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Abstract. In this work it is described how a partitioning of a graph into components can be used

to calculate PageRank in a large network and how such a partitioning can be used to re-calculate

PageRank as the network changes. Although considered problem is that of calculating PageRank, it is
worth to note that the same partitioning method could be used when working with Markov chains in

general or solving linear systems as long as the method used for solving a single component is chosen

appropriately. An algorithm for calculating PageRank using a modified partitioning of the graph into
strongly connected components is described. Moreover, the paper focuses also on the calculation of

PageRank in a changing graph from two different perspectives, by considering specific types of changes
in the graph and calculating the difference in rank before and after certain types of edge additions or

removals between components. Moreover, some common specific types of graphs for which it is possible

to find analytic expressions for PageRank are considered, and in particular the complete bipartite graph
and how PageRank can be calculated for such a graph. Finally, several open directions and problems

are described.
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1. Introduction

PageRank is a modern information technology age application of the theory of Markov
chains or more generally Perron-Frobenius theory for non-negative matrices in the novel
context of internet generated information networks and linked information resources and
similar linked structures in databases and other big data [2]. PageRank is a method for
ranking nodes in network structures such as internet pages of the Internet in order of
“importance” given the link structure of the complete system. The PageRank method
was invented by the founders of the Google search engine in order to improve quality
of ranking of search results using ranking of web pages on the internet using the links
structure (graph) of the network to measure the relative importance or relevance of the
nodes or parts of the webpages network [8].

This application and technology turned out to be very stimulating as a resource of new
interesting directions and open problems in mathematics and development of algorithms
in networks analysis in general. It is important that the method is extremely fast since
there is a huge number of Internet pages. It is also important that the algorithm helps
to return the most relevant search results first since very few people will look through
more than a couple of pages, when doing a search using a search engine [2, 8].

While PageRank as such was developed as a method constructed for ranking webpages
on the internat with the goal of improving performance of search engines using network
structure, PageRank like methods and ideas have been also considered in other areas,
such as ranking in P2P networks, citation ranking, ranking and classification of big data,
communication networks, social networks, biologic and medical data networks, natural
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language processing, economics and resource optimization and distribution networks,
logistic networks, traffic planing networks and many other applications.

Computing values of PageRank for nodes in a networks is a complicated mathematical
and numerical problem amounting to computing an eigenvector with largest eigenvalue
for huge stochastic, substochastic or more general non-negative matrices, or when put in
the context of Markov chains, to computation of the stationary distribution vector. The
arising problems are complicated due to both the specifics of the structure and huge size
of networks.

Usually, a simple iterative algorithm such as the Power method is used for very large
systems. The convergence speed of the Power method and it’s dependence on certain
parameters have been studied to some extent both theoretically and experimentally. For
example the Power method on a huge graph structure such as that created by the Web
was noticed experimentally to converge with a convergence rate of c, where c is one of
the parameters used in the definition [19], and the problem is well conditioned unless c
is very close to 1 [21].

Since the number of pages on the Web or in other big data networks is huge, further
work has been done in trying to improve the computation time of PageRank even further.
One example is by aggregating webpages that are “close” and are expected to have a
similar PageRank as in [20]. Another method, used to speed up calculations, is found
in [22] where they do not compute the PageRank of pages that have already converged
in every iteration. Other methods to speed up calculations include removing “dangling
nodes” before computing PageRank and then calculate them at the end or explore other
methods such as using a power series formulation of PageRank [2]. There are also works
done on the large scale using PageRank and other measures in order to learn more about
the Web, for example looking at the distribution of PageRank both theoretically and
experimentally such as in [9].

While the theory behind PageRank is well known in the framework of Perron-Frobenius
theory for non-negative matrices and the theory of Markov chains [6, 7, 17, 24], how
PageRank is affected from changes in the network system graph structure or in weights
or other parameters in the network graph is not as well understood and clearly is an
important direction in connection to real networks. In context of Markov chains, it
is connected to algorithms for computation of stationary distribution vector and other
spectral properties when Markov chain state space and transition matrices are growing
or decreasing in size in special ways or when part of the transition matrix are modified
or neglected induced from various kinds of changes or re-prioritizing of nodes, parts or
links in networks (graphs). This article can be viewed as further contribution towards
this new and interesting direction.

PageRank was originally defined by S. Brin and L. Page as the eigenvector to the
dominant eigenvalue of a modified version of the adjacency matrix of a graph [8].

Definition 1.1. PageRank ~R for the vertices in a graph G := (V ;E) is defined as the
(right) eigenvector with eigenvalue one to the matrix:

M = c
(
A + ~g ~w>

)>
+ (1− c)~w~e>, (1)

where A is the adjacency matrix weighted such that the sum over every non-zero row
is equal to one, ~g is a vector with zeros for vertices with outgoing edges and 1 for all
vertices with no outgoing edges, ~w is a non-negative vector with norm ‖~w‖1 = 1, ~e is a
one-vector and 0 < c < 1 is a scalar. All vectors are of length n and all matrices of size
n× n.

The original normalized version of PageRank has the disadvantage in that it is harder
to compare PageRank between graphs or components, because of that we use a non-
normalized version of PageRank as described in for example [11].
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Definition 1.2. Consider a random walk on a graph described by A, which is the
adjacency matrix weighted such that the sum over every non-zero row is equal to one.
In each step with probability 0 < c < 1, move to a new vertex from the current vertex
by traversing a random outgoing edge from the current vertex with probability equal to
the weights on corresponding edge weight. With probability 1−c or if the current vertex

have no outgoing edges we stop the random walk. Then PageRank ~R for a single vertex
vj can be written as

Rj =

wj +
∑

vi∈V,vi 6=vj

wiPij

( ∞∑
k=0

(Pjj)
k

)
, (2)

where Pij is the probability to hit vertex vj in a random walk starting in vertex vi.
This can be seen as the expected number of visits to vj if we do multiple random walks,
starting in each vertex once and weighting each of these random walks by ~w.

Note that although this definition makes no special treatment of dangling vertices the
normalized and non-normalized definitions of PageRank are still proportional to each
other and hence give the same rankings [11].

The rest of this paper is organized as follows. In Section 2 we describe an algorithm
using a modified partitioning of the graph into strongly connected components to calcu-
late PageRank. We start by describing the graph partitioning and how such a partitioning
can be used to calculate PageRank, later in Subsection 2.1 to 2.4 we describe the algo-
rithm and the different parts in more detail. After a short theoretical look at the time
complexity of the algorithm in Subsection 2.5 we take a look at some results using the
method in Subsection 3.1.

The second half of the paper is focused on the calculation of PageRank in a changing
graph from two different perspectives, first we take a look at specific types of changes in
the graph in Section 4 where we calculate the difference in rank before and after certain
types of edge additions or removals between components. In Section 5 we instead looks at
common specific types of graphs, for which it is possible to find analytic expressions for
PageRank, in particular we will look at the complete bipartite graph and how PageRank
can be calculated for such a graph.

Finally, we give some conclusions and discuss some open problems yet to be solved
related to the subject.

2. Algorithm

In this section we will describe a way to calculate PageRank by first partitioning the
graph into components and calculate PageRank for each component individually. We
will start by defining what we mean by a connected acyclic component.

