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ABSTRACT. New algorithms for construction of asymptotic expansions for exponential and power-
exponential moments of hitting times for nonlinearly perturbed semi-Markov processes are presented.
The algorithms are based on special techniques of sequential phase space reduction and the systematical
use of operational calculus for Laurent asymptotic expansions applied to moments of hitting times for
perturbed semi-Markov processes. These algorithms have an universal character. They can be applied
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1. INTRODUCTION

We present new algorithms for construction of asymptotic expansions, without and
with explicit upper bounds for remainders, for exponential and power-exponential mo-
ments of hitting times for nonlinearly perturbed semi-Markov processes with finite phase
spaces.

Hitting times are also known under such names as first-rare-event times, first pas-
sage times, and absorption times, in theoretical studies, and as lifetimes, failure times,
extinction times, etc., in applications. These random functionals and their moments
play an important role in theory of semi-Markov processes. We refer to books [1-12]
and [15-20] containing results related to asymptotic expansions for perturbed Markov
chains and semi-Markov processes, including results concerned hitting times, as well as
their applications to asymptotic analysis of reliability, queuing, bio-stochastic systems,
information networks, and other models of perturbed stochastic processes and systems.
Also, we would like to mention the resent paper [14], where one can find a comprehensive
bibliography of works in the area and the corresponding bibliographical remarks.

We consider models, where the phase space for embedded Markov chains of pre-
limiting perturbed semi-Markov processes is one class of communicative states, while
it can asymptotically split in one or several closed classes of communicative states and,
possibly, a class of transient states.

The initial perturbation conditions are formulated in the forms of Laurent asymp-
totic expansions for power-exponential moments of transition times for perturbed semi-
Markov processes given in two alternative forms, without or with explicit upper bounds
for remainders. The algorithms are based on special time-space screening procedures for
sequential phase space reduction and algorithms for re-calculation of asymptotic expan-
sions and upper bounds for remainders, which constitute perturbation conditions for the
semi-Markov processes with reduced phase spaces. The final asymptotic expansions for
exponential and power-exponential moments of hitting times for nonlinearly perturbed
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semi-Markov processes are given in the form of Laurent asymptotic expansions, without
or with explicit upper bounds for remainders.

The present paper continues the line of research of book [4] and the recent authors’
works [14] and [15]. The book [4] contains a detailed presentation of results related
to the asymptotic analysis of quasi-stationary distributions for nonlinearly perturbed
semi-Markov processes, where the power-exponential moments of hitting times play the
central role. In this book, asymptotic expansions for power-exponential moments have
been obtained for the non-singularly perturbed semi-Markov processes with the simple
asymptotic communicative structure of the set of non-absorbing states, which, in this
case, consists of one communicative class plus possibly a class of transient states. How-
ever, the method (based on asymptotic analysis of generalised matrix inverses) used in
this book does not work well for the more complex model of singularly perturbed semi-
Markov processes, where the set of non-absorbing states has a more complex asymptotic
structure and can asymptotically split in several closed communicative classes of states
plus possibly a class of transient states. In this case, moments of hitting times can
be asymptotically unbounded functions of perturbation parameter due to presence of
asymptotically absorbing states or subsets of states. Their asymptotic analysis, with the
use of the generalised matrix inverses, becomes rather intricate. Also, the only asymp-
totic expansions with remainders given in the standard form of o(-) have been given in
this book. In works [14] and [15], asymptotic expansions are obtained for singularly per-
turbed semi-Markov processes, with remainders without and with explicit upper bounds
for remainders, but only for simpler power moments of hitting times.

In the present paper, we get asymptotic expansions for more complex power-exponenti-
al moments of hitting times for nonlinearly and singularly perturbed semi-Markov pro-
cesses. An important novelty of results presented in the paper is that the corresponding
asymptotic expansions are obtained with remainders given not only in the standard form
of o(+), but, also, in a more advanced form, with explicit power-type upper bounds for re-
mainders asymptotically uniform with respect to the perturbation parameter. The latter
asymptotic expansions for power-exponential moments of hitting times for nonlinearly
perturbed semi-Markov processes were not known before.

