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Vip. 95, 2016, stor. 92–100 No. 95, 2016, pp. 92–100

LARGE DEVIATIONS OF REGRESSION PARAMETER ESTIMATE
IN THE MODELS WITH STATIONARY SUB-GAUSSIAN NOISE

UDC 519.21

A.V. IVANOV

Abstract. Exponential bounds for probabilities of large deviations of nonlinear regression parameter
least squares estimate in the models with jointly strictly sub-Gaussian random noise are obtained.

1. Introduction

Probabilities of large deviations of the normed least squares estimate (l.s.e.) of un-
known nonlinear regression parameter have been discussed earlier in statistical literature.
So, in [1] it was proved a statement on the l.s.e. probabilities of large deviations with
power decreasing rate of scalar parameter in nonlinear regression model with i.i.d. ob-
servation errors having moments of finite order, and in [2] a similar result was obtained
with exponential decreasing rate in Gaussian nonlinear regression.
In the paper [3] a general Theorem 2.1 on probabilities of large deviations for M -

estimates based on a data set of any structure was proved that generalizes the result
of monograph [4] with application to l.s.e. of nonlinear regression parameters with pre-
Gaussian and sub-Gaussian i.i.d. observation errors (Theorems 3.1 and 3.2 in [3]). Some
theorems in this direction are proved in [5] also. The results on l.s.e. probabilities of
large deviations in nonlinear regression models with correlated observations one can find
in [6]–[10].
Suppose a random sequence

Xt = at(θ) + εt, t ≥ 1, (1)

is observed, where at(θ), θ = (θ1, . . . , θq) ∈ Θc ⊂ R
q, t ≥ 1 are continuous functions,

true parameter value θ belongs to bounded open convex set Θ, ε = {εt, t ∈ Z} is a time
series defined on probability space (Ω, F, P ), E εt = 0. We will write

∑
=

∑T
t=1.

Definition 1. Any random vector θ̂T = (θ̂1T , . . . , θ̂qT ) ∈ Θc having the property

QT (θ̂T ) = min
τ∈Θc

QT (τ), QT (τ) =
∑

(Xt − at(τ))2

is called the l.s.e. of unknown parameter θ obtained by observations Xt, t = 1, . . . , T .

Under suppositions introduced above there exists at least one such a random vector
θ̂T [11].
In asymptotic theory of nonlinear regression in the problem of l.s.e. distribution

normal approximation we norm the difference θ̂T − θ by diagonal matrix [5, 6]

dT (θ) = diag(diT (θ), i = 1, q), d2
iT (θ) =

∑(
∂

∂θi
at(θ)

)2

.
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Further it is assumed that functions at(τ), t ≥ 1, are continuously differentiable in τ ∈ Θ.
The paper is organized in the following way. In the Section 2 a bound is obtained

for large deviations of dT (θ)(θ̂T − θ) in the regression model (1) with dependent, strictly
sub-Gaussian errors εt. In the Section 3 the results of Section 2 are applied to ARMA
processes with strictly sub-Gaussian innovations. The Section 4 contains an example of
regression function satisfying the conditions of our theorems.

2. Large deviations in the presence of jointly strictly sub-Gaussian noise

The next concepts one can find in [12].

Definition 2. Random vector η = (η1, . . . , ηn)′ ∈ R
n is said to be strictly sub-Gaussian,

if for any Δ = (Δ1, . . . ,Δn)′ ∈ R
n

E exp {〈η,Δ〉} ≤ exp
{
1
2
〈BΔ,Δ〉

}
,

where 〈η,Δ〉 = ∑n
i=1 ηiΔi, B = (B(i, j))ni,j=1 is the covariance matrix of η, that is

B(i, j) = E ηiηj , i, j = 1 . . . , n, 〈BΔ,Δ〉 = ∑n
i,j=1 B(i, j)ΔiΔj .

Definition 3. Time series ε = {εt, t ∈ Z} is said to be jointly strictly sub-Gaussian, if
for any n ≥ 1, and any t1, . . . , tn ∈ Z random vector ε(n) = (εt1 , . . . , εtn)′ is strictly
sub-Gaussian.

Concerning random noise ε in the model (1) we introduce the following assumption.
N.1.(i) Time series ε is jointly strictly sub-Gaussian, B(t, s) = E εtεs, t, s ∈ Z.