Definition 2.1. A connected acyclic component (CAC) of a directed graph G is a
subgraph S of G such that no vertex in S is part of any non-loop cycle in G and the
underlying graph is connected. Additionally any edge in G that exists between any two
vertices in S is also a part of S. A vertex in the CAC with no edge to any other edge in
the CAC we call a leaf of the CAC.

CACs can be seen as a connected collection of 1-vertex SCCs forming a tree. While
CACs keep the property that all internal edges between vertices in the component are
preserved from those in the original graph, it is not maximal in the sense that no more
vertices could be added to the component as is the case for SCCs. The reason for this
is that we want to be able to create a graph partitioning into components in which the
underlying graph is a directed acyclic graph (DAG) in the same way as for the ordinary
partition into SCCs.
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Definition 2.2. Consider a graph G with partition P into SCCs and CACs such that
each vertex is part of exactly one component and the underlying graph created by replac-
ing every component with a single vertex. If there is an edge between any two vertices
between a pair of components then there is an edge in the same direction between the
two vertices representing those two components as well. Consider the case, where the
underlying graph is a DAG (such as for the commonly known partitioning of a graph
into SCCs).

• The level LC of component C is equal to the length of the longest path in the
underlying DAG starting in C.

• The level Lvi of some vertex vi is defined as the level of the component for which
vi belongs (Lvi ≡ LC , if vi ∈ C).

We note that a SCC made up of only a single vertex is also a CAC, in our work it
will be easier to consider these components CACs rather than SCCs. We also note that
while a single vertex can only be part of a single SCC, it could be part of multiple CACs
of different size. There is however a unique graph partitioning into SCCs and CACs as
seen below.

Theorem 2.1. Consider a directed graph G with a partition into SCCs. Let the under-
lying graph be the DAG constructed by replacing every component with a single vertex.
If there is an edge between any two vertices between a pair of components then there is
an edge in the same direction between corresponding vertices in the underlying DAG. To
each vertex in the underlying DAG we attach a level equal to the longest existing path
from this vertex to any other vertex in the underlying graph. Next we start to merge
SCCs consisting of a single vertex into CACs under the following conditions.

• We start merging from the lowest level (vertices in the DAG with no edge to
any other vertex in the DAG) and only start merging on the next level when we
cannot merge any more components on the current level.

• All merges are done by merging a single ‘head’ 1-vertex CAC of level L containing
vertex v with all CACs of level L− 1 to which there is an edge from v. Unless v
have an edge to at least one SCC (of more than 1 vertex) of level L− 1 in which
case no merge is made. If a merge takes place, then the level of the new merged
CAC is L− 1.

Then the following holds:

(1) This gives a unique partitioning of the graph into SCCs and CACs and does not
depend on the order in which we apply merges of ‘head’ components on the same
level.

(2) This partition of SCCs and CACs can also be seen as a DAG where we attach
a level to each vertex equal to the longest existing path from this vertex to any
other vertex in the DAG.

Remark. Note that after a merge some vertices with a level higher than the one, where
the merge was made might get a lower level compared to before.

Proof. That a directed graph can be partitioned into SCCs is a well-known and easy to
show result from graph theory. Applying a level to the vertices in the DAG is nothing
else than a topological ordering of the vertices in the graph, something also well-known,
hence we start at the merging. Obviously all 1-vertex SCCs are also 1-vertex CACs since
any vertex that is part of any (non-loop) cycle must be part of a SCC of more than one
vertex.

Since the head CAC of a merge is always connected with each other CAC that is part
of a merge, the subgraph representing the component is connected as well. It is also still
obviously acyclic since no vertex of any of the CACs is part of any cycle in G from the
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definition of a CAC. Adding all edges between the head and all other merged CACs also
ensures that there is no missing edge between any two vertices of the new CAC. This
holds since there can be no edges between any two components on the same level. Hence
we can conclude that merging CACs creates a new CAC.

Next we prove statement (1) that the given partitioning is unique and does not depend
on the order of merges. CACs are created using a bottom-up approach and it is clear
that the level of a CAC never change after its first merge. This means that the level of
a CAC is uniquely defined by the level of any leaf in the CAC. All the leaves of a CAC
are those 1-vertex CACs which could not be the head of any merge either because they
have either no outgoing edges orthey have at least one outgoing edge to a SCC (of more
than 1 vertex) of the next lower level.

Assume we have done all merges with head CACs of level L. Consider a 1-vertex
CAC with vertex v and level L+ 1 and edges to one or more CACs but no SCC of more
than one vertex of level L (or higher). From the previous argument we get that the level
of any CAC linked to by v will not change from any future merges. This means that
eventually v will be part of the same CAC as all vertices part of any CAC with level L to
which there is an edge from v regardless of which order merges are made on level L+ 1.

Repeating this argument for all 1-vertex CACs of level L+1 we get that for each such
vertex v the neighboring vertices part of a CAC with a lower level, for which v should be
part of the same CAC is uniquely determined after all the merges on level L. Repeating
this for all levels gives us a unique partitioning. This proves statement (1).

Last we show statement (2) by showing that merging of components does not create
any cycle in the underlying DAG created by the components.

Consider a merge of head CAC with vertex v, level L and an edge to each of n CACs
C1, C2, . . . , Cn with level L− 1. Since all CACs C1, C2, . . . , Cn have the same level, the
resulting CAC after merge can only have edges to components of level at most L − 2
since we merge it with all CACs of level L − 1 to which there is an edge from v, but
do not merge if there is an edge from v to any SCC of level L − 1 and there can be no
edges between any components of the same level from the initial SCC partitioning. Since
initially there can be no edges from any component to another of the same or larger level
and we do not create any such edges when doing a merge, we do not create any cycle in
the underlying DAG.

Since we only merge CACs, and merges does not create any cycles in the DAG, we
have proved that the new partitioning can also be represented by a DAG where each
vertex corresponds to one SCC or CAC. This proves statement (2). �

Corollary 2.1. If a directed graph G has a SCC partitioning with maximum level LSCC

and a SCC/CAC partitioning with maximum level LSCC/CAC , then

LSCC/CAC ≤ LSCC .

Proof. Every merge lowers the level of the ‘head’ vertex and possibly one or more com-
ponents of a higher level, this makes it easy to find a graph such that LSCC/CAC < LSCC

such as the 2-vertex graph with a single edge between them in one direction. Similarly
we can easily find a graph, for which equality holds (such as the single vertex graph).
However, since doing a merge can never result in any vertex getting a higher level,
LSCC/CAC ≤ LSCC . �

For algorithms (such as PageRank), which can be done on the components of one level
at a time in parallel the SCC/CAC partitioning have the advantage over the usual SCC
partitioning in that it generally creates a lower number of levels and thus a larger amount
of vertices (but not necessary components) on the same level in the new partitioning on
average. In effect reducing the chance of bottlenecks where we have a level with only a
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single or a few small components. The only components that get larger are the CACs,
which are acyclic apart from any loops and thus often have specialized faster methods
(for example by exploiting the triangular adjacency matrix), thus increasing the size of
these components is often not as much of an issue and might in fact often be beneficial
instead by reducing overhead.

An example of a directed acyclic graph and its SCC/CAC partitioning can be seen in
Fig. 1.

