079

q=0.10
0.15 0.25 0.156 0.234 0.103 0.175 0.155 0.226 0.016 0.080
0.15 0.30 0.173 0.263 0.093 0.146 0.158 0.261 0.017 0.081
0.20 0.25 0.222 0.214 0.100 0.155 0.207 0.226 0.021 0.078

Table 3. ARCH(1) estimation (d = 2) under missing data, quasi-
Whittle and empirical estimates.

Parameter Estimate Estimates SD Estimate Estimates SD
Q-Whittle Q-Moment

β β̂ SD(β̂) β̃0 SD(β̃) )
q=0

0.25 0.257 0.087 0.247 0.049
0.30 0.311 0.079 0.247 0.049
0.50 0.499 0.089 0.496 0.063
0.75 0.741 0.085 0.713 0.073

q=0.05
0.25 0.261 0.997 0.249 0.048
0.30 0.314 0.998 0.294 0.049
0.50 0.511 0.106 0.490 0.062
0.75 0.678 0.124 0.713 0.074

q=0.10
0.25 0.267 0.123 0.248 0.051
0.30 0.319 0.132 0.296 0.051
0.50 0.521 0.015 0.494 0.062
0.75 0.659 0.015 0.715 0.073

Table 4. ARCH(1) estimation (d = 1) under missing data, quasi-
Whittle and empirical estimates.

6. Technical Results

6.1. Proofs of laws of large numbers.
Proof of Theorem 1. The proof is that of theorem 1 in [2] by using Lemma 1. �
Proof of Lemma 1. We follow the lines in the proof of lemma 3 in [2]. Lemma 3
provides the asymptotic for the finite dimensional repartitions of the process WN . Here
again J̃X,N − JX = −T1 − T2 + T3 where the two first terms write the same way here
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and only T3 is altered by the missing data, then:

E‖T3‖2H′s =
∑
�∈Z

1
(1 + |�|)2s

· E(γ̃X,N (�)− γX(�))2 (19)

with cs defined in (9).
Now from [7] we derive that if

‖ν̂(�)− ν(�)‖q ≤ c√
N − �

, (20)

for q = 2(r+4)
r−4 and assumptions (M)-(A) hold (which implies that ‖δ̂N‖2 ≤ c/

√
N − �),

then ‖γ̃X,N‖2 ≤ c′/
√

N − �.
For large values of |�| ≥ N/2 the idea of Pisier lemma (already used in [7], eqn. (15))

implies with Cauchy-Schwartz inequality

E(γ̃X,N (�)− γX(�))2 ≤ 2(E(γ̃2
X,N (�) + γ2

X(�)) ≤ 2((N − �)
4
r ‖X0‖4r + γ2

X(0))

Indeed

Eγ̃2
X,N (�) ≤ E max

1≤i≤N−�
(X2

i X2
i+�) ≤ (E max

1≤i≤N−�
|XiXi+�| r2 ) 4

r ≤ ((N − �)E|X0|r) 4
r .

Thus in eqn. (19) we derive the result in case s > 1 + 2/r.
Finally [21], théorème 2.5. (b) proves that inequality (20) holds if

∞∑
i=1

i
8

r−4 αC(i) < ∞.

Denote by GC the generalized inverse of x 
→ ∫ x

0 QC(u)du, then corollary 2 in [5] implies
(20) in case: ∫ ‖C0‖1

0

(θ−1
C (u))

q
2 QC(u)du <∞.

Now C0 being bounded so does QC , and from q/2−1 = 8/(r−4) this relation now holds
if

∞∑
i=1

i
8

r−4 θC(i) <∞. �

6.2. Proof of the central limit theorems. We first present a strong law of large
numbers (SLLN). We will then provide proofs of the limit theorems.