(ii) For any T ≥ 1, Δ = (Δ1, . . . ,ΔT ) ∈ R
T ,

〈BΔ,Δ〉 ≤ d0‖Δ‖2 (2)

for some constant d0 > 0, ‖Δ‖ = (∑
Δ2

t

)1/2, and B = (B(t, s))Tt,s=1.
For fixed T the exact bound in (2) is

〈BΔ,Δ〉 ≤ λmax(T )‖Δ‖2,
where λmax(T ) is the maximal eigenvalue of symmetric positive semi-definite matrix B
(the norm of selfajoint positive semi-definite operator B in R

T ). Note that λmax(T ) is
monotonically nondecreasing number sequence, so there exists

lim
T→∞

λmax(T ) ≤ d0 < ∞.

Below we give some examples of constant d0.
Further in this paper the following statement on exponential bound of the weighted

sums of jointly strictly sub-Gaussian random variables (r.v.-s) distributions tails plays
an important role. Write ST =

∑
Δtεt.

Lemma 1. Under condition N.1 for any x > 0

P{ST ≥ x} ≤ GT (x), P{ST ≤ −x} ≤ GT (x), (3)

P{|ST | ≥ x} ≤ 2GT (x), (4)
where

GT (x) = exp
{
− x2

2d0‖Δ‖2
}

. (5)

Proof. Proof is obvious (see, for example, [12]). For any x > 0, λ > 0 by Chebyshev-
Markov inequality and (2)

P{ST ≥ x} ≤ exp{−λx} exp
{

λ2

2
〈BΔ,Δ〉

}
≤ exp

{
1
2
λ2d0‖Δ‖2 − λx

}
. (6)
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Minimization of the right hand side of (6) in λ proves the 1st inequality in (3). The
proof of the 2-nd inequality in (3) is the same. The inequality (4) follow from (3). �

To formulate conditions on regression function at(τ) in the spirit of [3] (see also [5] and
[6]) we need in some notation. Write UT (θ) = dT (θ)(Θc − θ), ΓT,θ,R = UT (θ) ∩ {u : R ≤
‖u‖ ≤ R+1}, u = (u1, . . . , uq) ∈ R

q. Denote by G the family of all functions g = gT (R),
T ≥ 1, R > 0, having the following properties:
1) for fixed T gT (R) ↑ ∞, as R →∞;
2) for any r > 0

lim
R→∞,T→∞

Rr exp{−gT (R)} = 0.

Let γ(R) be, generally speaking, different polynomials of R with coefficients that do not
depend on values T , R, θ, u, v, where γ(R) appear. Set also Δt(u) = at(θ + d−1

T (θ)u)−
at(θ), t = 1, T ,

ΦT (u, v) =
∑

(Δt(u)−Δt(v))
2 , u, v ∈ UT (θ).

Assume the existence of function g ∈ G, constants δ ∈ (
0, 1

2

)
, κ > 0, ρ ∈ (0, 1] ,

polynomials γ(R) such that for sufficiently large T , R (we will write T > T0, R > R0)
the next conditions are fulfilled.

A.1. (i) For any u, v ∈ ΓT,θ,R such that ‖u− v‖ ≤ κ

ΦT (u, v) ≤ ‖u− v‖2ργ(R). (7)

(ii) For any u ∈ ΓT,θ,R ΦT (u, 0) ≤ γ(R).
A.2. For any u ∈ ΓT,θ,R

ΦT (u, 0) ≥ 2d0δ
−2gT (R). (8)

Theorem 1. Under conditions N.1, A.1 and A.2 there exist constants B0, b0 > 0 such
that for T > T0, R > R0

P
{
‖dT (θ)(θ̂T − θ)‖ ≥ R

}
≤ B0 exp {−b0gT (R)} , (9)

moreover for any β > 0 constant B0 can be chosen so that

b0 ≥ ρ

ρ+ q
− β. (10)

Proof. It is sufficient to check the fulfilment of assumptions (M1) and (M2) of the men-
tioned Theorem 2.1 from [3]. Inequalities (11) and (17) below are just these assumptions
reformulated in the manner similar to the used in the proof of Theorem 3.1 in [3]. Set
ST (u) =

∑
Δt(u)εt, ζT (u) = ST (u) − 1

2ΦT (u, 0). Following the line of the Theorem 3.1
[3] proof we will derive for any m > 0 and u, v ∈ ΓT,θ,R the inequality

E |ζT (u)− ζT (v)|m ≤ ‖u− v‖ρmγ(R). (11)

