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THE UNIFORM CLT FOR EMPIRICAL ESTIMATOR

OF A GENERAL STATE SPACE SEMI-MARKOV KERNEL

INDEXED BY FUNCTIONS

S. BOUZEBDA, N. LIMNIOS

Abstract. In this paper we mainly deal with the uniform CLT for empirical estimator of a general

state space semi-Markov process indexed by functions under the uniformly integrable entropy con-
dition. A way to describe the uniform CLT is to translate the problem into martingale difference

sequences to obtain the desired results.
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1. Introduction and notation

Semi-Markov processes are an extension of jump Markov processes and renewal pro-
cesses. More specifically, they allow the use of any distribution for the sojourn times
instead of the exponential (geometric) distributions in the Markov processes (chains)
case. This feature has led to successful applications in survival analysis [1], reliability
[21], queuing theory, finance and insurance [28]. The basic theory of the semi-Markov
processes is given by [25, 26] and in particular case of renewal process we refer to [9].
For recent references in this area along with statistical applications see, e. g., [21]. Non-
parametric estimation of semi-Markov kernel and conditional transition probability has
been the subject of intense investigation for many years leading to the development of a
large variety of methods, see, e. g., [7, 8, 20] and the references therein.

At the same time, we have very important advances on empirical processes theory and
their applications in several directions in statistical theory and practice, e. g., kernel-type
estimation, copula, M -estimation, rate of statistical estimators, etc., we may refer to
[11, 18, 19, 23, 24, 30, 33]. In the present paper we would like to connect some of these
theoretical advances to semi-Markov estimation problems. First of all to the semi-Markov
kernel estimation which is the basis for further estimation problems. In particular we
extend previous results ([20] and [8]) to more abstract setting and we consider a general
state space semi-Markov process in the present work. In order to obtain our results we will
transfer the problem to the martingale differences setting that permits us to circumvent
the use of the delicate chaining and symmetrization arguments. This simplifies our proof
by using the uniform CLT of [2] and [3].

We start by giving some notation and definitions that are needed for the forthcom-
ing sections. All the following random processes will be supposed to be defined on a
complete probability space (Ω,F ,P). This is a technical requirement which allows for
the construction of the Gaussian processes in our theorems, and is not restrictive since
one can expand a probability space to make it rich enough (see e. g., Appendix 2 in [10]
and [5, Lemma A1]). To define semi-Markov processes or equivalently Markov renewal
processes, it is natural, first, to define semi-Markov kernels (see, for example, [21] for a
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description in details). For convergence of stochastic processes in functional setting, see,
for example, [15, 31]. We are using the empirical processes terminology concerning the
uniform CLT which of course is a functional CLT.

Let R+ = [0,∞) be a set of nonnegative real numbers and N be a set of natural
numbers {0, 1, 2, . . .}.

Definition 1.1. Let (E,E ) be a Borel measurable space. Let B+ denote the Borel
σ-algebra of subsets of R+. Let {P ((x, s), A× Γ) : (x, s) ∈ E × R+, A ∈ E ,Γ ∈ B+} be
a Markov transition function on (E × R+,E × R+). The function Q defined by

Q
(
x,A× (Γ− s)

)
= P

(
(x, s), A× Γ

)
, (x, s) ∈ E × R+, A ∈ E , Γ ∈ B+,

where Γ− s = {t ∈ R+ : t+ s ∈ Γ}, is a semi-Markov kernel.

For any (x, s) ∈ E × R+, there exists a probability measure P(x,s) on (Ω,F) and
a sequence of random variables {Jn, Sn : n ∈ N}, such that

P(x,s)(J0 = x, S0 = s) = 1

and, for n > 0, A ∈ E , and Γ ∈ B+,

P(x,s)

(
(Jn+1, Sn+1) ∈ A× Γ | σ(Jk, Sk; k ≤ n)

)
=

= P(x,s)

(
(Jn+1, Sn+1) ∈ A× Γ | σ(Jn, Sn)

)
=

= Q
(
Jn, A× (Γ− Sn)

)
.