The corresponding computational algorithms have a universal character. They can be
applied to perturbed semi-Markov processes with an arbitrary asymptotic communicative
structure of phase spaces and are computationally effective due to the recurrent character
of computational procedures.

2. LAURENT ASYMPTOTIC EXPANSIONS

Let A(e) be a real-valued function defined on an interval (0, €¢], for some 0 < g9 <
< 1, and given on this interval by a Laurent asymptotic expansion, A(e) = ay, "4 +
+otay,eR + oA(sk'A), where (a) —oo < hyg < ka < oo are integers, (b) coefficients
Qhas---, 0k, are real numbers, (c) function o4 (eF4)/ek4 — 0 as ¢ — 0. We refer
to the Laurent asymptotic expansion A(e) as a (ha,ka)-expansion. We also refer to
A(e) asa (ha,ka,b4,Ga,ea)-expansion, if additionally (d) |0A (a’“)‘ < Gyebatda for
0 <e<eq, where () 0 < d4 < 1,0 < Gg < 00, and 0 < €4 < g9, We say that the
Laurent asymptotic expansion A(e) is pivotal if it is known that ap, # 0.

It is also useful to mention that a constant a can be interpreted as function A(e) = a.
Thus, 0 can be represented, for any integer —oo < h < k < oo, as the (h, k)-expansion,
0 =0€" + -+ 0e" + o(e"), with remainder o(e¥) = 0. Also, 1 can be represented, for
any integer 0 < k < oo, as the (0, k)-expansion, 1 = 1+ 0e + - 4 0e* 4 o(e¥), with
remainder o(ak) =0.
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Let us consider three Laurent asymptotic expansions, A(e) = aj,e"4 +---+ay, 5 +
o4 (e"), B(e) =bpy e+ -+ by’ +op(e"7), and C(e) = cpo "+ +epo e +
+o¢ (skc) defined on the interval (0, gg].

Let us denote Fq = maxp ,<i<k, |ail, F'p = maxp,<i<k, |bil, Fo = maxp,<i<ke |¢il-

The following lemma presents operational rules for Laurent asymptotic expansions.
The corresponding proofs can be found in the works of authors [14] and [15].

Lemma 1. The following operational rules take place for Laurent asymptotic expansions:

(1) If A(e) is a (ha,ka)-expansion and c is a constant, then C(e) = cA(e) is a

(he, kc)-expansion such that: (a) he = ha, ke = ka; (b) Chotr = COho+rs
r=20,...,kc —hc. This expansion is pivotal if and only if cn, = can, # 0.

(ii) Also, if A(e) is a (ha,ka,04,Ga,€a)-expansion, then C(¢) is a (hc,kc,0c,Go,ec)-
expansion such that: (c) 8¢ =084; (d) Go = |c|Ga; (€) ec = ¢€4.

(iii) If A(e) is a (ha,ka)-expansion and B(e) is a (hp,kp)-expansion, then C(e) =
= A(e)+B(e) is a (he, ko )-expansion such that: (a) he = haAhp, ko = kaNkp;
(b) chetr = Ghgtr + bhgtr, T =0,...,kc — he, where apg4r =0 for 0 < r <
<hag—hc and bpoqr =0 for 0 <r < hp — ho. This expansion is pivotal if and
only if che = ang + bue # 0.

(iv) Also, if A(e) is a (ha,ka,04,G a,e4)-expansion and B(e) is a (hp,kp,05,GB,eB)-
expansion, then C(g) is a (he,kc,dc,Ge, ec)-expansion such that: (c) d¢ =
=84N0p; (d) Ge = GAﬂLFA(kA*kC)JFGB JrFB(kakC); (e) Ec=€aNERB.

(v) If A(e) is a (ha,ka)-expansion and B(e) is a (hp, kp)-expansion, then C(e) =
= A(e) - B(e) is a (he,ko)-expansion such that: (a) he = ha + hp, k¢ =
= (kA+hB) AN (kB +hA),‘ (b) Chodr = Zogigr ahA_thB_H_i, r=0,...,kc—hc.
This expansion is pivotal if and only if ch. = ap,bpy # 0.