We have

E |ζT (u)− ζT (v)|m ≤
max(1, 2m−1) (E |ST (u)− ST (v)|m + 2−m |ΦT (u, 0)− ΦT (v, 0)|m) , (12)

|ΦT (u, 0)− ΦT (v, 0)| ≤∑ |Δt(u)−Δt(v)| |Δt(u) + Δt(v)| ≤
21/2Φ1/2

T (u, v)
(
Φ1/2

T (u, 0) + Φ1/2
T (v, 0)

)
≤ 23/2‖u− v‖ρ (γ(R))1/2 (γ(R))1/2 ≤

21/2‖u− v‖ρ(γ(R) + γ(R)) = ‖u− v‖ργ(R)

according to A.1 (polynomials γ(R) are different!). Thus we obtained the bound

|ΦT (u, 0)− ΦT (v, 0)|m ≤ ‖u− v‖ρmγ(R). (13)
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On the other hand by the formula for the moments of nonnegative r.v.-s (see, for
example, [13], and compare with [8]) and Lemma 1 being applied to Δt = Δt(u)−Δt(v),
t = 1, . . . , T , ST = ST (u, v) = ST (u)− ST (v),

E |ST (u, v)|m = m

∫ ∞

0

xm−1P {|ST (u, v)| ≥ x} dx ≤

2m
∫ ∞

0

xm−1 exp
{
− x2

2d0ΦT (u, v)

}
dx =

√
2πmd

m
2
0 Φ

m
2

T (u, v)E |z|m−1, (14)

where z is standard Gaussian r.v. and

E |z|m−1 = π−1/22
m−1

2 Γ(
m

2
), m > 0. (15)

Relations (14) and (15) give together with (7) the bound

E |ST (u, v)|m ≤ 2
m
2 mΓ(

m

2
)d

m
2
0 Φ

m
2

T (u, v) ≤ ‖u− v‖ρmγ(R). (16)

From (12), (13) and (16) it follows (11).
To accomplish the proof we have to apply the 1st inequality in (3) of Lemma 1 for

Δt = Δt(u) and x = δΦT (u, 0). Then from A.2 we obtain

P {ST (u) ≥ δΦT (u, 0)} ≤ exp
{
− δ2

2d0
ΦT (u, 0)

}
≤ exp{−gT (R)}. (17)

As it follows from (11) and (17) the theorem is proved. �

The next condition and Theorem 2 one can consider as a simplification of the condi-
tions A.1, A.2 of Theorem 1. Theorem 2 generalizes Theorem 3.2 from [3].

A.3. There exist numbers 0 < c0(θ) < c1(θ) < ∞ such that for any u, v ∈ UT (θ) and
T > T0

c0(θ)‖u − v‖2 ≤ ΦT (u, v) ≤ c1(θ)‖u− v‖2. (18)

The condition of the type (18) has been introduced in [1] and used in [2, 3, 8] and
other works.

Theorem 2. Under conditions N.1 and A.3 there exist constants B0 and b such that
for T > T0, R > R0

P
{∥∥∥dT (θ)

(
θ̂T − θ

)∥∥∥ ≥ R
}
≤ B0 exp{−bR2}, (19)

and what’s more for any β > 0 constant B0 can be chosen so that

b ≥ c0(θ)
8d0(1 + q)

− β. (20)

Proof. We shall verify the fulfilment of conditions A.1 and A.2. Then the conclusion of
the theorem will follow from Theorem 1.
Inequality (7) of the condition A.1(i) follows from the right hand side of inequality

(18), if we will take in (7) ρ = 1, γ(R) = c1(θ). Inequality of the condition A.1(ii) follows
as well from the right hand side of (18), if we will take v = 0, γ(R) = c1(θ)(R + 1)2.
To check the fulfilment of condition A.2 we will rewrite the left hand side of (18) for

v = 0:

ΦT (u, 0) ≥ c0(θ)‖u‖2 ≥ 2d0δ
−2

(
1
2
δ2d−1

0 c0(θ)R2

)
,

that is in the inequality (8) on can take

gT (R) =
1
2
δ2d−1

0 c0(θ)R2.
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In this case in (9) the exponent −b0gT (R) = − (
1
2δ2b0d

−1
0 c0(θ)

)
R2. Since now in (10)

ρ = 1, then for any β > 0 in (19) one can choose

bδ =
1
2
δ2b0d

−1
0 c0(θ) ≥ δ2c0(θ)

2d0(1 + q)
− β.