Let {N(t) : t ∈ R+} be defined by

N(t) = sup{n ≥ 0 : Sn ≤ t}.

The probability measure P(x,s), for any (x, s) ∈ E × R+, is uniquely defined, by
the usual way for the Markov case, on cylinder sets on the canonical measurable space
(Ω,F) =

(
EN ,E⊗N

)
, see, e. g., [21].

Definition 1.2. The stochastic process {Jn, Sn : n ∈ N} is called a Markov renewal
process. The stochastic process Z = {Z(t) : t ∈ R+}, defined by Z(t) = JN(t) for t ≥ 0
(or Jn = Z(Sn) for n ≥ 0), is a semi-Markov process associated with (Jn, Sn).

To be exact, Z is an (E,E )-valued càdlàg homogeneous semi-Markov process. The
process J = {Jn : n ∈ N} (called the embedded Markov chain of Z) is a Markov chain
with state space (E,E ) and transition probability kernel

P (x, dy) = Q(x, dy × R+).

The process (Sn) is the sequence of jump times of Z, with

0 ≤ S0 < S1 < · · · < Sn < Sn+1 < · · · ,

and inter-jump times Xn = Sn − Sn−1, for n ≥ 1. The process {Jn, Xn : n ∈ N} is
a Markov chain with state space (E × R+,E × B+) and transition probability kernel
Q(x, dy × dt). The point process {N(t) : t ∈ R+} counts the jumps in the time interval
(0, t]. Let H denote the distribution function of the sojourn times, that is,

H(x, t) = Q(x,E × [0, t]) for (x, t) ∈ E × R+,

and set H = 1−H. Let us define the transition operator Q, for f : E × E × R+ → R+

measurable, as follows:

Qf(x) =

∫∫
E×R+

f(x, y, s)Q(x, dy, ds).
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Also let mk(x) denote the k-th moment of the sojourn time in state x ∈ E, that is,

mk(x) = E
(
Xk
n+1 | Jn = x

)
=

=

∫
R+

skQ(x,E × ds) =

∫
R+

skH(x, ds), k ∈ N∗, x ∈ E;

we set m(x) = m1(x) for the mean sojourn time in state x ∈ E. We will also need the
following definitions. Let P(E) be the set of all probability distributions α on (E,E );
note that α will denote both the distribution and its density when it exists.

Definition 1.3. Let α be a probability measure in P(E). The probability measure Pα
is defined on (Ω,F) by

Pα(C) =

∫
E

α(dx)Px(C), C ∈ F ,

where

Px(C) = P(C | J0 = x).

Let β be a probability measure on (E × R+,E ×B+). The probability measure Pβ is
defined on (Ω,F) by

Pβ(C) =

∫∫
E×R+

β(dx× ds)P(x,s)(C), C ∈ F ,

where

P(x,s)(C) = P(C | J0 = x, S0 = s).

Let L1(βQ) be the space of all real βQ-measurable integrable functions g defined on
E × E × R+. The functional µQ is defined on L1(µQ) by

µQg =

∫∫∫
E×E×R+

µ(dx)Q(x, dy × ds)g(x, y, s), g ∈ L1(µQ).

We set ĝ = νQg, and, if g is a function of only one variable x ∈ E, we put

µg = µQg =

∫
µ(dx) g(x).

We consider here regular semi-Markov processes, that is Px(N(t) < +∞) = 1, for
any t ≥ 0 and x ∈ E. Moreover, the distribution functions of the sojourn times are not
degenerate, i. e., δ0, Dirac distribution concentrated at 0. It is worth noticing that Dirac
distributions concentrated at the point a > 0 are allowed, these distributions are useful
in order to introduce fixed durations.

All the asymptotic results in this paper require the following assumptions.

A.1. The Markov chain {Jk : k ≥ 0} possesses a unique stationary distribution ν;
A.2. m =

∫
E
m(x) ν(dx) <∞.

