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STOCHASTIC DIFFERENTIAL EQUATIONS WITH GENERALIZED

STOCHASTIC VOLATILITY AND STATISTICAL ESTIMATORS

M. BEL HADJ KHLIFA, YU. MISHURA, K. RALCHENKO, G. SHEVCHENKO, M. ZILI

Abstract. We study a stochastic differential equation, the diffusion coefficient of which is a function

of some adapted stochastic process. The various conditions for the existence and uniqueness of weak
and strong solutions are presented. The drift parameter estimation in this model is investigated, and

the strong consistency of the least squares and maximum likelihood estimators is proved. As an exam-
ple, the Ornstein–Uhlenbeck model with stochastic volatility is considered.
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1. Introduction

In this article we investigate the stochastic differential equation of the form

Xt = X0 + θa(t,Xt) dt+ σ(t,Xt, Yt) dWt, t ∈ [0, T ],

where W is a Wiener process, Y is some additional stochastic process, and θ is an
unknown drift parameter. The models of such type are known in mathematical finance
since the late eighties, see [8]. Later the various models with stochastic volatility were
proposed and studied by Stein and Stein [15], Heston [7] and Fouque et al. [5, 6] among
others. For the recent results on this topic we refer to [9, 10], and the references cited
therein. The problem of the parameter estimation in stochastic volatility models was
considered in [1].

The case when the coefficient σ is a product of the form σ1(t,Xt)σ2(t, Yt) was studied
in details in [3] where the existence–uniqueness theorems for weak and strong solutions
under various assumptions were proved, and the maximum likelihood estimator (MLE)
was constructed and investigated. Here we obtain similar results for the case of a general
diffusion coefficient σ(t,Xt, Yt). Moreover, we also propose the least squares estimator
(LSE) for θ. Unlike the MLE, this estimator does not depend on the process Y . This is
its crucial advantage, since in the financial applications the volatility process usually is
not observed. As an example, we study the Ornstein–Uhlenbeck process with stochastic
volatility and establish the strong consistency of both estimators for it.

The paper is organized as follows. In Section 2 we discuss the existence and uniqueness
of weak and strong solutions. The drift parameter estimation is studied in Section 3.
Section 4 is devoted to numerics. Some auxiliary results are proved in Section 5.

2010 Mathematics Subject Classification. 60H10, 62F10, 62F12.
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2. Existence and uniqueness results

Let (Ω,F, {Ft}t≥0 ,P) be a complete probability space with filtration satisfying the
standard assumptions. Let us consider the stochastic differential equation

Xt = X0 +

∫ t

0

a(s,Xs) ds+

∫ t

0

σ(s,Xs, Ys) dWs, t ∈ [0, T ], (1)

where X0 ∈ R is a constant, a : [0, T ]×R→ R and σ : [0, T ]×R×R→ R are non-random
functions, W = {Wt,Ft, t ∈ [0, T ]} is a standard Wiener process, Y = {Yt,Ft, t ∈ [0, T ]}
is some stochastic process.

In this section we consider the existence and uniqueness of weak and strong solutions
for the equation (1), adapting the approaches of Skorokhod [14], Stroock and Varad-
han [16, 17], Yamada and Watanabe [18], and the standard Lipschitz conditions. Most
of the results of this section can be proved similarly to the corresponding theorems of [3],
so we omit their proofs.

2.1. Existence of weak solutions in terms of the Skorokhod conditions. The
proof of the following result follows the scheme from [14, Ch. 3, § 3] and is similar to [3,
Th. 1].

Theorem 2.1. Let Y = {Yt,Ft, t ∈ [0, T ]} be a stochastically continuous stochastic pro-
cess, i. e.,

lim
h→0

sup
|t1−t2|≤h

P (|Yt1 − Yt2 | > ε) = 0.

Assume that the coefficients a(t, x) and σ(t, x, y) satisfy the following assumptions:

(i) a(t, x) and σ(t, x, y) are jointly continuous with respect to t ∈ [0, T ] and x, y ∈ R,
(ii) there exists a constant K > 0 such that

a(t, x)2 + σ(t, x, y)2 ≤ K
(
1 + x2

)
,

for all x, y ∈ R.

Then the equation (1) has a weak solution.

2.2. Existence and uniqueness of weak solution in terms of Stroock–Varadhan
conditions. In this approach we assume additionally that the process Y is also a solu-
tion of some diffusion stochastic differential equation. Let W 1 and W 2 be two Wiener
processes, possibly correlated, so that dW 1

t W
2
t = ρ dt for some |ρ| ≤ 1. In this case

we can present W 2
t = ρW 1

t +
√

1− ρ2W 3
t , where W 3 is a Wiener process independent

of W 1.