We get inequality (20) when δ → 1
2 . �

3. Partial cases of jointly strictly sub-Gaussian noise

We use below the partial case of definition 2 for n=1.

Definition 4. A r.v. η is said to be strictly sub-Gaussian if for any Δ ∈ R

E exp {Δη} ≤ exp
{
1
2
σ2

ηΔ
2

}
with σ2

η = E η2.

Let {ξj, j ∈ Z} be a sequence of i.i.d. strictly sub-Gaussian r.v.-s. It is naturally to
call such a sequence (discrete) white sub-Gaussian noise.

N.2. Random noise ε in the model (1) is of the form

εt =
∞∑

j=−∞
Ψtjξj , t ∈ Z, (21)

where {ξj , j ∈ Z} is a white sub-Gaussian noise (E ξj = 0, E ξ2
j = σ2

ξ ), and

‖Ψ‖22 =
∞∑

t=−∞

∞∑
j=−∞

Ψ2
tj <∞.

It follows from the condition N.2 that series (21) converges almost sure (see, for
example, [14]), and time series ε = {εt, t ∈ Z} is determined almost sure. Covariance
function of ε is

B(t, s) = σ2
ξ

∞∑
j=−∞

ΨtjΨsj , t, s ∈ Z.

Lemma 2. Under condition N.2 ε is jointly strictly sub-Gaussian time series.

Proof. For vector ε(n) = (εt1, . . . , εtn)′, Δ = (Δ1, . . . ,Δn)′ ∈ R
n from definitions 2 and

3

〈ε(n),Δ〉 =
n∑

k=1

εtk
Δk =

∞∑
j=−∞

(
n∑

k=1

ΔkΨtk,j

)
ξj .

Using independence of r.v.-s ξj we obtain then

E exp {〈ε(n),Δ〉} = E exp
{∑∞

j=−∞ (
∑n

k=1 ΔkΨtk,j) ξj

}
∏∞

j=−∞ E exp {(∑n
k=1 ΔkΨtk,j) ξj} ≤

∏∞
j=−∞ exp

{
1
2 (

∑n
k=1 ΔkΨtk,j)

2
σ2

ξ

}
exp

{
1
2σ2

ξ

∑∞
j=−∞ (

∑n
k=1 ΔkΨtk,j)

2
}
= exp

{
1
2

∑n
k,l=1

(
σ2

ξ

∑∞
j=−∞Ψtk,jΨtl,j

)
ΔkΔl

}
exp

{
1
2

∑n
k,l=1 B(tk, tl)ΔkΔl

}
= exp

{
1
2 〈BΔ,Δ〉}

with B = (B(tk, tl))
n
k,l=1. �

Lemma 3. If condition N.2 is fulfilled, then

〈BΔ,Δ〉 ≤ σ2
ξ‖Ψ‖22‖Δ‖2.
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Proof. Really, from the proof of previous lemma it follows

〈BΔ,Δ〉 = σ2
ξ

∑∞
j=−∞ (

∑n
k=1 Ψtk,jΔk)

2 ≤ σ2
ξ

∑∞
j=−∞

(∑n
k=1 Ψ

2
tk,j

∑n
k=1Δ

2
k

)
=

σ2
ξ

∑n
k=1

∑∞
j=−∞Ψ2

tk,j‖Δ‖2 ≤ σ2
ξ‖Ψ‖22‖Δ‖2.

�

We will note that when B = (B(t, s))Tt,s=1, Δ = (Δ1, . . . ,ΔT )′, then the bound of
Lemma 3 takes the form

〈BΔ,Δ〉 ≤ σ2
ξ‖Ψ̃‖22‖Δ‖2,

with
‖Ψ̃‖22 =

∑∞
t=1

∑∞
j=−∞Ψ2

tj .

Thus from condition N.2 it follows N.1 with d0 = σ2
ξ‖Ψ̃‖22 in inequality (2).

Corollary 1. Under conditions N.2 and A.2 with d0 = σ2
ξ‖Ψ̃‖22 in (8) the conclusion

of Theorem 1 is true.

Corollary 2. Under conditions N.2 and A.3 the conclusion of Theorem 2 is true with
d0 = σ2

ξ‖Ψ̃‖22 in the inequality (20).

Assume that in (21) Ψtj = Ψt−j , and Ψt−j = 0 when j > t. Thus instead of N.2 we
introduce the following condition.