Conditions A.1–A.2 imply that the semi-Markov process {Zt : t ≥ 0} has a unique
stationary distribution, π, given by

π(B) =
1

m

∫
B

m(x) ν(dx), for B ∈ E .

The structure of the present paper is as follows. The uniform central limit theorem for
a function-indexed semi-Markov process, under the uniformly integrable entropy condi-
tion, is obtained in Section 2. Finally, detailed mathematical developments are given in
Section 3.
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2. The uniform CLT for Empirical estimator of a semi-Markov kernel

2.1. Preliminaries and notation. Given a class F of measurable functions defined
on a measurable space (X,X ) := (E × E × R+,E × E × B+), the covering number
N(ε,F , ‖ · ‖), simply denote N(ε) when there is no risk of ambiguity, is the minimum
number of balls {g : ‖g − h‖ < ε} of radius ε needed to cover F . Let F be an envelope
of F . That is, F is a measurable function from X to [0,∞) such that

sup
f∈F
|f(x)| ≤ F(x) for all x ∈ X.

Let M(X,F) be the set of all measures γ on (X,X ) with

γ
(
F2
)

:=

∫
X

F2 dγ <∞.

Given a measure γ on (X,X ), we define

d(2)γ (f, g) :=
[
γ(f − g)2

]1/2
=

[∫
X

(f − g)2 dγ

]1/2
.

Say that F has a uniformly integrable entropy with respect to L2-norm if∫ ∞
0

sup
γ∈M(X,F)

[
logN

(
ε
[
γ
(
F2
)]1/2

,F , d(2)γ

)]1/2
dε <∞.

When the class F has uniformly integrable entropy,
(
F , d

(2)
γ

)
is totally bounded for

any measure γ. Many important classes of functions, such as VC graph classes, have
uniformly integrable entropy. See Section 2.6 of [33] and we may refer also to [18].

Example 2.1. The set F of all indicator functions 1(−∞,t] of cells in R satisfies

N
(
ε,F , d

(2)
P

)
≤ 2

ε2
,

for any probability measure P and ε ≤ 1. Notice that∫ 1

0

√
log

(
1

ε

)
dε ≤

∫ ∞
0

u1/2 exp(−u) du ≤ 1.

For more details and discussion on this example refer to Example 2.5.4 of [33] and [18,
p. 157]. The covering numbers of the class of cells (−∞, t] in higher dimension satisfy a
similar bound, but with higher power of (1/ε), see Th. 9.19 of [18].

Example 2.2. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4
in [33].) Let F be the class of functions x 7→ f(t, x) that are Lipschitz in the index
parameter t ∈ T . Suppose that

|f(t1, x)− f(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T , the function κ(·) defined on the sample space X ,
and all x. According to Th. 2.7.11 of [33] and Lemma 9.18 of [18], it follows, for any
norm ‖ · ‖F on F , that

N
(
ε‖F‖F ,F , ‖ · ‖F

)
≤ N(ε/2, T, d).

Hence if (T, d) satisfy J(∞, T, d) <∞, then the conclusions holds for F .

Example 2.3. Let us consider as example the classes of functions that are smooth up
to order α, see Section 2.7.1 of [33] and Section 2 of [32]. For 0 < α < ∞ let bαc be
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the greatest integer strictly smaller than α. For any vector k = (k1, . . . , kd) of d integers
define the differential operator

Dk· =
∂k·

∂k1 · · · ∂kd
,

where

k· =

d∑
i=1

ki .

Then, for a function f : X → R, let

‖f‖α = max
k·≤bαc

sup
x

∣∣Dkf(x)
∣∣+ max

k·≤bαc
sup
x

Dkf(x)−Dkf(y)

‖x− y‖α−bαc
,

where the suprema are taken over all x, y in the interior of X with x 6= y. Let CαM (X )
be the set of all continuous functions f : X → R with

‖f‖α ≤M.