(vi) Also, if A(e) is a (ha,ka,04,G a,€a)-expansion and B(e) is a (hp,kp,05,Gp,eB)-
expansion, then C(¢) is a (heo,kc,bc,Ge, ec)-expansion such that: (¢) d¢ =
=04N0p; (d) Go = FAFB(,ICA 7hA+1)(kB —hp +1)+GAFB(]€B 7h3+1)+
+GBFA(/€A —ha+ 1) + GAGp; (e) Ec=€ANERB.

(vii) If A(e) is a (ha,ka)-expansion, and B(e) is a pivotal (hp,kp)-expansion such
that B(e) # 0,e € (0, &), then C(e) = A) s a (he, keo)-expansion such that:

~ B(e)
(@) he = ha—hp, ko = (ka—hp) A (ks —2hp+ha); (b) chosr = byt (ahﬁr -
— 219‘9 th+ic;Lc+,._i), r=20,....,kc — he. This expansion is pivotal if and

only if chp = an, [bry # 0.
(viii) Also, if A(e) is a (ha,ka,04,Ga,cea)-expansion and B(e) is a pivotal
(hp,kp, dp5,Gg,ep)-expansion, then C(e) is a (he,kc,dc,Ge, ec)-expansion
—1
such that: (c) 8¢ = 84 A85; (d) Go = (@) (Fa(ka—kaA(ha+kp—hp))+
+GA+FBFD(/€B7h3+1)(kD7hD+1)+GBFD(kD7hD+1)); (e) Ec = €EANEBAN
1

[br g | 55
/\(Q(FB(kazB}FGB)) °B :

3. PERTURBED SEMI-MARKOV PROCESSES

Let X = {0,...,m} and (Ne n,Ken),n = 0,1,..., be, for every ¢ € (0, &g}, a Markov
renewal process, i.e., a homogeneous Markov chain with the phase space X x [0, 00),
an initial distribution pe = (pe; = P{Meo = 4,ke0 = 0} = P{neo = i}, i € X) and
transition probabilities, defined for (i, s), (4,t) € X x [0, 00),

Qe,ij(t) =P{Meq1 =Jiken <t /Meo=1,Keo =5}
Note that the above transition probabilities do not depend on variable s. In this case,
the random sequence m , is also a homogeneous (embedded) Markov chain with the
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phase space X and the transition probabilities, defined for 7, j € X,

pi]‘(E) = Qs,ij(oo) = P{Tla,l =J /Tls,O = Z}
The following communication condition plays an important role:
A: There exist sets Y; C X, 7 € X such that:

(a) probabilities p;;(e) >0, j € Y;, i € X, for € € (0, &gl;

(b) probabilities p;;(e) =0, j € Y;, i € X, for ¢ € (0, &ol;
(c) there exists, for every pair of states i,j € X, an integer n;; > 1 and a
chain of states ¢ = lz’j,O,lz’j,l, .. .,lijm” =7 such that lz’j,l €Y,
lij,mj ey,

s s
ijmg;—1°

We refer to sets Y;, ¢ € X as transition sets. Conditions A implies that all sets Y; # (),
i € X and that the phase space X of Markov chain 7 , is one class of communicative
states, for every € € (0, go].

The following condition excludes instant transitions:

B: Q:,;(0) =0, i,j € X, for every ¢ € (0, €.

Let us now introduce a semi-Markov process Ne(t) = Ne v, 1), t > 0, where v, (t) =
= max(n > 0 : (¢, < t) is a number of jumps in the time interval [0,¢] and (¢, =
=Ke1+ -+ Keny, n=0,1,..., are sequential moments of jumps, for the semi-Markov
process T ().

Let us introduce transition power-exponential moments of transition times, for o > 0,
k=0,1,...,4,j € X]

Btk 0,6) = Bt jerittnes =) = [ Pert Q). 0
0

Here and henceforth, notations P; and E; are used for conditional probabilities and
expectations under condition n, g = i.