Theorem 2.2. Consider the system of stochastic differential equations{
dXt = a(t,Xt) dt+ σ(t,Xt, Yt) dW

1
t , (2)

dYt = α(t, Yt) dt+ β(t, Yt) dW
2
t , (3)

where all coefficients a, σ, α and β are non-random measurable and bounded functions,
σ and β are continuous in all arguments. Let |ρ| < 1, β(t, y) > 0, σ(t, x, y) > 0 for all
t, x, y. Then the weak existence and uniqueness in law hold for system (2)–(3), and in
particular, the weak existence and uniqueness in law hold for equation (2) with Y being
a weak solution of equation (3).

Proof. Equations (2) and (3) are equivalent to the two-dimensional stochastic differential
equation:

dZ(t) = A(t, Zt) dt+B(t, Zt) dW (t),
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where Z(t) =
(
X(t)
Y (t)

)
, W (t) =

(
W 1(t)

W 3(t)

)
is a two dimensional Wiener process,

A(t, x, y) =

(
a(t, x)
α(t, y)

)
, B(t, x, y) =

(
σ(t, x, y) 0

ρβ(t, y)
√

1− ρ2β(t, y)

)
.

It follows from measurability and boundedness of a and α and continuity and bounded-
ness of σ and β that coefficients of matrices A and B are non-random, measurable and
bounded, and additionally coefficients of B are continuous in all arguments. Then we
can apply [16, Th. 4.2 and Th. 5.6], see also in [4, Prop. 1.14], and deduce that we have
to prove the following relation: for any (t, x, y) ∈ R+×R2 there exists ε(t, x, y) > 0 such
that for all λ ∈ R2

‖B(t, x, y)λ‖ ≥ ε(t, x, y) ‖λ‖ . (4)

Relation (4) is equivalent to the following one (we omit arguments):

σ2λ21 + β2
(
ρλ1 +

√
1− ρ2λ2

)2
≥ ε2

(
λ21 + λ22

)
,

or (
σ2 + β2ρ2

)
λ21 + β2

(
1− ρ2

)
λ22 + 2ρ

√
1− ρ2β2λ1λ2 ≥ ε2

(
λ21 + λ22

)
. (5)

The quadratic form

Q(λ1, λ2) =
(
σ2 + β2ρ2

)
λ21 + β2

(
1− ρ2

)
λ22 + 2ρ

√
1− ρ2β2λ1λ2

in the left-hand side of (5) is positive definite, since its discriminant

D = ρ2
(
1− ρ2

)
β4 − β2

(
1− ρ2

) (
σ2 + β2ρ2

)
= −β2

(
1− ρ2

)
σ2 < 0.

The continuity of Q(λ1, λ2) implies the existence of minλ2
1+λ

2
2=1Q(λ1, λ2) > 0. Then

putting ε = minλ2
1+λ

2
2=1Q(λ1, λ2) and using homogeneity, we get (5). �

2.3. Existence and uniqueness of strong solution in terms of Yamada–Wata-
nabe conditions. Now we consider strong existence-uniqueness conditions for equation
(1), adapting the Yamada–Watanabe conditions for inhomogeneous coefficients from [2].

Theorem 2.3. Let a and σ be non-random measurable and bounded functions such that

(i) there exist a positive increasing function ρ(u), u ∈ (0,∞) satisfying ρ(0) = 0, and
a positive measurable bounded function ψ such that

|σ(t, x1, y)− σ(t, x2, y)| ≤ ψ(y)ρ(|x1 − x2|),

for all t ≥ 0, x1, x2, y ∈ R and
∫∞
0
ρ−2(u) du = +∞;

(ii) there exists a positive increasing concave function k(u), u ∈ (0,∞) satisfying
k(0) = 0 such that

|a(t, x)− a(t, y)| ≤ k(|x− y|),
for all t ≥ 0, x, y ∈ R and

∫∞
0
k−1(u) du = +∞.

Also, let Y be an adapted continuous stochastic process. Then the pathwise uniqueness
of solution holds for the equation (1) and hence it has the unique strong solution.

2.4. Existence and uniqueness of strong solution in terms of Lipschitz condi-
tions.

Theorem 2.4. Let a and σ be non-random measurable functions and let Y be an adapted
continuous stochastic process. Consider the following assumptions:

(i) there exists K > 0 such that for all t ≥ 0, x ∈ R, y ∈ R

|σ(t, x, y)|2 + |a(t, x)|2 ≤ K2
(

1 + |x|2
)
,
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(ii) for any N ∈ N there exist KN > 0 and CN > 0 such that for all t ≥ 0 and for all
(x1, x2, y) satisfying |x1| ≤ N , |x2| ≤ N and |y| ≤ N ,

|a(t, x1)− a(t, x2)| ≤ KN |x1 − x2|

and

|σ(t, x1, y)− σ(t, x2, y)| ≤ KNϕ(t, y) |x1 − x2| ,
where ϕ is a positive and measurable function such that

sup
s≥0

sup
|x|≤N

|ϕ(s, x)| ≤ CN .