N.3. Errors of observations in regression model (1) have the form

εt =
t∑

j=−∞
Ψt−jξj =

∞∑
j=0

Ψjξt−j , t ∈ Z, (22)

where {ξj , j ∈ Z} is a white sub-Gaussian noise (E ξj = 0, E ξ2
j = σ2

ξ ), with

‖Ψ‖2l2 =
∞∑

j=0

Ψ2
j < ∞. (23)

ConditionN.3 means that εt is a reaction of linear homogeneous and physically realiz-
able system on the random impulse sequence {ξj , j ∈ Z} (physically realizable filter) [14].
As far as time series ε in condition N.3 is a partial case of time series ε in condition

N.2, then the sequence (22) is a jointly strictly sub-Gaussian time-series along Lemma 2.
Additionally, as it is well known, (22) is a stationary time series with covariance function

B(t) = σ2
ξ

∞∑
j=0

ΨjΨj+|t|, t ∈ Z,

and spectral density

f(λ) =
σ2

ξ

2π

∣∣∣∣∣∣
∞∑

j=0

Ψje
ijλ

∣∣∣∣∣∣
2

, λ ∈ [−π, π]. (24)

N.4. Time series (22) has a bounded spectral density:

f0 = sup
λ∈[−π,π]

f(λ) <∞.

Under conditions N.3, N.4 by Gerglotz’ theorem

〈BΔ,Δ〉 = ∑T
t,s=1 B(t− s)ΔtΔs =

∫ π

−π f(λ)
∣∣∑ eiλtΔt

∣∣2 dλ ≤
f0

∫ π

−π |
∑

eiλtΔt|2dt = 2πf0‖Δ‖2,
and therefore on can take in (2) and (5) d0 = 2πf0.
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Corollary 3. Under conditions N.3, N.4, and A.2 with d0 = 2πf0 the statement of
Theorem 1 is true.

Corollary 4. Under conditions N.3, N.4, and A.3 the statement of Theorem 2 is true
with inequality

b ≥ c0(θ)
16πf0(1 + q)

− β

in the capacity of inequality (20).

ARMA(p, k) processes are important examples of time series (22). These processes
are defined by system of recurrence relations (see, for example, [15])

εt − a1εt−1 − · · · − apεt−p = ξt + b1ξt−1 + · · ·+ bkξt−k, t ∈ Z, (25)

where {ξt, t ∈ Z} is white sub-Gaussian noise. If S is backward shift operator, the
relations (25) can be rewritten in the form

a(S)εt = b(S)ξt,

where
a(z) = 1− a1z − · · · − apz

p, b(z) = 1 + b1z + · · ·+ bkzk.

If polynomials a(z), b(z) have no joint roots and a(z) �= 0, b(z) �= 0 for |z| ≤ 1, then
{ξt, t ∈ Z} is a stationary ARMA(p, k)-process.
Sometimes it is convenient to rewrite ARMA(p, k)-process as pure moving average

process MA(∞) in the form

εt = Ψ(S)ξt, Ψ(z) =
b(z)
a(z)

=
∞∑

j=0

Ψjz
j, (26)

similarly to (22). If the series (23) converges, then spectral density (24) can be written
due (26) as

f(λ) =
σ2

ξ

2π

∣∣b(eiλ)
∣∣2

|a(eiλ)|2 , λ ∈ [−π, π]. (27)

Since polynomial a(z) has no roots on unit circle, then f(λ), λ ∈ [−π, π], is continuous.
We will write

fmax = max
−π≤λ≤π

∣∣b(eiλ)
∣∣2

|a(eiλ)|2 . (28)

N.5. Errors of observations in regression model (1) form ARMA(p, k)-process (25)
with white sub-Gaussian noise {ξt, t ∈ Z}.
In this case, Corollary 4, for example, can be restated as

Corollary 5. Under conditions N.5 and A.3 the conclusion of Theorem 2 is true with

b ≥ c0(θ)
8σ2

ξfmax(1 + q)
− β.

Really, under N.5 due to (27) and (28) d0 = 2πf0 = σ2
ξfmax.