Conditions A (a)—(b) and B imply that, for every e € (0, go], moments ¢;;(k, 0, €) €
€ (0,00],forp>0,k=0,1,...,j €Y;,i € X, and ¢;j(k,0,6) =0,for 0 >0,k =0,1,...,
jE Yi, i e X.

Let us assume that the following condition holds for some p, > 0:

Cpol d)ij(ov Po, 8) <00, jEY,;,t€eX, for e € (0, 80].

Obviously condition C,, implies that moments ¢;;(k, o, €) < oo, for any 0 < p < po,
k=0,1,....,5 € Y;,i e X.

It is appropriate to mention two important particular cases.

If Qeij(t) =1t > 1)pij(e), t >0, 4,5 € X, then ne(t) =M, [y, t > 0 is a discrete time
homogeneous Markov chain embedded in continuous time. In this case, ¢;;(k,0,¢) =
= e?p;;(e) < o0, for p >0, 4,j € X.

If Qe ii(t) = (1—e ) p;i(e), t >0, 4,5 € X (here, 0 < A;(e) < o0, i € X), then
Ne(t), t > 0 is a continuous time homogeneous Markov chain. In this case, ¢;;(k, 0,€) =
= %mj(&) < o0, for p < Ai(e), i, € X.

Let us define the hitting time for the semi-Markov process mn(t) to the state 0 (of
course, this state can be replaced by any other state i € X),

Ve, 0
Teo = Z Ken, Where ve g =min(n >1:1., =0). (2)
n=1

The object of our interest are power-exponential moments for hitting times, for o > 0,
k=0,1,..,ieX

(I)i(k', 0, 8) = EZ‘TQO(EQTE’O. (3)

Condition C,, does not imply that exponential moments ®,(0, po, €) are finite.
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Necessary and sufficient conditions of finiteness for exponential moments of hitting
times are given in terms of so-called test-functions in [4] and [13].

We refer to functions v(i), ¢ € X defined on the space X and taking value in the interval
[0,00) as test-functions.

Let us introduce condition:

D, : There exist, for every € € (0, g, a test-function v, o, (i), i € X, such that the
following test inequalities hold,

Ve,po (1) = Pi0(0,00,€) + D s (0, po, €)ve ,(4), i € X. (4)
JEX,j#£0
Lemma 2. Let conditions A, B and C,, hold. Then, the exponential moments
D,0(0,po,€) < 00, i € X, for ¢ € (0,¢0], if and only if condition D, holds. In this
case, inequalities @;o(0, po,€) < ve o, (1), i € X hold, for e € (0, €], and the exponential
moments ®;0(0, po, €), i € X are, for every € € (0, €], the unique solution for the system
of linear equations,

000, p0,€) = Gio(0,00,€) + Y bij(0,p0,€)Pj0(0,p0, ), i E€X. (5)
J€X,j#0

In what follows, we always assume that conditions A, B, C,_, and D,  hold.
It is obvious that ®;o(k,0,€) < Lk pe—0Pi0(0,p0,€) < o0, for 0 < o < po,
k=0,1,...,1€X, where Ly 5, = sup,~qzFe (Pe=0)7 < o0,
Let us assume that the following perturbation condition, based on Laurent asymptotic
expansions, holds, for some integer d > 0 and real 0 < p < po:
hik,0]

n
Egp: ¢ij(k,p,€) = Z gijlk, p,1]€" + 0k.p.i5 (ehw[kv"]} e € (0, €],
I=h;[k,p]
for k=0,...,d, j €Y,;, 7 €X, where
(@) —o0 < hylk,p] < hJr [k,p] < oo are integers, coefficients g;;[k,p, ],
I = hylk, p] ..,h” [k, p] are real numbers, and g;; [k P, hi;lk, p]] > 0, for
k=0,...,d,j€Y;,1 €X;
(b) function ok,m(sh?ﬂ’c-ﬂ)/eh?ﬂ’“vp] S 0ase =0, fork=0,...,d, j €Y,
1e X
We refer here to the book [4], where the asymptotic expansions appearing in condition
Eg4,, are explicitly given for the cases of discrete and continuous time Markov chains.
If neo # 0, then the first hitting time Teg > Te = >.h¢ Ken, where p, =
= max(n > 0 : Meyp # Meo). This inequality implies that, for ¢ > 0, ¢ # 0 and
S (07 EOL