Lemma 2 (SLLN). Let us assume that E‖X0‖r < ∞ for some r > 2.
If the independent processes X and C are either strongly mixing with

∞∑
i=0

1
i+ 1

· α1− 2
r

X (i) < ∞, and
∞∑

i=0

1
i+ 1

· α1− 2
r

C (i) <∞

or they are θ-weakly dependent with
∞∑

i=0

1
i+ 1

· θ
r−2
r−1
X (i) < ∞, and

∞∑
i=0

1
i+ 1

· θ
r−2
r−1
C (i) <∞

Then
γ̂Y,N(�)

a.s.−→
N→∞

EC0C� · γX(�), ν̂(�) a.s.−→
N→∞

EC0C�,

thus in case EC0C� �= 0:
γ̃X,N (�)

a.s.−→
N→∞

γX(�).
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Remark 4. In case those coefficients admit Riemannian decay rates O(i−a) for some
a > 0 then the previous conditions automatically holds.

For the more general case of spectral estimation assumption (A) implies that EC0C� �=
0 for each value of �.

Proof of Lemma 2. Set either Zk = CkCk+�(XkXk+� − γX(�)) or Zk = CkCk+�. This
is clear that ‖Z‖ r

2
≤ 2‖C0‖2∞‖X0‖2r (resp. ‖Z‖ r

2
≤ ‖C0‖2∞).

Then [21]’s eqn. (3.11) for p = 1 derives the SLLN in the strong mixing case if

∞∑
i=0

1
i+ 1

∫ αZ (i)

0

QZ(u)du < ∞,with QZ the inverse function of t 
→ P(|Z| > t). (21)

Now Hölder inequality entails

∫ αZ (i)

0

QZ(u)du ≤
(∫ 1

0

Q
r
2
Z(u)du

) 2
r

(∫ αZ(i)

0

du

)1− 2
r

= ‖Z‖ r
2

α
1− 2

r

Z (i).

Under weak dependence, Theorem 3 in [5] with p = 1 implies the a.s. convergence of the
same sums

1
N − �

N−�∑
k=1

Zk
a.s.−→

N→∞
EZ0,

if

∞∑
i=0

1
i+ 1

α
1− 2

r

Z (i) <∞, or
∞∑

i=0

1
i+ 1

θ
r−2
r−1

(X,C)(i) < ∞

For this one also needs the heredity result lemma 6, in [2] entails that there exists a
constant a > 0 such that

θZ(i) ≤ a θ
r−2
r−1
(X,C)(i)

Since X and C are independent processes this is simple to derive in both cases that

αZ(i) ≤ α(X,C) ≤ αX(i) + αC(i), θ(X,C)(i) ≤ θX(i) + θC(i).

The subadditivity of t 
→ ta for a ∈ [0, 1] yields the desired result. �

Remark 5. Alternative simplified assumptions.

• The convergence of ν̂(�) holds in case

∞∑
i=0

αC(i)
i+ 1

< ∞, or
∞∑

i=0

θC(i)
i+ 1

< ∞

because of the boundedness of Ck which allows to set r = ∞, but the first con-
vergence cannot be improved directly.



70 NATALIA BAHAMONDE AND PAUL DOUKHAN

• Under strong mixing, the expression (21) may be handled somehow differently
and setting αZ(0) = 1 as in Rio, we rewrite:

∞∑
i=0

1
i+ 1

∫ αZ(i)

0

QZ(u)du =
∫ 1

0

(∑
i=1

1
i+ 1

I1 [0,αZ(i)]

)
QZ(u)du

=
∫ 1

0

∑
{i/αZ (i)>u}

1
i+ 1

·QZ(u)du

=
∫ 1

0

∑
i≤α−1

Z (u)

1
i+ 1

·QZ(u)du

≤
∫ 1

0

ln
(
1 + α−1

Z (u)
)
QZ(u)du

≤ ‖Z0‖ r
2

(∫ 1

0

ln
r

r−2
(
1 + α−1

Z (u)
)
du

)1− 2
r

To this end quote that

1
i+ 1

≤
∫ i+1

i

du

u
= ln(i+ 1)− ln i.

By using Abel transformation (discrete integration by parts) the right-hand side
of the last inequality is seen to be finite in case

∞∑
i=1

ln
2

r−2 i

i
· αZ(i) < ∞

which is a bit better assumption than the previously used condition
∞∑

i=0

1
i+ 1

· α1− 2
r

Z (i) < ∞

The previous remarks are rejected after the proof since the previous Remark 4 proves that
in case of power decaying coefficients all those assumptions always hold!

Central limit theorems are now based upon weak invariance principles under the 2 weak
dependence conditions used here.