Note that for α ≤ 1 this class consists of bounded functions f that satisfy the Lipschitz
condition. [16] computed the entropy of the classes of CαM (X ) for the uniform norm. As
a consequence of their results [32] shows that there exists a constant K depending only
on α, d and the diameter of X such that for every measure γ and every ε > 0,

logN[ ]

(
εMγ(X ), CαM (X ), L2(γ)

)
≤ K

(
1

ε

)d/α
,

N[ ] is the bracketing number, refer to Definition 2.4 and we refer to Th. 2.7.1 of [33] for
a variant of the last inequality. By Lemma 9.18 of [18], we have

logN
(
εMγ(X ), CαM (X ), L2(γ)

)
≤ K

(
1

2ε

)d/α
.

Definition 2.4. Let ρ be a pseudo metric on F . Given two functions l and u, the
bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket is a bracket
[l, u] with ρ(l, u) < ε. The bracketing number N[ ](ε,F , ρ) is the minimum number of
ε-brackets needed to cover F .

2.2. Semi-Markov empirical process. Let us consider the class F , with envelope F,
of real measurable functions f : E × E × R+ → R, such that

A.3.

∫∫∫
E×E×R+

ν(dx) F2(x, y, s)Q(x, dy, ds) <∞.

This condition implies that ν(dx)Q(x, dy, ds) pertain to the class M(X,F).
Let us define the random sequence {Y`(f) : ` ≥ 1, f ∈ F}, by

Y`(f) := f(J`−1, J`, X`)−Qf(J`−1),

and for k ≥ 1, define the following sums

Sk(f) :=

k∑
`=1

Y`(f), for f ∈ F .

Let us define the filtration F` := σ(J0, X1, J1, . . . , X`, J`), for ` ≥ 1 and F0 := σ(J0).
Clearly it is straightforward to see that, almost surely,

E(Y`(f) | F`−1) = 0, (1)

together with A.1 and that the sequence (Y`(f)) is an (F`)-martingale differences.
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For each n ≥ 1, consider a process {Gn(f) : f ∈ F} defined by{
Gn(f) =

1

n1/2
Sn(f) : f ∈ F

}
.

This is the empirical process of the semi-Markov process. Define

σ2
n(f, g) =

1

n

n∑
`=1

E
(
(Y`(f)− Y`(g))2 | F`−1

)
, for f, g ∈ F .

2.3. The uniform CLT. Establishing a uniform CLT, for the process {Gn(f) : f ∈ F},
essentially means showing, in the sense of Definition 2.5, that as n→∞,

{L(Gn(f)) : f ∈ F} → {L(Z(f)) : f ∈ F},

where the processes are indexed by F and are considered as random elements of the
Banach space

`∞(F ) :=

{
z : F → R : ‖z‖F := sup

f∈F
|z(f)| <∞

}
,

the space of the bounded real-valued functions on F , taken with the sup norm. The
limiting process Z = {Z(f) : f ∈ F} is a Gaussian process whose sample paths are
contained in the class of uniformly continuous bounded function

UB(F , ρ) := {z ∈ `∞(F ) : z is uniformly continuous with respect to ρ},

where ρ is a metric on F . Notice that (`∞(F ), ‖ · ‖F ) is a Banach space and UB(F , ρ)
is a closed subspace of (`∞(F ), ‖ · ‖F ) and hence is a Banach space too. In particular
UB(F , ρ) is separable if and only if (F , ρ) is totally bounded. We equip the space F

with the pseudometric d
(2)
Q so that

(
F , d

(2)
Q

)
is totally bounded.

In the sequel, we use the following definition of weak convergence which is originally
due to [14]. Throughout this paper events are identified with their indicator functions
and E∗ denotes the upper expectation with respect to the outer probability P∗, refer to
[33] for definition.