Z];ﬁz ¢Z](O7 o, E)
1- d)u(oa 0, £) -

Thus, condition D,  implies that the following inequalities should also hold, for
(S (07 Eo},

®;(0,0,¢) > Eje?" = Z $ii(0,0,6)" " Z $i;(0,0,€) =

n>1 J#i

d)zz(()? Po, E) < 11 7’ 7& 0 (7)
Condition Eg, and inequalities (7) imply that the following condition should also
hold:

F,: Forevery i # 0, either (a) h;; [0, p] > 0, or (b) h;; [0, p] = 0and g,4[0, p, h;[0,p]] < 1,
or (c) h;[0,p] =0, gi[0, p, h ;0,p]] = 1, A5 [0, p] > 1 and there are non-zero terms
in the sequence, ¢;;[0,p,1],..., [0, p, h:[0, p]], moreover, the first such term, say
gii[0, p, 1;], where 1 < I; < h£[0, p], is a negative number.
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It is useful to note that proposition (i) of Lemma 1 and conditions E4 , and F, imply
that the function,

h};10,0]
1—i(0,p,6) =1+ Z —gii[0, p, 1] €! 007p,ii<£h;[0’p]) —
I=h;[0,p]
R [0,0]
= Z Gii0,p,1]€" + 50, “(5 00, p]) e € (0, e, (8)
I=h;0,p]

is, for every i € Y;, i # 0, a pivotal Taylor asymptotic expansion, with parameters
h;[0, p] equal to 0 if alternative (a) or (b) takes place, or /; if alternative (c) takes place
in condition F,, h};[0,p] = h;;[0,p], and the corresponding coefficients and remainder
determined in an obvious way by relation (8). Note also that 1 — ¢;;(0,p,¢) = 1, for
i €Y, i#0.

Conditions E;, and F, guarantee that there exists e¢f € (0, o] such that function
$4:(0, 0, €) given by the asymptotic expansion appearing in condition satisfies, for every
i # 0 and ¢ € (0, (), inequality 0 < ¢;;(0, p, ) < 1. For, simplicity, we just assume that
€y = €0-

In the case, where Laurent asymptotic expansions with explicit upper bounds for
remainders are the objects of interest, the assumption E; (b) imposed on the remainders

Ok ij (Ehjﬂ‘[k’pg should be replaced by the following stronger condition:

Gupt [orpis (5P| < Giylh,pleSPH 8000l 0 < & < eyifk ), for k= 0,....d,
j S Yi, i€ X, where 0 < 61']'[]{3, p] < 1, 0 < Gij[k, p] < 00, 0< £ij[k, p] < €0, for
k=0,....d,jeY;,i e X

It is also useful to note that, in this case, the above (ﬁ; [0, p], [0 p})—expansion for
function 1 — ¢;;(0,p, €) is a (h; [0, o], h; [0, p], 84ilk, pl, Giilk, 0], €4, p])—expansion, for
i # 0.

Condition Eq,, does not imply that there exist limits, lim, .o p;;(€), ¢, 7 € X. However,
any sequence &, — 0 as n — oo obviously contains a subsequence ¢, — 0 as N — oo
such that there exist limits, limy_opij(eny) = pi;(0), 4,5 € X. Matrix ||p;;(e)| is
stochastic, for every ¢ € (0, o], and, thus, matrix ||p;;(0)| is also stochastic. It is
possible that matrix ||p;;(0)|| has more zero elements than matrices ||p;;(¢)||. Therefore,
a Markov chain 1o, with the phase space X and the matrix of transition probabilities
llpi; (0)|| can be non-ergodic, and its phase space X can consist of one or several closed
classes of communicative states plus, possibly, a class of transient states.

4. REDUCED SEMI-MARKOV PROCESSES

In what follows, we assume that conditions A-D,, hold.

Let us choose some state r # 0 and consider the reduced phase space X = X\ {r},
with the state r excluded from the phase space X.