3

12 1

1 0 0 0

Level 2

Level 1

Level 0

Level 0

Fig. 1. Example of a graph and corresponding components from
SCC/CAC partitioning of the graph (2 SCCs, 1 CAC and 1 1-vertex
component). Vertex labels denote the level of each vertex if we had
only partitioned the graph into SCCs (for the SCC/CAC partitioning
the vertex-levels is the same as the level of corresponding component
in the figure)

From this figure it is clear why we cannot merge when the ‘head’ have an edge to
any SCC of the next lower level. If the top (level 2) component merged with the left
(level 0) component then this would have created a cycle in the underlying graph. It is
also possible to see how merging some components can result in the partitioning getting a
lower max-level, the SCC/CAC partitioning have only 3 levels while the SCC partitioning
would need 4 levels.

In [10] we showed how to calculate PageRank for the five different types of vertices
defined below.

Definition 2.3. For the vertices of a simple directed graph we can define 5 distinct
groups G1, G2, . . . , G5.

(1) G1: Vertices with no outgoing or incoming edges.
(2) G2: Vertices with no outgoing edges and at least one incoming edge (also called

dangling vertices).
(3) G3: Vertices with at least one outgoing edge, but no incoming edges (also called

root vertices).
(4) G4: Vertices with at least one outgoing and incoming edge, but which is not part

of any (non-loop) directed cycle (no path from the vertex back to itself apart
from the possibility of a loop).

(5) G5: Vertices that is part of at least one non-loop directed cycle.

Qing Yu et al gave a similar but slightly different definition of 5 (non distinct) groups
for vertices, namely dangling and root vertices (G2 and G3), vertices that can be made
into dangling or root vertices by recursively removing dangling or root vertices (part of
G4) and remaining vertices (part of G4 and G5) [32]. Given PageRank of a vertex not
part of a cycle (group 1-4), then the PageRank of other vertices can be calculated by
removing the vertex and modifying the initial weight of other vertices.
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Theorem 2.2. Given PageRank ~R
(3)
g of vertex vg where vg is not part of any non-loop

cycle, the PageRank of another vertex vi, from which there exist no path to vg can be
expressed as

Ri =

Wi +Rgcagi +
∑
vj∈V

vj 6=vi,vg

(Wj +Rgcagj)P (vj → vi)


( ∞∑

k=0

(P (vi → vi))
k

)
, (3)

where cagi is the one-step probability to go from vg to vi.

The proof with minor modifications is similar to the one found in [10], where it is
formulated for vertices in G3 on graphs with no loops.

Proof. Consider Rg from Definition. 1.2. Since we know that there is no path from vi
back to vg (or vg would be part of a non-loop cycle) we know that the right hand side
will be identical for all other vertices. We rewrite the influence of vg using

RgP (vg → vi) = Rgcagi +
∑
vj∈V

vj 6=vi,vg

RgcagjP (vj → vi). (4)

We can now rewrite the left sum in Definition. 1.2:∑
vi∈V,vi 6=vj

WiP (vi → vj) = Rgcagi +
∑
vj∈V

vj 6=vi,vg

(Wj +Rgcagj)P (vj → vi) (5)

which when substituted into (2) proves the theorem. �

It is also easy to show that any SCC can also be divided into one of the first four
groups if we consider each SCC as a vertex in the underlying DAG (a SCC can never
be part of a cycle). The important part of this is that it is also possible to calculate
PageRank one component at a time rather than for the whole graph at once.

Corollary 2.2. Let ~RL+ be PageRank of all vertices belonging to components of level L
or greater. Then PageRank of a vertex vi belonging to a component of level L− 1 can be
computed by

Ri =

( ∞∑
k=0

(P (vi → vi))
k

)
×

×

(Wi + c
(
~RL+

)>
~aL+,i

)
+
∑
vj∈V
vj 6=vi

(
Wj + c

(
~RL+

)>
~aL+,j

)
P (vj → vi)

 ,

where ~aL+,i is a vector containing all 1-step probabilities from vertices of level L or greater
to vertex vi.

Proof. The proof follows immediately from Theorem 2.2 by replacing the rank of a single
vertex with the sum of rank of all vertices belonging to components of a higher level.
Those in lower level components or other components on the same level do not affect the
rank since they automatically do not have any path to vi. �

Using Corollary 2.2 it is clear that after calculating PageRank of all vertices belonging
to components of level L and above we can calculate those of level L−1 by first changing
their initial weight and then consider the component by itself. In matrix notation we can
update the weight vector for all components of lower level by calculating

~Wnew
L−1 = ~W old

L−1 + cAL+,L−1
~RL+ , (6)
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where AL+,L−1 corresponds to the submatrix of A with all rows corresponding to vertices
of level L or greater and all columns of level L− 1. This is essentially the same method
which is used in [26], but here we have formulated it for any component instead of for
dangling vertices (vertices with no outgoing edges).

2.1. Method. The complete PageRank algorithm can be described in three main steps.

(1) Component finding: Finding the SCC/CAC partitioning of the graph.
(2) Intermediate step: Create relevant component matrices and weight vectors.
(3) PageRank step: Calculate PageRank one level at a time and components on the

same level one at a time or in parallel.

In order to be able calculate PageRank for each component we obviously first need
to find the components themselves, this is done in the component finding part of the
algorithm where we find a SCC/CAC partitioning of the graph as well as the level of each
component. By using the CAC/SCC partitioning rather than the usual SCC partitioning
we reduce the risk of having very few vertices on the same level, the aim of this is to
be able to avoid some of the disadvantages with some other similar methods such as
the one in [25], where a large number of small levels (small diagonal blocks) increases
the overhead cost [32]. This step is similar to the initial matrix reordering made by
[4]. However instead of only finding a partial ordering, we have modified the depth first
search slightly in order to identify components that can be calculated in parallel as well
as group 1-vertex components on the same level together. Another advantage is that
different methods can be used for different types of components as we will see later. The
component finding step is described in Subsection 2.2.

In the intermediate step the data (edge list, vertex weights) need to be managed such
that the individual matrices for every component can quickly and easily be extracted.
This section of the code can vary a lot between implementations and is one of the main
contributors of overhead in the algorithm. The SCC/CAC partitioning can easily be
transformed into a permutation matrix and used to permute the graph matrix and then
solve the resulting linear system, this can be seen as an alternative to the recursive
reordering algorithm described in [25]. This step is described in Subsection 2.3.

After the intermediate step we are ready to start calculating PageRank of the vertices.
This is done one level at a time starting with the highest and modifying vertex weights
between levels using (6). Components on the same level can use different methods to cal-
culate PageRank and can either be calculated sequentially or in parallel. The PageRank
step is described in Subsection 2.4.