Then the equation (1) has a unique strong solution.

This result can be proved by using the successive approximation method, see, e. g.,
[13, Th. 1.2].

3. Drift parameter estimation

Let (Ω,F,F,P) be a complete probability space with filtration F = {Ft, t ≥ 0} satisfy-
ing the standard assumptions. It is assumed that all processes under consideration are
adapted to the filtration F. Consider a parametrized version of the equation (1)

Xt = X0 + θ

∫ t

0

a(s,Xs) ds+

∫ t

0

σ(s,Xs, Ys) dWs, t ∈ [0, T ], (6)

where W is a Wiener process. Assume that the equation (1) has a unique strong solution
X = {Xt, t ∈ [0, T ]}. Our main problem is to estimate the unknown parameter θ by the
continuous observations of X and Y .

3.1. Least squares estimation. Assume that

E

∫ t

0

a2(s,Xs) ds <∞, (7)∫ ∞
0

a2(s,Xs) ds =∞ almost surely, (8)

|σ(t,Xt, Yt)| ≤ C almost surely, (9)

for all t > 0 and for some constant C > 0. Consider the following least squares estimator

θ̃T =

∫ T
0
a(t,Xt) dXt∫ T

0
a2(t,Xt) dt

.

Theorem 3.1. Under the assumptions (7)–(9), the estimator θ̃T is strongly consistent,
as T →∞.

Proof. Using (6), the estimator θ̃T can be written as

θ̃T = θ +
ZT
LT

,

where

ZT =

∫ T

0

a(t,Xt)σ(t,Xt, Yt) dWt, LT =

∫ T

0

a2(t,Xt) dt.

Under assumptions (7)–(9) the process Zt is a square-integrable martingale with quadrat-

ic variation 〈Z〉t =
∫ t
0
a2(s,Xs)σ

2(s,Xs, Ys) ds, and Lt is an increasing process such that
L0 = 0, and L∞ = ∞ almost surely. According to the strong law of large numbers
for martingales [12, Ch. 2, § 6, Th. 10], in order to prove the almost sure convergence
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ZT /LT → 0, it suffices to verify that
∫∞
0

d〈Z〉t
(1+Lt)2

< ∞. This condition is satisfied,

because ∫ ∞
0

d〈Z〉t
(1 + Lt)2

=

∫ ∞
0

a2(t,Xt)σ
2(t,Xt, Yt)

(1 + Lt)2
dt ≤ C2

∫ ∞
0

dLt
(1 + Lt)2

= C2. �

3.2. Maximum likelihood estimation. Denote

f(t, x, y) =
a(t, x)

σ2(t, x, y)
, g(t, x, y) =

a(t, x)

σ(t, x, y)
.

Assume that for all t > 0

σ(t,Xt, Yt) 6= 0 almost surely, (10)

E

∫ t

0

g2(s,Xs, Ys) ds <∞, (11)∫ ∞
0

g2(s,Xs, Ys) ds =∞ almost surely. (12)

Then a likelihood function for equation (1) has a form

dPθ(T )

dP0(T )
= exp

{
θ

∫ T

0

f(t,Xt, Yt) dXt −
θ2

2

∫ T

0

g2(t,Xt, Yt) dt

}
,

see [11, Ch. 7]. Hence, the maximum likelihood estimator of parameter θ constructed by
the observations of X and Y on the interval [0, T ] has a form

θ̂T =

∫ T
0
f(t,Xt, Yt) dXt∫ T

0
g2(t,Xt, Yt) dt

= θ +

∫ T
0
g(t,Xt, Yt) dWt∫ T

0
g2(t,Xt, Yt) dt

. (13)

Theorem 3.2. Under the assumptions (10)–(12), the estimator θ̂T is strongly consistent,
as T →∞.

Proof. Note that under condition (11) the process Mt =
∫ t
0
g(s,Xs, Ys) dWs is a square-

integrable martingale with quadratic variation 〈M〉t =
∫ t
0
g2(s,Xs, Ys) ds. According

to [12, Ch. 2, § 6, Th. 10, Cor. 1], under condition 〈M〉T → ∞ almost surely, as
T → ∞, we have that MT

〈M〉T → 0 almost surely, as T → ∞. Therefore, it follows

from representation (13) that θ̂T is strongly consistent. �

3.3. Drift parameter estimation for the Ornstein–Uhlenbeck process with
stochastic volatility. As an example let us consider the following model:

Xt = X0 + θ

∫ t

0

Xs ds+

∫ t

0

σ(Ys) dWs, t ∈ [0, T ], (14)

where the process Y is independent of the Wiener process W , and the diffusion coefficient
σ(Y ) satisfies the following condition: for all t ≥ 0, y ∈ R

σ1 ≤ σ(Ys) ≤ σ2 (15)

almost surely for some positive constants σ1 and σ2.
By Theorem 2.4, the equation (14) has a unique strong solution. It is not hard to see

that this solution is given by

Xt = X0e
θt +

∫ t

0

σ(Ys)e
θ(t−s) dWs, t ∈ [0, T ].