Definition 2.5. A sequence of `∞(F )-valued random functions {Tn : n ≥ 1} converges
in law to a `∞(F )-valued Borel measurable random function T whose law concentrates
on a separable subset of `∞(F ), denoted Tn  T , if,

Eg(T ) = lim
n→∞

E∗g(Tn), for all g ∈ C (`∞(F ), ‖ · ‖F ) ,

where C (`∞(F ), ‖ · ‖F ) is the set of all bounded, continuous functions from the space
(`∞(F ), ‖ · ‖F ) into R.

Theorem 2.6. Suppose that F has uniformly integrable entropy with envelope func-
tion F fulfilling assumption A.3, and assumptions A.1, A.2 are also fulfilled. Then the
following weak convergence holds, as n→∞,

{Gn(f) : f ∈ F} {Z(f) : f ∈ F} as random elements of `∞(F ).

The limiting process {Z(f) : f ∈ F} is a zero mean Gaussian process with covariance
structure

EZ(f)Z(g) =

∫
E

ν(dx)

(∫∫
E×R+

f(x, y, s)g(x, y, s)Q(x, dy, ds) −

−
∫∫

E×R+

f(x, y, s)Q(x, dy, ds)

∫∫
E×R+

g(x, y, s)Q(x, dy, ds)

)
,
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and the sample paths of {Z(f) : f ∈ F} are bounded and uniformly continuous with

respect to the metric d
(2)
Q , i. e., belong to UB

(
F , d

(2)
Q

)
.

Consider now a process {Gn(s, f) : (s, f) ∈ [0, 1]×F} defined by{
Gn(s, f) =

1

n1/2
Sbnsc(f) : (s, f) ∈ [0, 1]×F

}
.

Suppose that F has uniformly integrable entropy with envelope function F fulfilling A.3
and the same conditions of Theorem 2.6, then by the same arguments of that used in
Th. 4 of [2], refer also to [22, Th. 2.1], one can show the following theorem.

Theorem 2.7. The following weak convergence holds

{Gn(s, f) : (s, f) ∈ [0, 1]×F} {Z(s, f) : (s, f) ∈ [0, 1]×F}

as random elements of `∞([0, 1]×F ). The limiting process {Z(s, f) : (s, f) ∈ [0, 1]×F}
is a centered Gaussian process with covariance structure

EZ(s, f)Z(t, g) = (s ∧ t)
∫
E

ν(dx)

(∫∫
E×R+

f(x, y, s)g(x, y, s)Q(x, dy, ds) −

−
∫∫

E×R+

f(x, y, s)Q(x, dy, ds)

∫∫
E×R+

g(x, y, s)Q(x, dy, ds)

)
,

and the sample paths of {Z(s, f) : (s, f) ∈ [0, 1]×F} are bounded and uniformly contin-

uous with respect to the metric | · |+ d
(2)
Q , i. e., belong to UB

(
[0, 1]×F , | · |+ d

(2)
Q

)
.

Notice that we have

E
(
Gn(s, f)Gn(t, f)

)
=
bnsc ∧ bntc

n
EZ(f)Z(g).

Then

EZ(s, f)Z(t, g) = (s ∧ t)EZ(f)Z(g).

By the multivariate CLT for stationary and ergodic martingale differences see, for exam-
ple, [15], the finite dimensional distributions of the process {Gn(s, f) : (s, f) ∈ [0, 1]×F}
converge to those of {Z(s, f) : (s, f) ∈ [0, 1]×F}. We conclude by applying Th. 2.12.1
of [33], that says : “A class of measurable functions is functionally Donsker if and only
if it is Donsker”.

2.4. Weighted bootstrap. In a variety of statistical problems, the bootstrap provides
a simple method for circumventing technical difficulties due to the intractable distribution
theory and has become a powerful tool for setting confidence intervals and critical values
of tests for composite hypotheses. Note that, in general, the bootstrap, according to
Efron’s original formulation (see [12]), presents some drawbacks. More specifically, some
observations may be used more than once while others are not sampled at all. To
overcome that problem, a more general formulation of the bootstrap has been introduced,
the weighted bootstrap, which has also been shown to be computationally more efficient
in several applications. For a survey of further results on weighted bootstrap the reader
is referred to [4, 29] and the references therein. In this section, we provide a multiplier
central limit theorem. A more general bootstrap will be considered elsewhere.