2.2. Component finding. The component finding part of the algorithm consists of
finding a SCC/CAC partitioning of the graph as well as the corresponding levels of the
components. Since any loops in the graph have no effect on which SCC or CAC a vertex is
part of, these will be ignored in the component finding step. Finding the components and
their level can be done through a modified version of Tarjan’s well-known SCC finding
algorithm using a depth first search [31]. For every vertex v we assign six values:

• v.index containing the order in which it was discovered in the depth first search;
• v.lowlink for a SCC representing the lowest index of any vertex we can reach from
v, or for a CAC representing the ‘head’ vertex of corresponding component;
• v.comp representing the component the vertex is part of, assigned at the end of the

component finding step;
• v.depth used to implement efficient merges of components. It can be removed if the

extra memory is needed, but it could result in slowdown because of merges for some
graphs;
• v.type indicates if v is part of a SCC or a CAC (1-vertex SCCs are considered CACs);
• v.level indicating the level of the component to which v belongs.
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Of these the first three can be seen in Tarjan’s algorithm as well, and play virtually the
same role here (although in Tarjan’s the comp value can be assigned as components are
created). During the depth first search each vertex v goes through three steps in order.

(1) Discover: Initialize values for the vertex.
(2) Explore: Visit all neighbors of v, finishing the depth first search (DFS) of any

unvisited neighbors before going to the next. After a vertex is visited we update
v.lowlink and v.level.

(3) Finish: After all neighbors are visited we create a new component if appropriate.
If a CAC is created we also check for and do any merge with v as head.

During the discover step values are initialized after which the vertex is put on the stack.
The index and lowlink values are initialized using a counter starting at 1 and increasing
by one for every new vertex we discover while level and depth values are initialized to
1 (type and level does not need to be initialized). The explore step as well works much
like Tarjan’s depth first search except that it also updates the level of the vertex we are
exploring.

• Loop through all neighbors doing the Discover, Explore and Finish step before
going to the next.

• For any neighbor w that is part of a formed component (i. e. not part of the same
SCC as v) we update v.level to the max of the old level and the level of any such
neighbors plus one.

• For neighbors that is not part of a formed SCC (i. e. part of same component)
we we update v.level and v.lowlink to the max of the old level and lowlink and
the level or lowlink of any such neighbors respectively.

The last step in the DFS is where we evaluate if a new component should be created
and handle any merges needed with this vertex as ‘head’ component. The initial com-
ponent is created in the same way as in Tarjan’s algorithm: if v.lowlink = v.index we
create a SCC by popping vertices from the stack until we pop v from the stack.

If the vertex belongs to a component of size one, then we also check if any merges
into a CAC should take place by checking if the type of all neighbors of one level lower
belong to a CAC (or is a single vertex). In case this is true we merge the vertex and all
such CACs into a single CAC component. The components are stored in a merge-find
data structure through the .lowlink and .depth attribute. A merge-find data structure
allows us to do the two operations we need: merging two components and finding a
‘head’ vertex representing a component (used in merge, and when finally assigning the
.comp attribute). This way both operations can be done in constant amortized time
(O(α(|V |))) as well as requiring very little memory.

In Tarjan’s algorithm you don’t need the .depth values since the .comp value can be
assigned while creating a component. The reason we do not do it here is because it
cannot be updated efficiently when doing a merge of two CACs.

Looking at the computational complexity of the component finding step we see that
discover, explore and finish are all done once for every vertex, of these discover is obviously
done in constant time. During explore we will eventually have to go through all edges
exactly once but all operations take only constant time. Last finish is called once for every
vertex doing O(α(|V |)) work for the SCC creation part (amortized constant because we
do merges rather than assigning component values directly). When checking for merges of
CAC we will at most visit every edge once (over all vertices) doing O(α(|V |)) work. Thus
in total we end up with O(|V |+|E|+|V |α(|V |)+|E|α(|V |)) ≈ O(|E|α(|V |)), if |E| > |V |,
in other words linear amortized time in the number of edges.
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Before returning the results |V | find operations also need to be done in order to assign
the .comp value for each vertex, since the find operation in a merge-find data structure
takes O(α(|V |)) time this takes O(|V |α(|V |)) time in total.

Hence the complete component finding algorithm takes O(|E|α(n)) time which is
comparable to Tarjan’s which can be implemented in O(|E|) time. We note that if the
.depth value is ignored everything works but the merges are no longer guaranteed to be
made in constant amortized time. If memory is a concern or if the size of the CACs are
assumed to be small it might be worthwile to work without the .depth value even though
merges could be slow in the worst case.

2.3. Intermediate step. This part is responsible for organizing the data in such a
way that we can quickly construct corresponding matrices and continue with PageRank
calculations of components effectively.

We sorted components first in order of level and second in the size of the component
(both descending order) so that we can work on one component at a time starting with
the largest on every level. Similarly we grouped edges belonging to the same component
together and those between components together depending on the level of the source
vertex.

This part of the code is highly dependent on the choice of programming language
chosen hence we will not cover it in detail here.

It is worth to note that in our implementation this section of the code contains much
of the extra overhead needed for our method (more than the previous component finding
step itself).

2.4. PageRank step. Now that all preliminary work is done we can start the actual
PageRank calculation where we calculate PageRank for all vertices of one level at a time
(starting by the largest). The PageRank step can be described by the following steps.

(1) Initiate L to the maximum level among all components.
(2) For each component of level L: pick a suitable method and calculate PageRank.
(3) Update weight vector V for all remaining components (of lower level).
(4) If L > 0, decrease L by one and go to step 2 otherwise we are finished.

Depending on the type and size of the component PageRank we calculate PageRank in
one of four different ways:

• Component is made up of a collection of single vertex components: PageRank
of any such collection of 1-vertex components is the initial weight wi for vertices
with no loop and wi/(1− caii) for any vertex with a loop, where aii is the weight
on the loop.
• CAC of more than one vertex: Calculate PageRank using a slightly modified

breadth first search (BFS).
• SCC but small (for example less than 100 vertices): Calculate PageRank by

directly solving the linear system
(
I− cA>

)
~R = ~W (using LU factorization).

• SCC and large: Use iterative method, in our case using a power series.

Out of these the first one is done in O(|V |) time (copy the weight vector) or O(1) if no
separate vector is used for the resulting PageRank and we assume there is no loops, the
second and fourth is done in O(|E|), however the coefficient in front of the first is much
lower since it is guaranteed to only visit every edge once, while the iterative method
needs to visit every edge in every iteration (number of which depend on error tolerance
and method chosen). The third is done in O(|V |3) using LU factorization, however since
|V | is small this is still faster than the iterative method unless the error tolerance chosen
is large.
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We also note that only the fourth method actually depend on the error tolerance at
all, every other method can be done in the same time regardless of error tolerance (down
to machine precision).

After we have calculated PageRank for all components on the current level we need
to adjust the weight of all vertices in lower level components as shown in (6). This can
be done using a single matrix-vector multiplication using the edges between the two sets
of components

~W new
(L−1)− = ~W old

(L−1)− + M>
L+,(L−1)−

~RL.

This is the same kind of correction as is done in for example [2] and for the non-normalized
PageRank used here in [10].

In the weight adjustment step every edge is needed once if it is an edge between
components and never if it is an edge within a component. Hence if we look over the whole
algorithm: every edge is visited at most twice in the DFS, then every edge that is not
part of a SCC is visited exactly once more (either as part of a CAC or as an edge between
components) while those that are part of a SCC are typically visited a significantly larger
number of times depending on algorithm, error tolerance and convergence criterion used.
Of course there is also some extra overhead that would need to be taken into consideration
for a more in-depth analysis.