Note that when σ is a constant, we obtain the well-known Ornstein–Uhlenbeck model.
Therefore, we will call the process X the Ornstein–Uhlenbeck process with stochastic
volatility.
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The LSE and MLE for θ are equal to

θ̃T =

∫ T
0
Xt dXt∫ T

0
X2
t dt

, θ̂T =

∫ T
0
f(Xt, Yt) dXt∫ T

0
g2(Xt, Yt) dt

,

where f(x, y) = x/σ2(y), g(x, y) = x/σ(y).

Theorem 3.3. In the model (14), under the assumption (15), both estimators θ̃T and

θ̂T are strongly consistent, as T →∞.

Proof. Since Y is independent of W , we can assume that P = PW ×PY , Ω = ΩW ×ΩY ,
ω = (ωW , ωY ), Wt(ω) = Wt(ωW ), Yt(ω) = Yt(ωY ). Thus it is sufficient to show the
strong consistency with respect to PW for a. a. ωY ∈ ΩY . In other words, we can assume
that σ(Yt) = σ(t) is deterministic. More precisely, let

Xt = X0e
θt +

∫ t

0

σ(s)eθ(t−s) dWs, t ∈ [0, T ]. (16)

Note that under the assumption (15), the conditions (9) and (10) are satisfied. Fur-
thermore, the conditions (7)–(8) and (11)–(12) are equivalent to

E

∫ t

0

X2
s ds <∞, (17)∫ ∞

0

X2
s ds =∞ almost surely. (18)

Clearly, the assumption (17) is satisfied, because

E

∫ t

0

X2
s ds ≤ 2

(
X0

∫ t

0

eθs ds

)2

+ 2E

(∫ t

0

∫ s

0

σ(u)eθ(s−u) dWu ds

)2

=

=

(
X0

∫ t

0

eθs ds

)2

+ 2E

(∫ t

0

∫ t

u

σ(u)eθ(s−u) ds dWu

)2

≤

≤
(
X0

∫ t

0

eθs ds

)2

+ 2σ2
2

∫ t

0

(∫ t

u

eθ(s−u) ds

)2

du <∞.

It remains to verify the assumption (18). Let us consider two cases.
Case θ ≥ 0. It suffices to prove that for λ > 0 the Laplace transform

Ψt(λ) := E exp

{
−λ
∫ t

0

X2
s ds

}
converges to zero, as t→∞. Since∫ t

0

X2
s ≥

∫ t

t−1
X2
s ds ≥

(∫ t

t−1
Xs ds

)2

,

we have

Ψt(λ) ≤ E exp

{
−λ
(∫ t

t−1
Xs ds

)2
}
.

Note that
∫ t
t−1Xs ds is Gaussian. For a Gaussian random variable ξ ∼ N (µ, s2),

E exp
{
−λξ2

}
=
(
2λs2 + 1

)−1/2
exp

{
− λµ2

2λs2 + 1

}
≤
(
2λs2 + 1

)−1/2
.

Therefore,

Ψt(λ) ≤
(
2λV (t) + 1

)−1/2
,



14 M. BEL HADJ KHLIFA, YU. MISHURA, K. RALCHENKO, G. SHEVCHENKO, M. ZILI

where

V (t) = Var

[∫ t

t−1
Xs ds

]
.

However, by Lemma 5.1, V (t)→∞ as t→∞, whence the proof follows.
Case θ < 0. We will prove a stronger property than (18), namely

P

(
lim sup
t→∞

∫ t+1

t

X2
s ds =∞

)
= 1.

Evidently, it suffices to prove that for all C > 0

P

(
lim sup
t→∞

∫ t+1

t

X2
s ds ≥ C

)
= 1,

or

P

(
lim inf
t→∞

∫ t+1

t

X2
s ds ≤ C

)
= 0.

By the Cauchy–Schwarz inequality,
∣∣∣∫ t+1

t
Xs ds

∣∣∣2 ≤ ∫ t+1

t
X2
s ds. Therefore,

P

(
lim inf
t→∞

∫ t+1

t

X2
s ds ≤ C

)
≤ P

(
lim inf
t→∞

∣∣∣∣∫ t+1

t

Xs ds

∣∣∣∣2 ≤ C
)
≤

≤ P
(⋃

N∈N
⋂
t≥N At

)
≤
∑
N∈N P

(⋂
t≥N At

)
,

where At =

{∣∣∣∫ t+1

t
Xs ds

∣∣∣2 ≤ C + 1

}
. Now it suffices to show that for all N ,

P
(⋂

t≥N At

)
= 0. (19)

For any k ≥ 1 and N < N1 < N2 < . . . < Nk,

P
(⋂

t≥N At

)
≤ P(AN )P (AN1

| AN )P (AN2
| AN1

∩AN ) . . .×

× P
(
ANk

| AN1 ∩ . . . ∩ANk−1
∩AN

)
.