Let {zi}i≥1 be a sequence of random variables satisfying the following assumption.

B. The {zi}i≥1 are independent and identically distributed, on the probability space
(Ωz,Az, Pz) with mean zero and variance 1.
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Throughout the section, we assume that the bootstrap weights zi’s are independent from
the data {Gn(f) : n ∈ N, f ∈ F}. Define, for a measurable function f ∈ F ,

S∗k(f) :=

k∑
`=1

z`Y`(f), f ∈ F ,

For each n ≥ 1, consider a bootstrapped process {G∗n(f) : f ∈ F} defined by{
G∗n(f) =

1

n1/2
S∗n(f) : f ∈ F

}
.

This is the bootstrapped (or wild bootstrap of) empirical process of the semi-Markov
process. Notice that we have from conditions (A.3) and (B), that the second moments
of the martingale difference is finite, i. e.,∫∫∫∫

E×E×R+×R+

z2ν(dx)F2(x, y, s)Q(x, dy, ds)Pz(dz) =

=

∫∫∫
E×E×R+

ν(dx)F2(x, y, s)Q(x, dy, ds)

∫
R
z2Pz(dz) =

=

∫∫∫
E×E×R+

ν(dx)F2(x, y, s)Q(x, dy, ds) <∞.

It is worth noticing that the random variables zi given in the definition of {G∗n(f) =
= 1

n1/2S
∗
n(f) : f ∈ F} do not effect the geometry of F . Thus we can state our result with

envelopes |zi|F. The following result gives application of Theorem 2.6 to the bootstrap.

Corollary 2.8. Suppose that F has uniformly integrable entropy with envelope function
F fulfilling assumption A.3, and assumptions A.1, A.2, B are also fulfilled. Then the
following unconditional weak convergence holds

{G∗n(f) : f ∈ F} 
{
Z̃(f) : f ∈ F

}
as random elements of `∞(F ).

The limiting process
{
Z̃(f) : f ∈ F

}
is an independent copie of the process defined in

Theorem 2.6.

It is well known that Corollary 2.8 can be used easily, through routine bootstrap
sampling, to evaluate the limiting distributions.

3. Proof of Theorem 2.6

This section is devoted to the detailed proofs of our results. The previously displayed
notation continue to be used in the sequel. The proof of this theorem consists two
parts. The first one concerns the convergence of finite dimensional distributions and the
second one the tightness of the family of the initial processes. Finally, we derive the limit
covariance.

The finite dimensional distributions convergence, by the Cramér–Wold device and the
linearity of Gn(·), it suffices to show that, as n → ∞, Gn(f) → Z(f), for any f ∈ F .
This comes from the CLT for semi-Markov processes, see, e.g., [21]. We also use the fact
that, under our conditions, for fixed f ∈ F , as n→∞,

Gn(f)→ N
(
0, σ2(f)

)
,
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where

σ2(f) =

∫
E

ν(dx)

∫∫
E×R+

f2(x, y, s)Q(x, dy, ds) −

−

(∫∫
E×R+

f(x, y, s)Q(x, dy, ds)

)2
 .

For each f ∈ F , we have

1

n

n∑
`=1

E
(
Y`(f)2 | F`−1

)
=

1

n

n∑
`=1

E
((
f(J`−1, J`, X`)−Qf(J`−1)

)2 ∣∣∣ F`−1) =

=
1

n

n∑
`=1

∫∫
E×R+

f2(J`−1, y, s)Q(J`−1, dy, ds) −

−

(∫∫
E×R+

f(J`−1, y, s)Q(J`−1, dy, ds)

)2
 P-a.s.−−−→

P-a.s.−−−→
∫
E

ν(dx)

∫∫
E×R+

f2(x, y, s)Q(x, dy, ds) −

−

(∫∫
E×R+

f(x, y, s)Q(x, dy, ds)

)2
 <∞. (2)

Now, we show that the following convergence holds as n tends to infinity, in probability,

1

n

n∑
`=1

E
(
Y 2
` (f)1{Y`(f)>η

√
n}
∣∣ F`−1)→ 0.