We note that calculating PageRank for all components on a single level can be com-
puted in parallel (hence why we sort them by their size starting by the largest). The
weight adjustment can either be done in parallel for each component or as we have done
here once for all components of the same level. In case there is a single very large com-
ponent on a level it might be more appropriate to do it one component at a time instead
to reduce the time waiting for the large component to finish.

2.5. Error estimation. Looking at the error we have two different kinds of errors to
consider, first errors from the iterative method used to calculate PageRank of large SCCs
(depending on error tolerance) and second any errors because of errors in data (M or
~W ). We will mainly concern ourselves with the first type which is likely to dominate
unless the error tolerance is very small.

We start by looking at a single isolated component, if this component is a CAC or
a small SCC we calculate PageRank analytically and errors can be assumed to be small as
long as an appropriate method is used to solve the linear system for the small SCCs using
for example LU-decomposition. For large SCCs we stop iterations after the maximum
change of rank for any vertex between any two iterations is less than the error tolerance
(tol). Since the rank is monotonically increasing we can be sure that the true rank is
always a little higher in reality than what is actually calculated.

The true rank can be described by ~R =
∑∞

k=0 Mk ~w, where we let ~pk = Mk ~w. Since
every row sum of M is less than or equal to c, one has c|~pk−1| ≥ |~pk|. This means that the
maximum change in rank over all vertices in the graph after K iterations is bounded by

∞∑
k=1

ck|~pK | =
c|~pK |
1− c

≈ 5.66|~pk|, c = 0.85.

This does not change if there are any edges to or from other components in the graph
although the difference will be spread over a larger amount of vertices if there are edges
from the component. There might also be additional additive error from components with
edges to the single component we are considering. Over all vertices and all components
we can estimate bounds for the total error εtot over all vertices as well as the average
error εavg given some error tolerance tol:
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εtot < |SCCl| · tol
c

1− c
,

εavg <
|SCCl|
|V |

· tol
c

(1− c)
≤ tol

c

(1− c)
,

where |SCCl| is the number of vertices part of a ’large’ SCC (for which we need to use
an iterative method) and |V | is the total number of vertices in the graph. It should
be noted that this estimate is likely to be many times larger than in reality unless all
the vertices have approximately the same rank. Given that PageRank for many real
systems approximately follows a power distribution [5], most vertices will have orders
of magnitude smaller change in rank when finally those with a very high rank have a
change smaller than the error tolerance. Additionally if the graph contains some dangling
vertices (vertices with no outgoing edges), then these will further reduce the error.

3. Experiments

Our Implementation of the algorithm is done in a mixture of c and c++ for the graph
search algorithms (component finding and CAC-PageRank algorithm) and Matlab for
the ordinary PageRank algorithm for SCCs and weight adjustment as well as the main
code gluing the different parts together. The reason to use c/c++ for some parts is that
while Matlab is rather fast at doing elementary matrix operations (PageRank of SCCs
and weight adjustment), it is very slow, when you attempt to do for example DFS or
BFS on a graph.

• Component finding: Implemented in c++ as a variation of the depth first search
in the boost library. The method is implemented iteratively rather than recur-
sively (hence it can handle large graphs which could otherwise give a very large
recursion depth).

• CAC-PageRank algorithm: Implemented in c using a modified BFS.
• Power series PageRank algorithm: Implemented in Matlab. Used for SCCs as

well as on the whole graph for comparison.
• Main program: Implemented in Matlab, with c/c++ parts used through mex

files.

3.1. Experiments. For evaluation of the method we have used a graph released by
Google as part of a contest in 2002 [1] part of the collection of datasets maintained by
the SNAP group at Stanford University [27]. This graph contains 916428 vertices of
which 399605 are part of a CAC and 5105039 edges, there are 302768 1-vertex CACs
out of 321098 CACs in total as well as 12874 SCCs. Maximum component size is 434818
vertices (SCC). This graph has both the scale-free and small-world properties making it
a good example of the type of graph we would be interested to calculate PageRank on
in real applications.

All experiments are performed on a computer with a quad core 2.7Ghz (core)-3.5Ghz
(turbo) processor (Intel(R) Core(TM) i7-4800MQ) using Matlab R2014a with four
threads on any of the parts computed in parallel. Three different methods were used:

(1) Calculate PageRank as a single large component using a power series.
(2) Using the method described in 2.1 with components on the same level calculated

sequentially.
(3) Using the method described in 2.1 with components on the same level calculated

in parallel.

We note that the intermediate step between method 2 and 3 differs. Because of
limitations in how the parallelization can be implemented we had to separate edges of
the same component into their own cell-array for the parallel version, this accounts for
the main difference in overhead between method 2 and 3. The intermediate step is not
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parallelized (in either version), for the parallel method this adds a significant amount of
extra overhead.

After doing the SCC/CAC partitioning of the graph and sorting all components ac-
cording to their level and component size (both descending order) we can visualize the
non-zero values of this new reordered adjacency matrix. The density of non-zeros before
and after reordering for the Web graph can be seen in Fig. 2. Note that the diagonal lines

Fig. 2. Non-zero values of adjacency matrix for the Web graph before
and after sorting vertices according to level and component

are not single vertex components but rather a large amount of small components on the
same level (hence they can be computed in parallel). Any 1-vertex component are not
colored since they have no internal edges, two large section of 1-vertex components are
right before the middle large component and in the bottom right corner of the matrix.

After finding the SCC/CAC partitioning large sections of zeros can clearly be seen,
something which is not present in the original matrix. The single very large component
in the graph is seen in the middle of the matrix, with a section of small components both
above and below it.

Langville and Meyer does a similar reordering by recursively reordering the vertices
by putting any dangling vertices last and not considering edges to those already put last
once for any further reordering of remaining vertices [25]. This effectively creates one or
more CACs along with one large component. The advantage of our approach compared
to this is that we can also find components above the single large component rather than
combining them into a single even larger component as well as finding sets of components
which can be computed in parallel.

The total number of levels in the Web graph was 28, with the majority being located
right at the very top or right after the large central component. Because of their small
size it might be desirable to merge some of these components if this proves to happen con-
sistently. If no merging of 1-vertex CACs was done (using the ordinary SCC partitioning)
the number of levels was increased to 34 levels instead.

Since PageRank of different SCCs converge in varying amounts of iterations it is also of
interest to see how the number of iterations for different components varies, as well as how
it compares to the number of iterations needed by the basic algorithm where we calculate
PageRank as if the graph was a single component. Number of iterations for all SCCs of
more than 2 vertices of the Web graph with c = 0.85 and tol = 10−9 can be seen in Fig. 3.
In Fig. 3 we can see a couple of things, first the number of iterations over any component
is less than the number of iterations that would be needed if we calculated PageRank of
the graph as if it was a single huge component. The average number of iterations per
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Fig. 3. Number of iterations needed per SCC ordered according to
their level first and number of vertices second (both descending order).
The dotted vertical lines denotes where one level ends and the next
one starts while the horizontal line denotes the result where the whole
graph is considered a single component. c = 0.85, tol = 10−9

edge was 148, which can be compared to the number of iterations for the graph as a
single component which was 168, this gives an improvement of approximately 12 %. This
might look small looking at the figure, but remember that the largest components on
each level are put first on their level and the size of components approximately follows
a power law, hence large parts of the figure represent relatively few vertices. It should
also be noted that a significant number of edges (approximately 26 %) lies either between
components or within CACs both of which are not counted for here since they don’t use
the iterative method and are instead used only once either to modify weights between
levels or as part of the DFS when calculating PageRank of CACs.