By Lemma 5.2, P(AN ) ≤ δ < 1, where a constant δ = δ(θ, C) does not depend on N .

Since Z is a Gaussian process, the conditional distribution of ζN1
=
∫ N1+1

N1
Xs ds given

σ(Xs, s ≤ N) is Gaussian, moreover, in view of (16) we can decompose ζN1 = ζ ′N1
+ ζ ′′N1

,
where

ζ ′N1
=

∫ N1+1

N1

∫ N

0

σ(s)eθ(t−s) dWs dt

is σ(Xs, s ≤ N)-measurable, and

ζ ′′N1
=

∫ N1+1

N1

(
X0e

θt +

∫ t

N

σ(s)eθ(t−s) dWs

)
dt

is independent from σ(Xs, s ≤ N). Then ζ ′N1
→ 0 in probability, as N1 →∞, since

E
(
ζ ′N1

)2
=

(∫ N1+1

N1

eθt dt

)2 ∫ N

0

σ2(s)e−2θs ds ≤

≤ e2θN1

(
eθt − 1

)2
θ2

σ2
2

∫ N

0

e−2θs ds→ 0,
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as N1 →∞. Therefore, for any ε > 0,

lim sup
N1→∞

P (AN1 | AN ) = lim sup
N1→∞

P
(
ζ2N1
≤ C + 1, ζ2N ≤ C + 1

)
P (ζ2N ≤ C + 1)

≤

≤ lim sup
N1→∞

P
(∣∣ζ ′N1

∣∣ ≥ ε)+ P
(∣∣ζ ′′N1

∣∣ ≤ √C + 1 + ε, ζ2N ≤ C + 1
)

P (ζ2N ≤ C + 1)
=

= lim sup
N1→∞

P
(∣∣ζ ′′N1

∣∣ ≤ √C + 1 + ε
)
.

Letting ε→ 0, we get

lim sup
N1→∞

P (AN1
| AN ) ≤ lim sup

N1→∞
P
(∣∣ζ ′′N1

∣∣2 ≤ C + 1
)
< δ,

by Lemma 5.2, since ζ ′′N1
=
∫ N1+1

N1
X

(N)
t dt in terms of the notation (20). Hence there

exists N1 > N such that
P (AN1

| AN ) < 1+δ
2 .

Similarly, there exists N2 > N1 such that

P (AN2 | AN1 ∩AN ) < 1+δ
2 ,

and so on. Then

P
(⋂

t≥N At

)
≤
(
1+δ
2

)k
.

Letting k →∞, we get (19). This completes the proof. �

4. Simulations

In this section we illustrate the quality of the estimators by simulations. Assume that
the process X is described by the model (6), where Y is a unique strong solution of the
homogeneous stochastic differential equation

Yt = Y0 +

∫ t

0

α(Ys) ds+

∫ t

0

β(Ys) dW̃s, t ∈ [0, T ],

W̃ =
{
W̃t,Ft, t ∈ [0, T ]

}
is a Wiener process, independent of W . More precisely, we

consider the following four examples of Y :

(1) constant coefficients: α(y) = α, β(y) = β (we choose α = 1, β = 2);
(2) geometric Brownian motion: α(y) = αy, β(y) = βy (we choose α = 2, β = 1);
(3) Ornstein–Uhlenbeck model: α(y) = −αy, β(y) = β (we choose α = β = 1);
(4) Cox–Ingersoll–Ross model: α(y) = α1(α2 − y), β(y) = β

√
y (we choose α1 = 1,

α2 = 2, β = 1).

We simulate 100 sample paths of X for each set of parameters and compute means
and standard deviations of LSE and MLE. Since the influence of the initial values X0 and
Y0 on the behavior of the estimators is quite small, we choose X0 = Y0 = 1 everywhere.

At first, let the coefficients a(t, x) and σ(t, x, y) be bounded away from zero and
infinity: a(t, x) = 2 + sinx, σ(t, x, y) = 2 + cos(x + y). Evidently, in this case all
assumptions of Theorems 3.1 and 3.2 are satisfied. The results of simulations for θ = 2
are reported in Table 1. We see that both estimators converge to the true value of θ and
demonstrate quite similar asymptotic behavior. Therefore, we can conclude that LSE is
preferable, since it has simpler form and does not depend on the process Y , which can
be unobservable.