Recall that, from the condition A.3, we have∫
E

ν(dx)

∫∫
E×R+

F2(x, y, s)Q(x, dy, ds)−

(∫∫
E×R+

F(x, y, s)Q(x, dy, ds)

)2
 <∞.

Using the inequality (a + b)2 ≤ 2(a2 + b2) in combination with a straightforward appli-
cation of Lebesgue dominated convergence theorem, it is easy to see that

1

n

n∑
`=1

E
(
Y 2
` (f)1{Y`(f)>η

√
n} | F`−1

)
≤ 1

n

n∑
`=1

E

2f2(J`−1, J`, X`) +

+ 2

(∫
E

ν(dx)

∫∫
E×R+

f2(x, y, s)Q(x, dy, ds)

)2
1{Y`(f)>η

√
n}

∣∣∣∣∣ F`−1
 ≤

≤ 1

n

n∑
`=1

E

2F2(J`−1, J`, X`) +

+ 2

(∫
E

ν(dx)

∫∫
E×R+

F(x, y, s)Q(x, dy, ds)

)2
1{F(J`−1,J`,X`)>η

√
n}

∣∣∣∣∣ F`−1
 =
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=
2

n

n∑
`=1

E
(
F2(J`−1, J`, X`)1{F(J`−1,J`,X`)>η

√
n}

∣∣∣ F`−1)+

+
2

n

n∑
`=1

E

(∫
E

ν(dx)

∫∫
E×R+

F(x, y, s)Q(x, dy, ds)

)2

1{F(J`−1,J`,X`)>η
√
n}

∣∣∣∣∣ F`−1
 =

=
2

n

n∑
`=1

E
(
F2(J`−1, J`, X`)1{F(J`−1,J`,X`)>η

√
n}

∣∣∣ F`−1)+

+

(∫
E

ν(dx)

∫∫
E×R+

F(x, y, s)Q(x, dy, ds)

)2

×

×

{
2

n

n∑
`=1

E
(
1{F(J`−1,J`,X`)>η

√
n}

∣∣∣ F`−1)}→ 0.

This gives the desired assertion. Now, we prove that there exists a positive constant D
such that, as n→∞,

P∗
(

sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ D

)
→ 0. (3)

But this follows, as in [3], from the fact, as n→∞,

E∗ sup
f,g∈F

n∑
`=1

E
(
(Y`(f)− Y`(g))2 | F`−1

)
nd2Q(f, g)

→ 1.

Now, from Relations (1), (2), (3) and by virtue of the uniform central limit theorem for
martingale differences (see, e. g., [3, Th. 2]), we get the desired result. Finally, we give
here the calculus of limit covariance function, for f, g ∈ F

1

n

n∑
`=1

E (Y`(f)Y`(g) | F`−1) =

=
1

n

n∑
`=1

E
(
(f(J`−1, J`, X`)−Qf(J`−1)) (g(J`−1, J`, X`)−Qg(J`−1)) | F`−1

)
=

=
1

n

n∑
`=1

E
(
(f(J`−1, J`, X`)g(J`−1, J`, X`) | F`−1

)
−

− E
(
(f(J`−1, J`, X`)Qg(J`−1) | F`−1

)
− E

(
(g(J`−1, J`, X`)Qf(J`−1) | F`−1

)
+

+ E
(
Qf(J`−1)Qg(J`−1) | F`−1

)
=

=
1

n

n∑
`=1

(∫∫
E×R+

f(J`−1, y, s)g(J`−1, y, s)Q(J`−1, dy, ds) −

−
∫∫

E×R+

f(J`−1, y, s)Q(J`−1, dy, ds)

∫∫
E×R+

g(J`−1, y, s)Q(J`−1, dy, ds)

)
P-a.s.−−−→

P-a.s.−−−→
∫
E

ν(dx)

(∫∫
E×R+

f(x, y, s)g(x, y, s)Q(x, dy, ds) −

−
∫∫

E×R+

f(x, y, s)Q(x, dy, ds)

∫∫
E×R+

g(x, y, s)Q(x, dy, ds)

)
.