The second point of interest is that there is a clear difference between components
at the last level compared to those of a higher level. Any SCC on the last level is by
definition a stochastic matrix (before multiplication with c) since they have no edges to
any vertex in any other component, this gives a lower bound on the number of iterations
equal to log tol/ log c ≈ 128 easily seen from the relation citr ≤ tol, where itr is the
number of iterations. However those component of higher level are by definition a sub
stochastic matrix (before multiplication with c) since there is at least one edge to some
other component. This is equivalent to some vertices having a lower c value and the
algorithm can therefor converge faster.

The third observation is that a large component generally needs more iterations than
a smaller component. This makes sense if we consider that as long as most vertices in
the component do not contain edges to other components, as the component grows in
size at least some part of the component will behave similar to those in the last level and
we thus need a larger number of iterations. For large components the estimated number
of iterations is usually quite good, while for small components it usually gives a too high
estimate (unless it is part of the last level).

The running time in seconds for the Web graph for the three different methods for
different values of error tolerance from 10−1 to 10−20 can be seen in Fig. 4a. From
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a b

Fig. 4. Running time needed to calculate PageRank for 3 different
methods (a) depending on error tolerance using c = 0.85 and (b) de-
pending on c between 0.5 and 0.99 using tol = 10−10 on the Web graph

this it is clear that our method adds a significant amount of overhead, especially the
parallel one. While all three methods need a longer time if the error tolerance is smaller,
our method shows a significantly smaller increase compared to the basic method. While
the break even here seems to lie at around 10−5 for the sequential algorithm and at
around 10−9 for the parallel algorithm because of additional overhead. If the overhead
in particular for the parallel algorithm could be further reduced this breakpoint could
potentially be significantly earlier. Note that because of limits in machine precision we
might not have the correct rank down to the last 20 decimals at the lowest tolerance,
however since we sum over successively smaller parts we still get a good approximation
of the actual computation time.

The running time when we let c vary between 0.5 and 0.99 with a constant error toler-
ance (10−10) can be seen in Fig. 4b. Overall the results of our approach are promising, we
have gotten better results the bigger the graph is as well as the lower the error tolerance
is as compared to the basic approach. Our implementation of the parallel method had
significantly more overhead than the sequential method, however this difference could
likely be reduced significantly if the algorithm where implemented in full (with paral-
lelization in mind) in for example c++ where we have more control over how it can be
implemented.

4. Changes in a graph

Whenever the graph changes, such as the addition or removal of edger or vertices,
PageRank in the graph will change as well. When recalculating PageRank after such
changes you would like to use the previous PageRank as much as possible to find the
new rank after the change.

Given a PageRank algorithm similar to the one in Subsection 2.1 where we have
partitioned the graph into SCC’s (and CAC’s or other useful parts) there is many types
of specific changes in the graph that can be handled more efficiently.

In this section we will consider some examples of such changes. Much of the discussion
is based on [12].

4.1. Changes is personalization vector. Changes in the personalization vector are
comparatively easy to handle since it does not change any paths in the graph.
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Lemma 4.1. Consider a graph with PageRank ~R1 and weight vector ~w1, then the new

PageRank ~R2 given a new personalization vector ~w2 = ~w1 +4~w can be written:

R2
j = R1

j +

4wj +
∑

vi∈S,vi 6=vj

4wiPij

( ∞∑
k=0

(Pjj)
k

)
. (7)

Proof. The proof is very straightforward using the definition and factoring out the old
rank.

R2
j =

w1
j +4wj +

∑
vi∈S,vi 6=vj

(w1
i +4wi)Pij

( ∞∑
k=0

(Pjj)
k

)
=

=

w1
j +

∑
vi∈S,vi 6=vj

w1
i Pij

( ∞∑
k=0

(Pjj)
k

)
+

+

4wj +
∑

vi∈S,vi 6=vj

4wiPij

( ∞∑
k=0

(Pjj)
k

)
. �

While making changes to the personalization vector might not be a very change made
in a graph, it is important to note that something similar happens to other unchanged
components when you make localized changes in one component. When a change is made
to a single high level component, then this can be seen as a change in personalization
vector in all lower level components which can be reached from this component.

Since these changes does not affect the component structure of the graph at all, it
means that a previously found graph partition could be utilized, saving time in that part
of the algorithm. Even in a single component with a personalization vector change we
can expect the method used to calculate PageRank to converge slightly faster then it
would otherwise assuming the change is small in relation to the original personalization
vector.

4.2. Add or remove edges between components.

(1) The only change of the graph is the addition and/or removal of one or more edges
from a single “source” vertex to one or more “target” vertices belonging to other
components.

(2) New edges does not create any cycle in the underlying DAG.
(3) The personalization vector remains unchanged in the “source” component.

The first condition is slightly more general than only allowing single edge additions
or removals while still limiting the amount of potential change in rank of the source
component. The second condition is required in order to make sure that any change in
rank only depend on the source and target components and to avoid dependence on the
rank of the the target components for the rank of the source component. The second
condition is most easily achieved by only allowing new edges to be formed from the
source component to lower or same level components. By not allowing changes of the
personalization vector for the source component we again limit the amount of change in
rank we get in this component. Obviously changes in personalization vector of the source
component could be handled by first considering only the change in personalization vector
as outlined in the previous section, and then continue as if there was no change in the
personalization vector.

For convenience we introduce the following notation:

• P→j = wj +
∑

vi∈V,vi 6=vj
wiPij .
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• Pab(c) is the probability to reach vb starting in va after passing through vc at
least once.

• Pab(c̄) is the probability to reach vb starting in va without ever passing through vc.

Note that using this notation PageRank can also be written as:

Ra =
P→a

1− Paa
. (8)

Before looking at the actual problem we will start by formulating the following lemma
which states that PageRank can be decomposed into two parts representing all paths
that goes through or doesn’t go through some vertex va.

Lemma 4.2. PageRank of a single vertex vb can be written as:

Rb =
P→b(ā)

1− Pbb(ā)
+

RaPab(ā)

1− Pbb(ā)
. (9)

This can be seen as a decomposition of paths, the left expression can be seen as the
sum of all paths which does not go through vertex va and the right side being the sum
of all paths going through vertex va at least once.

Proof. We start by rewriting PageRank as a sum of all visits to vb before any visits to
va + all visits to vb after 1 visit to va but before the second visit to va and so on.

Rb =
P→b(ā)

1− Pbb(ā)
+
P→aPab(ā)

1− Pbb(ā)
+
P→aPaaPab(ā)

1− Pbb(ā)
+
P→a(Paa)2Pab(ā)

1− Pbb(ā)
+ . . .

The second and later expressions can be identified as a geometric sum resulting in:

Rb =
P→b(ā)

1− Pbb(ā)
+

∑∞
k=0 P→a(Paa)kPab(ā)

1− Pbb(ā)
.