Lemma 3 (Multidimensional CLT). Assume that the dependence assumptions (M), (D)
hold true, then for arbitrary finite repartitions (�1, . . . , �k):

√
N

(
ν(�i)

(
γ̃X,N (�i)− γX(�i)

))
1≤i≤k

D−→
N→∞

Nk(0,Σ), (22)

where Σ = (σ2
�u,�v

)1≤u,v≤k is given by

σ2
s,t =

∑
k∈Z

E(C0CsCkCk+t)[κ4(s, k, k+t)+γX(k+t)γX(k−s)−γX(k)γX(k+t−s)] (23)

where κ4(a, b, c) denotes the fourth order cumulant of (X0, Xa, Xb, Xc).

Remark 6. Comparison of the assumptions.

• We note that if all the (Xk)k∈Z are observed then E(C0C�CkCk+�) = 1 and σ2
�

is the same as in [23], Theorem 3, p. 58.
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• The assumptions (D) on the process in presence of missing observations may be
relaxed in this Lemma and we respectively only need∑

i

i
4

r−4 · αC(i) <∞,
∑

i

i
2

r−4 · θ
r−2
r−1
C (i) < ∞

instead of the assumed assumptions∑
i

i
8

r−4 · αC(i) < ∞,
∑

i

i
8

r−4 · θC(i) < ∞

The last assumption implies that the sequence i
8

r−4 θC(i) is bounded thus θC(i) =

O(i− 8
r−4 ) which implies

∑
i i

2
r−4 θ

r−2
r−1
C (i) < ∞. Assumptions for Lemmas 3 and 1

are thus highly related.

Proof of Lemma 3. To study the asymptotic behavior of γ̃X,N (�) = γ̂Y,N(�)/ν̂(�) we
quote that:

W
(�)
N ≡

√
N(γ̃X,N (�)− γX(�)) =

√
N

δ̂N (�)
ν̂N (�)

The denominator term converges in probability to ν(�) from Lemma 2. In order to prove
this fidi convergence we consider vectors (W (�1)

N , . . . , W
(�k)
N ) and arbitrary real numbers

a1, . . . , am and a linear combination of the initial rvs

Zk =
m∑

j=1

ajZ
(�j)
k , Z

(�)
k = CkCk+�(XkXk+� − γX(�)).

We proceed as in Lemma 2 and use the convergence in probability of numerators asserted
before and the CLT for the numerators from [10] which results from the convergence∑

i

i
4

r−2 αZ(i) <∞

We then apply the heredity arguments provided in the proof of Lemma 2 to conclude.
It remains to show that the limiting covariances are given by

σ2
� =

∑
k∈Z

EZ
(�)
0 Z

(�)
k (24)

Check first that

σ2
� =

∑
k∈Z

E(C0C�CkCk+�)[E(X0X�XkXk+�)− 3γ2
X(�)] (25)

Cumulants are defined for all (i, j, k) ∈ Z
3, they appear in the previous expression (25)

to derive the limit covariances

κ4(i, j, k) = EX0XiXjXk − EX0XiEXjXk − EX0XjEXiXk − EX0XkEXiXj

Then the following expression, which exists for all finite �, is equivalent to the asymptotic
variance in equation (25)

σ2
� =

∑
k∈Z

E(C0C�CkCk+�)[κ4(�, k, k + �) + γX(k + �)γX(k − �)− γ2
X(�)].

The convergence of finite dimensional repartitions (22) follows under the same lines as
before. �
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Remark 7. From both [10] and [5], we know that conditions of Lemma 3 entail the weak
invariance principle for both dependence frames

1√
N

�[Nt]
k+1(Yk−EYk)

�[Nt]
k+1(Ck−ECk)

−→
N→∞

σ ·Wt, in the Skorohod space D([0, 1])

1√
N

�[Nt]
k+1(YkYk+�−EYkYk+�)

�[Nt]
k+1(CkCk+�−ECkCk+�)

−→
N→∞

σ� ·Wt, in the Skorohod space D([0, 1]).

Such results yield change-point detection for the mean or for the covariance of X (see
[19]).