Now let us take the unbounded diffusion coefficient σ(t, x, y) = 1 + y2 (as before,
a(t, x) = 2 + sinx). We see from Table 2 that MLE converges to θ for all four examples
of Y . In the case of constant α and β, as well as for the geometric Brownian motion, the
LSE does not work. This means that the assumption (9) in Theorem 3.1 is substantial.
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Table 1. dXt = θ(2 + sinXt) dt+
(
2 + cos(Xt + Yt)

)
dWt, θ = 2

Mean / T

α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 1.9870 1.9965 1.9899 1.9887

Std.dev. 0.2839 0.1447 0.1077 0.0813

θ̂
Mean 1.9935 1.9919 1.9937 1.9940

Std.dev. 0.2538 0.1163 0.0862 0.0629

2y y
θ̃

Mean 2.0262 2.0048 1.9975 1.9908

Std.dev. 0.2885 0.1344 0.1015 0.0673

θ̂
Mean 2.0141 1.9935 1.9874 1.9893
Std.dev. 0.2194 0.1006 0.0861 0.0562

−y 1
θ̃

Mean 2.0164 1.9885 1.9990 2.0058

Std.dev. 0.3293 0.1482 0.1113 0.0836

θ̂
Mean 2.0305 1.9951 2.0072 2.0081

Std.dev. 0.2649 0.1139 0.0825 0.0606

2− y √
y

θ̃
Mean 2.0283 2.0143 2.0094 2.0017
Std.dev. 0.3177 0.1427 0.0964 0.0642

θ̂
Mean 2.0167 2.0122 2.0079 2.0042
Std.dev. 0.2403 0.1080 0.0771 0.0527

However, the LSE converges to the true value of the parameter for two other examples
of Y . Moreover, in the Ornstein–Uhlenbeck model the behavior of two estimators is
similar, while in the Cox–Ingersoll–Ross model the MLE clearly outperforms the LSE,
since it has smaller standard deviation.

Table 2. dXt = θ(2 + sinXt) dt+
(
1 + Y 2

t

)
dWt, θ = 2

Mean / T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 1.5750 −8.5535 3.6113 78.1776
Std.dev. 15.3463 84.8756 241.035 623.109

θ̂
Mean 2.0408 2.0402 2.0407 2.0408

Std.dev. 0.9771 0.9020 0.9004 0.9000

2y y
θ̃

Mean 2.1 · 1018 4.2 · 1076 7.8 · 10153 8.9 · 10281

Std.dev. 1.6 · 1019 4.1 · 1077 7.8 · 10154 8.9 · 10282

θ̂
Mean 2.2443 2.2443 2.2443 2.2443

Std.dev. 1.9967 1.9967 1.9967 1.9967

−y 1
θ̃

Mean 2.0189 2.0000 1.9978 1.9978
Std.dev. 0.2712 0.1371 0.0984 0.0627

θ̂
Mean 1.9954 1.9979 1.9988 1.9962

Std.dev. 0.2112 0.1010 0.0686 0.0449

2− y √
y

θ̃
Mean 2.1090 1.9942 1.9632 1.9641
Std.dev. 1.1786 0.5412 0.4200 0.2720

θ̂
Mean 1.9883 2.0080 1.9897 2.0024

Std.dev. 0.4935 0.2092 0.1669 0.0976

Finally, we consider the Ornstein–Uhlenbeck model (14) with the stochastic volatility
σ(Yt) = 2 + cosYt. The results for θ = −2 and θ = 2 are reported in Tables 3 and 4
respectively. We see that in both cases the simulation studies confirm the theoretical
results on strong consistency for both estimators. However, the rate of convergence for
the positive value of θ is much higher.
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Table 3. dXt = θXt dt+ (2 + cosYt) dWt, θ = −2

Mean / T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean −2.3413 −2.0357 −1.9980 −2.0093

Std.dev. 0.8153 0.3134 0.2120 0.1628

θ̂
Mean −2.2603 −2.0242 −2.0046 −2.0150
Std.dev. 0.6732 0.2534 0.1811 0.1361

2y y
θ̃

Mean −2.2009 −2.0411 −2.0234 −2.0113
Std.dev. 0.6545 0.2865 0.2114 0.1537

θ̂
Mean −2.1521 −2.0368 −2.0310 −2.0162
Std.dev. 0.4669 0.2087 0.1459 0.1039

−y 1
θ̃

Mean −2.1340 −2.0895 −2.0495 −2.0406
Std.dev. 0.6116 0.3010 0.2006 0.1479

θ̂
Mean −2.1329 −2.0883 −2.0471 −2.0419
Std.dev. 0.5863 0.3058 0.2039 0.1473

2− y √
y

θ̃
Mean −2.2316 −2.0792 −2.0266 −2.0266
Std.dev. 0.6980 0.3406 0.2196 0.1546

θ̂
Mean −2.2041 −2.0647 −2.0256 −2.0211
Std.dev. 0.6180 0.2629 0.1870 0.1342

Table 4. dXt = θXt dt+ (2 + cosYt) dWt, θ = 2

Mean / T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 2.000 2.000 2.000 2.000
Std.dev. 4.3 · 10−8 7.7 · 10−15 8.9 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000
Std.dev. 3.0 · 10−8 8.4 · 10−15 8.9 · 10−15 8.0 · 10−15