Solving the geometric sum and using (8) completes the proof:

Rb =
P→b(ā)

1− Pbb(ā)
+

P→aPab(ā)

(1− Pbb(ā))(1− Paa)
=

P→b(ā)

1− Pbb(ā)
+

RaPab(ā)

1− Pbb(ā)
. �

Adding or removing edges between components from a single vertex can be seen as
a personalization vector change for the target components as outlined in the previous
section, the remaining problem is how this effects the source component itself since
changing the number of outgoing edges of a vertex changes the weight on each of those
edges as well. This leads us to considering the problem of changing the weights on all
outgoing edges from a single vertex as seen in the following theorem.

Theorem 4.1. Consider a graph with PageRank R1, let e1
a be the weight of all edges going

out of vertex va. After changing edge weights on edges out of va to e2
a then PageRank

R2
a of vertex va and PageRank R2

b of any other vertex vb 6= va after the change can be
written as:

R2
a =

P 1
→a

1− P 1
aa

e2a
e1a

,

R2
b = R1

b +

(
R2

a
e2a
e1a
−R1

a

)
P 1
ab(ā)

1− P 1
bb(ā)

.

Proof. The first statement is easily shown to be correct, first of all P 1
→a = P 2

→a since
edges going out of va have no effect on the the first hitting probability of va in a random
walk on the graph. Similarly it is easy to see that the probability of return paths only
change by the new edge weight e2

a, this gives P 2
aa = P 1

aae
2
a/e

1
a. Putting both of these

together proves the first statement.
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For second part we start by decomposing PageRank using Lemma 4.2

R2
b =

P 2
→b(ā)

1− P 2
bb(ā)

+
R2

aP
2
ab(ā)

1− P 2
bb(ā)

=
P 1
→b(ā)

1− P 1
bb(ā)

+
R2

aP
1
ab(ā)

e2a
e1a

1− P 1
bb(ā)

.

Where the second equality is found by realising that P 2
→b(ā) = P 1

→b(ā) and P 2
bb = P 1

bb

since we skip the paths through va when calculating these and P 2
ab(ā) = P 1

ab(ā)e2
a/e

1
a

since all these paths go through va exactly once and therefor need to be scaled by the
new edge weight.

Next we apply Lemma 4.2 again in reverse on the left hand side which completes the
proof:

R2
b = R1

b −
R1

aP
1
ab(ā)

1− P 1
bb(ā)

+
R2

aP
1
ab(ā)

e2a
e1a

1− P 1
bb(ā)

= R1
b +

(
R2

a
e2a
e1a
−R1

a

)
P 1
ab(ā)

1− P 1
bb(ā)

. �

While Th. 4.1 considers a whole graph, this graph change is identical to the one
we would get in a SCC if we added or removed edges from one of the vertices in the
component to other (lower level) components. This means we can use Th. 4.1 for the
source component and Lemma 4.1 for the changes in rank this induces in the target and
other lower level components.

4.3. Computations in practice. To be able to use Th. 4.1 in practice we would like
to first rewrite it in a way that can be computed efficiently. Fortunately it is easy to
rewrite it using a power series as seen below.

We start by defining the vector ~Qa
b which can be seen as the expected number of hits to

each vertex in the random walk on the graph where we start in va and then after leaving
it remove all edges out of va (ensuring we do not count any paths going through va):

~Qa
b =

{
P 1
aa, b = a,
P 1

ab(ā)

1−P 1
bb(ā)

, b 6= a.

To calculate ~Qa
b we define a new vector ~U as the 1-step probabilities of a random walk

starting in va before the edge weight change:

~Ub =

{
eab, (a, b) ∈ E,
0, (a, b) /∈ E.

Let B be the equal to the scaled adjacency matrix after removing all outgoing edges from

va, this gives the following power series to calculating ~Qa:

~Qa =

∞∑
k=0

(cB)k ~U.

In vector form this gives:

R2
a =

P 1
→a

(
1− P 1

aa

)
(1− P 1

aa)
(

1− P 1
aa

e2a
e1a

) =
R1

a(1−Qa
a)

1−Qa
a
e2a
e1a

,

~R2
ā = ~R1

ā +

(
R2

a

e2
a

e1
a

−R1
a

)
~Qa
ā.

So we see that to find the new rank after the change we need to solve a similar problem
as the original problem (calculating it from scratch) but with a slightly different starting
vector and matrix to work with. This approach have some potential advantages, first of
all we can expect the sum to converge at least as fast as the original problem due to B
being identical to A with a couple of removed elements. Another potential advantage is
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that initially ~U will be sparse, hence making it possible to work with a sparse vector as
well as matrix for the first couple of iterations.

5. Bipartite graphs

For some specific types of graph structures it is possible to find explicit expressions
for the PageRank of the vertices in the graph. One such graph is the complete bipartite
graph, a graph with two sets of vertices with no edges within each set but the maximum
amount of edges between the two sets as seen in Fig. 5.

n
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...
...
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m

Fig. 5. Bipartite graph with n vertices on one side and m vertices on
the other

Theorem 5.1. Consider a complete bipartite graph G = Gn ∪Gm ∪E(n,m), where Gn

and Gm is made up of n and m vertices respectively and zero edges and E(n,m) is the
set of edges containing all possible edges between pairs of vertices in Gn and Gm. Then
given a weight vector ~w, PageRank Ra∗ for a vertex va∗ ∈ Gn can be written:

Ra∗ =

wa∗
(
n− (n− 1)c2

)
+
∑

vi∈Gm

wic+
∑

vj∈Gn

vj 6=va∗

wjc
2

 1

n− nc2
.

To get the rank of a vertex v∗j ∈ Gm on the other side, simply swap n and m with each
other.

Proof. Using Definition 1.2 and taking the sum of the weights over vertices in Gn and
Gm separately we get

Ra∗ =

(
wa∗ +

∑
vi∈Gm

wiPia∗+

)( ∞∑
k=0

Pa∗a∗

)
+

 ∑
vj∈Gn

vj 6=v∗a

wjPia∗


( ∞∑

k=0

Pa∗a∗

)
.

Using different weights on vertices obviously does not change the probabilities calculated
for the uniform weight vector example earlier. By combining previousely obtained results
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we get

Ra∗ =

(
wa∗ +

∑
vi∈Gm

wic

(n− (n− 1)c2)

)(
n− (n− 1)c2

n− (n− 1)c2 − c2

)
+

+

 ∑
vj∈Gn

vj 6=va∗

wjc
2

(n− (n− 1)c2)

( n− (n− 1)c2

n− (n− 1)c2 − c2

)
=

=

wa∗
(
n− (n− 1)c2

)
+
∑

vi∈Gm

wic+
∑

vj∈Gn

vj 6=va∗

wjc
2

 1

n− nc2
. �

We note that Th. 5.1 can also be used to find the rank of the vertices in a bipartite
graph even if it is part of a larger graph with some other incoming edges from vertices
outside the Bipartite graph. This is possible only if we assume the bipartite graph itself
does not have any edges to the outside, in particular the return probability

∑∞
k=0(Pii)

k

for vertices vi in the bipartite graph will remain unchanged even if we add such edges.

If we know PageRank ~Rout for the vertices outside the bipartite graph we can find new
weights ~wi for vertices in the bipartite graph by calculating

wnew
i = wold

i +
∑
j→i

vj /∈GP

c

nj
Rj .