Assume
lim inf
T→∞

T−1/2diT (θ) > 0, i = 1, q. (29)

Corollary 6. Under conditions of Theorem 2 or Corollaries 2, 4, 5, and (29) for any
ρ > 0, ν ∈ [0, 1/2) , and T > T0

P{‖T−1/2dT (θ)(θ̂T − θ)‖ ≥ ρT−ν} ≤ B0 exp{−bρT 1−2ν}. (30)
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To proof (30) it is sufficient to take R = T 1/2−ν in (20). For ν = 0 we arrive at quite
strong result on l.s.e. weak consistency.
Similarly in conditions of Corollary 6 the following result on probabilities of moderate

deviations for l.s.e. holds: for any c > 0, and T > T0

P{‖dT (θ)(θ̂T − θ)‖ ≥ c ln1/2 T } ≤ B0T
−bc.

Gaussian time series, obviously, are jointly strictly sub-Gaussian, and all the paper
results are valid for them.

4. Example

Consider an example of regression model (1)

XT = exp

{
q∑

i=1

θiyi(t)

}
+ εt, t ≥ 1, (31)

were regression y(t) = (y1(t), . . . , yq(t)), t ≥ 1, take values in a compact domain Y ⊂ R
q.

So, in (31)
at(θ) = exp{〈θ, y(t)〉}, 〈θ, y(t)〉 =∑q

i=1 θiyi(t). (32)
Suppose

JT =
(
T−1

∑
yi(t)yj(t)

)q

i,j=1
−→ J = (Jij)

q
i,j=1 , as T →∞. (33)

In this case the regression function (32) satisfies condition A.3. Really, let

H = max
y∈Y,τ∈Θc

exp{〈y, τ〉}, L = min
y∈Y,τ∈Θc

exp{〈y, τ〉}.
Then for any δ > 0 and T > T0

L2(Jii − δ) ≤ T−1d2
iT (θ) ≤ H2(Jii + δ), i = 1, q. (34)

Relations (34) mean that without loss of generality one can take the normalizing matrix
T 1/2

Iq instead of dT (θ), in all the formulations of the paper, Iq is identity matrix of order
q.
For fixed t

exp{〈y(t), θ + T−1/2u〉} − exp{〈y(t), θ + T−1/2v〉} =
T−1/2

∑q
i=1 yi(t) exp{〈y(t), θ + T−1/2(v + η(u − v))〉}(ui − vi), η ∈ (0, 1),

and therefore for any δ > 0 and T > T0

ΦT (u, v) =
∑
(exp{〈y(t), θ + T−1/2u〉} − exp{〈y(t), θ + T−1/2v〉})2 ≤

H2T−1
∑ ‖y(t)‖2‖u− v‖2 ≤ H2(TrJ + δ)‖u− v‖2.

So we have obtained the right hand side of (18) with not depending on θ constant
c1 > H2TrJ .
On the other hand for fixed t

Δ2
t (u) =

(
exp{〈y(t), θ + T−1/2u〉} − exp{〈y(t), θ〉})2

=
exp{2〈y(t), θ〉} (exp{〈y(t), T−1/2u〉} − 1

)2
.

Since (ex − 1)2 ≥ x2, x ≥ 0, and (ex − 1)2 ≥ e2xx2, x < 0, then(
exp{〈y(t), T−1/2u〉} − 1

)2

≥ LtT
−1〈y(t), u〉2,

with
Lt = min(1, exp{〈y(t), T−1/2u〉}),

and
Δ2

t (u) ≥ min(exp{2〈y(t), θ〉}, exp{2〈y(t), θ + T−1/2u〉}) · T−1〈y(t), u〉2 ≥
L2T−1〈y(t), u〉2, t = 1, T .
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Thus for any δ > 0 and T > T0

ΦT (u, 0) ≥ L2〈JT u, u〉 ≥ L2(λmin(J)− δ)‖u‖2,
and we have obtained the left hand side of inequality (18) for v = 0, that was used in
fact in the proof of Theorem 2, with constant c0 < L2λmin(J) not depending on θ. We
denoted by λmin(J) the least eigenvalue of positive definite matrix J .
The next fact is a reformulation of the Corollary 4 for regression model (31).
Statement 1. Under conditions N.3, N.4, and (33) there exist constants B0 and b such

that for T > T0, R > R0

P{‖T 1/2(θ̂T − θ)‖ ≥ R} ≤ B0 exp{−bR2}.
Moreover for any β > 0 constant B0 can be chosen so that

b ≥ L2λmin(J)
16πf0(1 + q)

− β.

In subsequent publication we are going to consider time continuous regression model
with jointly strictly sub-Gaussian random process in the capacity of noise.
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