2y y
θ̃

Mean 2.000 2.000 2.000 2.000
Std.dev. 2.6 · 10−8 8.3 · 10−15 7.2 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 2.8 · 10−8 1.1 · 10−14 9.0 · 10−15 8.0 · 10−15

−y 1
θ̃

Mean 2.000 2.000 2.000 2.000
Std.dev. 4.4 · 10−8 7.6 · 10−15 8.6 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 4.3 · 10−8 7.0 · 10−15 7.3 · 10−15 7.0 · 10−15

2− y √
y

θ̃
Mean 2.000 2.000 2.000 2.000

Std.dev. 3.6 · 10−6 8.4 · 10−15 7.8 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 1.7 · 10−6 8.5 · 10−15 8.8 · 10−15 7.0 · 10−15
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5. Appendix

Let X be the Ornstein–Uhlenbeck process with deterministic volatility defined by (16).
Consider an auxiliary process

X
(t0)
t := X0e

θt +

∫ t

t0

σ(s)eθ(t−s) dWs, t ≥ t0 ≥ 0. (20)

(Note that Xt = X
(0)
t .)

Lemma 5.1. For any θ ∈ R there exists a constant ε = ε(θ) > 0 such that for all
t ≥ t0 ≥ 0,

V (t0, t) := Var

[∫ t+1

t

X(t0)
s ds

]
≥ ε. (21)

Moreover, if θ ≥ 0, then V (t0, t)→∞ as t→∞.

Proof. Denote

U
(t0)
t =

∫ t

t0

σ(u)eθ(t−u) dWu = X
(t0)
t −X0e

θt.

Then

V (t0, t) = E

(∫ t+1

t

U (t0)
s ds

)2

.

By Itô’s isometry, for s ≥ t0, v ≥ t0,

EU (t0)
s U (t0)

v =

∫ min{s,v}

t0

σ2(u)eθ(s−u)eθ(v−u) du ≥ σ2
1

∫ min{s,v}

t0

eθ(s+v−2u) du.

Hence

V (t0, t) =

∫ t+1

t

∫ t+1

t

EU (t0)
s U (t0)

v ds dv ≥ σ2
1

∫ t+1

t

∫ t+1

t

∫ min{s,v}

t0

eθ(s+v−2u) du ds dv.

If θ = 0, then

V (t0, t) ≥ σ2
1

∫ t+1

t

∫ t+1

t

(min {s, v} − t0) ds dv = σ2
1

(
t+ 1

3 − t0
)
≥ σ2

1

3
,

that is, (21) holds with ε = σ2
1/3, and V (t0, t)→∞ as t→∞.

In what follows we assume that θ 6= 0. We have

V (t0, t) ≥
σ2
1

2θ

∫ t+1

t

∫ t+1

t

eθ(s+v)
(
e−2θt0 − e−2θmin{s,v}

)
ds dv =

=
σ2
1

2θ

∫ t+1

t

∫ t+1

t

(
eθ(s+v−2t0) − eθ|s−v|

)
ds dv =

=
σ2
1

2θ

(
e−2θt0

(∫ t+1

t

eθs ds

)2

− 2

∫ t+1

t

∫ v

t

eθ(v−s) ds dv

)
=

=
σ2
1

2θ3

(
e2θ(t−t0)

(
eθ − 1

)2 − 2
(
eθ − 1− θ

))
. (22)

The right-hand side of (22) increases with respect to t ∈ [t0,∞) for θ > 0 as well as for
θ < 0. Therefore, it attains its minimum value at the point t = t0. Hence

V (t0, t) ≥
σ2
1

2θ3

((
eθ − 1

)2 − 2
(
eθ − 1− θ

))
=:

σ2
1

2θ3
h(θ).

Note that h(0) = 0 and the derivative h′(θ) = 2
(
eθ − 1

)2
> 0 for θ 6= 0. This implies

that h(θ) < 0 for θ < 0, and h(θ) > 0 for θ > 0. Thus, (21) holds with ε =
σ2
1

2θ3h(θ) > 0
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for all θ 6= 0. Moreover, it follows from (22) that for θ > 0, V (t0, t)→∞ as t→∞. This
concludes the proof. �

Lemma 5.2. Let C > 0, θ ∈ R. Then there exists a constant δ = δ(θ, C) such that for
all t ≥ t0 ≥ 0,

P

(∣∣∣∣∫ t+1

t

X(t0)
s ds

∣∣∣∣2 ≤ C + 1

)
≤ δ < 1.