A natural and interesting example that extends central limit theorem above under weak
dependence conditions and missing observations is the following:

Corollary 2 (Empirical correlations). Let (Xk)k∈Z and (Ck)k∈Z satisfy the dependence
assumptions (M), (D) hold true. Then,

√
N(ρ̂X,N (�)− ρX(�))1≤�≤m

D−→
N→∞

Nm(0,Ω)

where Ω = (ω2
st) is given by

ω2
s,t = σ2

s,t − ρX(s)σ2
0,t − ρX(t)σ2

s,0 + ρX(s)ρX(t)σ2
0,0. (26)

Proof of Corollary 2. Define f : R
∗ × R

� → R
� by

f(x0, x1, . . . , x�) = (x1/x0, . . . x�/x0) (27)

If γX(·) is the auto-covariance function of (Xk)k∈Z, then by the multivariate continuous
mapping theorem

ρ̂X,N (�) = f(γ̂X,N (0), . . . , γ̂X,N (�))
D−→

N→∞
N (f(γX(0), . . . , γX(�)), N−1DΣD) (28)

i.e. ρ̂X,N (�) is asymptotic joint normality, where Σ is defined by (23) and D is the matrix
of partial derivatives,

D = γX(0)−1

⎛⎜⎜⎜⎝
−ρ(1) 1 0 . . . 0
−ρ(2) 0 1 . . . 0
...

. . .
...

−ρ(h) 0 0 . . . 1

⎞⎟⎟⎟⎠ .

Denoting σ2
s,t and ω2

s,t the current element of Σ and Ω = DΣD′ respectively, we find that

ω2
s,t = σ2

s,t − ρ(s)σ2
0,t − ρ(t)σ2

s,0 + ρ(s)ρ(t)σ2
0,0.

Alternatively, making the decomposition
√

N(ρ̂X,N (�)− ρX(�)) =
√

N

(
γ̃X,N (�)− ρX(�)γ̃X,N (0)

γ̃X,N (0)

)
the denominator behaves like γX(0) and we write

NCov
(
γ̃X,N (�)− ρX(�)γ̃X,N (0), γ̃X,N (h)− ρX(h)γ̃X,N (0)

)
= T1 − T2 − T3 + T4

with
T1 = NCov(γ̃X,N (�), γ̃X,N (h)), T2 = ρX(�) ·NCov(γ̃X,N (0), γ̃X,N (h)),
T3 = ρX(h) ·NCov(γ̃X,N (0), γ̃X,N (�)), T4 = ρX(h)ρX(�) ·NVar (γ̃X,N (0)).

and we apply Lemmas 2 and 3 to get the result.
Therefore we obtain

ω2
s,t = σ2

s,t − ρ(s)σ2
0,t − ρ(t)σ2

s,0 + ρ(s)ρ(t)σ2
0,0. �

Proof Theorem 2. Lemma 3 provides us with finite dimensional convergence we
thus only need to derive the tightness of the sequence of processes WN . Lemma 1 proves
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that Γ, the covariance function of the Gaussian limit process W exists and thus that W
is a tight process in H′s.
We mimic here the tightness argument of lemma 5 in [2]. The flat concentration De

Acosta tightness argument is used again. We thus need to derive that

E sup
g∈BL

W 2
N (g)→ 0 as L→∞

where BL = {g ∈ Hs/ ‖g‖Hs ≤ 1, g� = 0, � ≥ L}.
But W 2

N (g) ≤ 3(|T1(g)|2+|T2(g)|2+|T3(g)|2), where the first two (deterministic) terms
are bounded above in terms of the Sobolev space H′s and the third one is such that

E sup
g∈BL

|T3(g)|2 ≤ N
∑
|�|≥L

1
(1 + |�|)2s

E(γ̃X,N (�)− γX(�))2.

The same argument as in Lemma 1 allows to conclude. The limit is here with respect to
L →∞ thus we may assume L > N/2, there exists constants a, b > 0 such that:

E sup
g∈BL

|T3(g)|2 ≤ aN1+ 4
r

∑
�≥L∨N/2

1
(1 + |�|)2s

≤ bN1+ 4
r (L ∨N/2)1−2s →L→∞ 0. �
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Mathématiques & Applications 31. Springer (2000).

22. Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci.
USA, 42:43–47.

23. Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkhäuser, New York (1956).
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