Here j → i denotes that there is an edge from vertex ej to vertex ei, nj is the number of
edges from ej and Gp denotes the bipartite graph.

Using Th. 5.1 we notice a couple of things, first of all increasing one’s own weight
(through links from the outside or by itself) will always give a more or less linear increase
in rank (more if n is small). Apart from that, we can also see that increasing the weight
of said vertex gives a higher increase in rank for those on the other side than those on
the same side (assuming n ≈ m). We can also see that the number of vertices on the
other side have no influence on the rank, only their combined weight. On the other hand
the number of vertices on the same side is very important for the rank, the fewer vertices
on the same side the higher the rank.

Similar results can be found for many other types of graph structures such as complete
N-partite graphs [11], and different combinations of a complete graph and a line of vertices
[13, 14, 15, 16].

6. Conclusions and open problems

In this work we have seen how a partitioning of a graph into components can be used
to calculate PageRank in a large network and how such a partitioning can be used to re-
calculate PageRank as the network changes. Although we have considered the problem
of calculating PageRank, it is worth to note that the same partitioning method could
be used when working with Markov chains in general or the solving of linear systems as
long as the method used for solving a single component is chosen appropriately.

Below follows some open problems related to this paper.

• Which other types of graph changes can be handled efficiently, in particular
changes involving multiple graph changes at the same time (such as the removal
or addition of multiple edges)? While we have showed how some changes between
components can be handled here, and in [13] it was shown how some limited
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forms of edge addition/removal inside a component can be handled, there is still
no satisfactory method in the more general case.

• How can the component structure be maintained efficiently over multiple
changes? The addition or removal of edges between components does not pose a
huge problem since you can then find the new partitioning simply by traversing
the graph made up by the graph components in the original graph. A bigger
problem is edge removals in which a single component might be split into mul-
tiple smaller components, this is especially problematic given the presence of a
“giant component”, often containing more then half the vertices in the graph.

• For small graphs or graphs with very high symmetry it is possible to find analyt-
ical expressions for PageRank similar to what we did in Section 5 for complete
bipartite graphs. Intuitively such results should be useful for finding approxi-
mations of PageRank in larger more complex graphs or as building blocks when
calculating PageRank for larger graphs. An open problem is in deciding which
small set of types of subgraphs could be used in such as way as well as how one
would go about implementing such a method in practice.

• The computational algorithms efficiency and approximations of PageRank in
large evolving networks and their dependence of damping parameter, when con-
sidered in the framework of Markov chains, can be studied using asymptotic
expansions and phase space transformations for approximations of stationary
distribution vectors and other important functionals of perturbed Markov chains
[3, 23, 28, 29, 30]. Further detailed development of applications of asymptotic
expansions for perturbed Markov chains and semi-Markov processes to computa-
tion and approximations of PageRank for large evolving networks is an interesting
open problem.
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PAGERANK ÄËß ÌÅÐÅÆ, ÃÐÀÔIÂ ÒÀ ÌÀÐÊÎÂÑÜÊÈÕ ËÀÍÖÞÃIÂ

Ê. ÅÍÃÑÒÐÅÌ, Ñ. ÑIËÜÂÅÑÒÐÎÂ

Àíîòàöiÿ. Ó öié ðîáîòi îïèñàíî, ÿê ðîçáèòòÿ ãðàôiâ íà êîìïîíåíòè ìîæå áóòè âèêîðèñòàíî äëÿ

îá÷èñëåííÿ PageRank äëÿ âåëèêî¨ ìåðåæi i ÿêèì ÷èíîì òàêå ðîçáèòòÿ ìîæíà çàñòîñóâàòè äëÿ

ïåðåðàõóíêó PageRank ó âèïàäêó çìií ó ìåðåæi. Çàçíà÷èìî, ùî òàêèì ñàìèì ìåòîäîì ðîçáèòòÿ

êîðèñòóþòüñÿ ïðè ðîáîòi ç ìàðêîâñüêèìè ëàíöþãàìè àáî ïðè äîñëiäæåííi ëiíiéíèõ ñèñòåì. Îïè-

ñàíî àëãîðèòì îá÷èñëåííÿ PageRank, â ÿêîìó âèêîðèñòîâó¹òüñÿ ìîäèôiêîâàíå ðîçáèòòÿ ãðàôà íà

ñòðîãî çâ'ÿçíi êîìïîíåíòè. Ñòàòòÿ ôîêóñó¹òüñÿ íà îá÷èñëåííi PageRank äëÿ ãðàôiâ, ùî çìiíþ-

þòüñÿ, òà âèçíà÷à¹òüñÿ ðiçíèöÿ ó ðàíãàõ äî i ïiñëÿ çìií ó ãðàôi. Êðiì öüîãî, ðîçãëÿíóòî îêðåìi

âèïàäêè ãðàôiâ, äëÿ ÿêèõ ìîæíà çíàéòè àíàëiòè÷íi âèðàçè äëÿ PageRank. Îïèñàíî òàêîæ äåÿêi

âiäêðèòi ïðîáëåìè.

PAGERANK ÄËß ÑÅÒÅÉ, ÃÐÀÔÎÂ È ÌÀÐÊÎÂÑÊÈÕ ÖÅÏÅÉ

Ê. ÝÍÃÑÒÐÅÌ, Ñ. ÑÈËÜÂÅÑÒÐÎÂ

Àííîòàöèÿ. Â äàííîé ðàáîòå îïèñàíî, êàê ðàçáèåíèå ãðàôà íà êîìïîíåíòû ìîæåò áûòü èñïîëü-

çîâàíî äëÿ âû÷èñëåíèÿ PageRank â áîëüøîé ñåòè è êàê òàêîå ðàçáèåíèå ìîæíî èñïîëüçîâàòü äëÿ

ïåðåñ÷åòà PageRank â ñëó÷àå èçìåíåíèé â ñåòè. Îòìåòèì, ÷òî òàêîé æå ìåòîä ðàçáèåíèÿ ìîæåò áûòü

èñïîëüçîâàí ïðè ðàáîòå ñ ìàðêîâñêèìè öåïÿìè èëè ïðè èññëåäîâàíèè ëèíåéíûõ ñèñòåì. Îïèñàí

àëãîðèòì âû÷èñëåíèÿ PageRank, â êîòîðîì èñïîëüçóåòñÿ ìîäèôèöèðîâàííîå ðàçáèåíèå ãðàôà íà

ñòðîãî ñâÿçíûå êîìïîíåíòû. Ñòàòüÿ ôîêóñèðóåòñÿ íà ïîäñ÷åòå PageRank äëÿ ãðàôîâ, ïîäâåðæåí-

íûõ èçìåíåíèÿì, è âû÷èñëÿåòñÿ ðàçíîñòü â ðàíãàõ äî è ïîñëå ïðîèçâåäåííûõ â ãðàôå èçìåíåíèé.

Êðîìå òîãî, ðàññìîòðåíû ñïåöèôè÷åñêèå òèïû ãðàôîâ, äëÿ êîòîðûõ âîçìîæíî íàéòè àíàëèòè÷å-

ñêèå âûðàæåíèÿ äëÿ PageRank. Îïèñàíû òàêæå íåêîòîðûå îòêðûòûå ïðîáëåìû.