Hence the proof of Th. 2.6 is complete. �
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matiques Appliquées de Compiègne, Rue du Dr Schweitzer CS 60319 60205 COMPIEGNE Cedex
E-mail address: salim.bouzebda@utc.fr
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ÐIÂÍÎÌIÐÍÀ ÖÃÒ ÄËß ÅÌÏIÐÈ×ÍÎ� ÎÖIÍÊÈ
ÍÀÏIÂÌÀÐÊÎÂÑÜÊÎÃÎ ßÄÐÀ, IÍÄÅÊÑÎÂÀÍÎÃÎ ÔÓÊÖIßÌÈ,

ÇÀÄÀÍÎÃÎ ÍÀ ÇÀÃÀËÜÍÎÌÓ ÏÐÎÑÒÎÐI ÑÒÀÍIÂ

Ñ. ÁÓÇÅÁÄÀ, Í. ËIÌÍIÎÑ

Àíîòàöiÿ. Ó öié ñòàòòi ìè ðîçãëÿäà¹ìî ðiâíîìiðíó ÖÃÒ äëÿ åìïiðè÷íî¨ îöiíêè íàïiâìàðêîâñüêîãî

ïðîöåñó, iäåêñîâàíîãî ôóíêöiÿìè, çàäàíîãî íà çàãàëüíîìó ïðîñòîði ñòàíiâ, çà óìîâè ðiâíîìiðíî¨

iíòåãðîâíîñòi åíòðîïi¨. Äëÿ âñòàíîâëåííÿ ÖÃÒ îáðàíî ìåòîä, ùî áàçó¹òüñÿ íà ðîçãëÿäi ïîñëiäîâ-

íîñòåé ìàðòèíãàëüíèõ ðiçíèöü.

ÐÀÂÍÎÌÅÐÍÀß ÖÏÒ ÄËß ÝÌÏÈÐÈ×ÅÑÊÎÉ ÎÖÅÍÊÈ
ÏÎËÓÌÀÐÊÎÂÑÊÎÃÎ ßÄÐÀ, ÈÍÄÅÊÑÈÐÎÂÀÍÍÎÃÎ ÔÓÍÊÖÈßÌÈ,

ÇÀÄÀÍÍÎÃÎ ÍÀ ÎÁÙÅÌ ÏÐÎÑÒÐÀÍÑÒÂÅ ÑÎÑÒÎßÍÈÉ

Ñ. ÁÓÇÅÁÄÀ, Í. ËÈÌÍÈÎÑ

Àííîòàöèÿ. Â äàííîé ñòàòüå ìû ðàññìàòðèâàåì ðàâíîìåðíóþ ÖÏÒ äëÿ ýìïèðè÷åñêîé îöåíêè ïî-

ëóìàðêîâñêîãî ïðîöåññà, èíäåêñèðîâàííîãî ôóíêöèÿìè, çàäàííîãî íà îáùåì ïðîñòðàíñòâå ñîñòî-

ÿíèé, ïðè óñëîâèè ðàâíîìåðíîé èíòåãðèðóåìîñòè ýíòðîïèè. Äëÿ ïîëó÷åíèÿ ÖÏÒ âûáðàí ìåòîä,

êîòîðûé îñíîâàí íà ðàññìîòðåíèè ïîñëåäîâàòåëüíîñòåé ìàðòèíãàëüíûõ ðàçíîñòåé.