Proof. For a Gaussian random variable ξµ,s2 ∼ N (µ, s2) one has

P
(∣∣ξµ,s2∣∣ ≤ x) ≤ P

(∣∣ξ0,s2∣∣ ≤ x) = 2Φ
(
x
s

)
− 1, x > 0,

where Φ denotes the cdf of the standard normal distribution. Taking into account that

the random variable
∫ t+1

t
X

(t0)
s ds is Gaussian with variance V (t0, t) and applying the

previous lemma, we get

P

(∣∣∣∣∫ t+1

t

X(t0)
s ds

∣∣∣∣2 ≤ C + 1

)
≤ 2Φ

( √
C + 1√
V (t0, t)

)
−1 ≤ 2Φ

(√
C + 1√
ε

)
−1 =: δ < 1. �
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ÑÒÎÕÀÑÒÈ×ÍI ÄÈÔÅÐÅÍÖIÀËÜÍI ÐIÂÍßÍÍß Ç ÓÇÀÃÀËÜÍÅÍÎÞ
ÑÒÎÕÀÑÒÈ×ÍÎÞ ÂÎËÀÒÈËÜÍIÑÒÞ ÒÀ ÑÒÀÒÈÑÒÈ×ÍI ÎÖIÍÊÈ

Ì. ÁÅË ÕÀÄÆ ÕËIÔÀ, Þ. ÌIØÓÐÀ, Ê. ÐÀËÜ×ÅÍÊÎ, Ã. ØÅÂ×ÅÍÊÎ, Ì. ÇIËI

Àíîòàöiÿ. Âèâ÷à¹òüñÿ ñòîõàñòè÷íå äèôåðåíöiàëüíå ðiâíÿííÿ, êîåôiöi¹íò äèôóçi¨ ÿêîãî ¹ ôóíêöi-

¹þ âiä äåÿêîãî àäàïòîâàíîãî âèïàäêîâîãî ïðîöåñó. Íàâåäåíî ðiçíi óìîâè iñíóâàííÿ òà ¹äèíîñòi

ñëàáêèõ i ñèëüíèõ ðîçâ'ÿçêiâ. Äîñëiäæó¹òüñÿ îöiíþâàííÿ ïàðàìåòðà çñóâó â öié ìîäåëi. Äîâåäåíî

ñòðîãó êîíñèñòåíòíiñòü îöiíêè íàéìåíøèõ êâàäðàòiâ òà îöiíêè ìàêñèìàëüíî¨ âiðîãiäíîñòi. ßê ïðè-

êëàä ðîçãëÿíóòî ìîäåëü Îðíøòåéíà �Óëåíáåêà çi ñòîõàñòè÷íîþ âîëàòèëüíiñòþ.

ÑÒÎÕÀÑÒÈ×ÅÑÊÈÅ ÄÈÔÔÅÐÅÍÖÈÀËÜÍÛÅ ÓÐÀÂÍÅÍÈß
Ñ ÎÁÎÁÙÅÍÍÎÉ ÑÒÎÕÀÑÒÈ×ÅÑÊÎÉ ÂÎËÀÒÈËÜÍÎÑÒÜÞ

È ÑÒÀÒÈÑÒÈ×ÅÑÊÈÅ ÎÖÅÍÊÈ

Ì. ÁÅË ÕÀÄÆ ÕËÈÔÀ, Þ. ÌÈØÓÐÀ, Ê. ÐÀËÜ×ÅÍÊÎ, Ã. ØÅÂ×ÅÍÊÎ, Ì. ÇÈËÈ

Àííîòàöèÿ. Èçó÷àåòñÿ ñòîõàñòè÷åñêîå äèôôåðåíöèàëüíîå óðàâíåíèå, êîýôôèöèåíò äèôôóçèè êî-

òîðîãî ÿâëÿåòñÿ ôóíêöèåé îò íåêîòîðîãî àäàïòèðîâàííîãî ñëó÷àéíîãî ïðîöåññà. Ïðèâåäåíû óñëî-

âèÿ ñóùåñòâîâàíèÿ è åäèíñòâåííîñòè ñëàáûõ è ñèëüíûõ ðåøåíèé. Èññëåäóåòñÿ îöåíèâàíèå ïàðà-

ìåòðà ñíîñà â äàííîé ìîäåëè. Äîêàçàíà ñòðîãàÿ ñîñòîÿòåëüíîñòü îöåíêè íàèìåíüøèõ êâàäðàòîâ

è îöåíêè ìàêñèìàëüíîãî ïðàâäîïîäîáèÿ. Â êà÷åñòâå ïðèìåðà ðàññìîòðåíà ìîäåëü Îðíøòåéíà �

Óëåíáåêà ñî ñòîõàñòè÷åñêîé âîëàòèëüíîñòüþ.