We define the sequential moments of hitting space X by the embedded Markov chain,
r&en = min(k > ;&e o1, Nek € rX), n = 1,2,..., where & o = 0, and the random
sequence,

r&en

(rne,narKe,n) = (ne,r&,,na Z Ka,k), n=12,..., (rne,OarKa,O) = (ns,070)~

k=r&e n_1+1

This sequence is also a Markov renewal process with the phase space X x [0, 00), the
initial distribution ,pe = (;pe; = pe.i,? € X), and transition probabilities, defined for
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(i, ), (j,t) € X x [0,00),

rQszg —P{mn—J,er<t/ms0—l,rl<so—8}

Obviously, transition probabilities Q¢ ;(t) = 0, for i € X, ¢ > 0.
The transition probabilities , Q¢ ;;(¢) are expressed via the transition probabilities
Qe,ij(t) by the following formula, for i € X, j € ,X, ¢t > 0,

rQeij(t) =Pi{ne1 = Jiken <t} +

o0
+ Z Pi{ns,l =TNek+1 =171, 1<k< N, Ne,nt2 = Js Ke,l + 00+ Kent2 < t} =

= Qeij (1) + Y Qe,ir() * QT (8) * Qe (8). 9)
n=0

Here, symbol % is used to denote the corresponding variant of convolution for the
above semi-Markov transition probabilities.

The above formula directly implies the following formula for transition probabilities
of the embedded Markov chain ,n¢ ,, for i € X, j € . X,

prj(€)
rPij(€) = +Qe,ij(00) = pij(€) + pir(€) —— . (10)
1- prr(s)
The transition distributions for the Markov chain ,n¢ ,, are concentrated on the re-
duced phase space X i.e., for every i € X

pri(e)
> i) = > pij(e) + pir(e) = p(e) —

JjE€X jE€AX jEX
= > pij(e) + pirle) = 1. (11)
VISIDS

If the initial distribution p. is concentrated on the phase space ,X, i.e., pe, = 0,
then the random sequence (;Me,n, rKe,n),m = 0,1,... can also be considered as a Markov
renewal process with the reduced phase ,X x [0, 00), the initial distribution

e = <pe,i = P{rns,o =1,,Kg g = 0} = P{rns,o = i}a 1€ rX>

and transition probabilities Q. ;;(¢), t > 0, 4,5 € . X.

If the initial distribution p is not concentrated on the phase space , X, i.e., pe, > 0,
then the random sequence (;Men,rKen), » = 0,1,... can be considered as a Markov
renewal process with so-called transition period.

Respectively, one can define the transformed semi-Markov process,

rns(t) = rNe,ve(t)s t> 0, (12)
where ,v¢(t) = max(n > 0 : ;e < t) is a number of jumps at time interval [0,¢], for
t>0,and ;Cep = rKe1+ -+ rKep, n=0,1,... are sequential moments of jumps, for

the semi-Markov process ,1¢(t).

If the initial distribution p, is concentrated on the phase space X, then process ;N (t)
can be considered as a standard semi-Markov process with the reduced phase X, the
initial distribution ,pe = (,p; = P{;m:(0) = i},i € ,X) and transition probabilities
TQ&,’ij(t)) t>0,1,7 € »X.

According to the above remarks, we can refer to the process ,1(t) as a reduced
semi-Markov process.

If the initial distribution p. is not concentrated on the phase space ,. X, then the process
+Me(t) can be interpreted as a reduced semi-Markov process with transition period.
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Let us introduce the following sets, for 7,7 € X

. ) _ e, X:jeY,} ifrey,
Y ={je,X:je¥Y; 4 y-=4U : 13
o =1J J } an i {@ - (13)
and

Y, =Y, uYS, ieX (14)

It is readily seen that, for every r # 0, condition A holds for the reduced Markov
chains ,1¢ , with the phase space ,X. In this case, ,Y;, ¢ € .X are the corresponding
transition sets.

Condition A implies that p,..(¢) € [0,1), r # 0, ¢ € (0, gg]-

This relations and formulas (10)—(11) imply that transition probabilities ,p,;(e) > 0,
Je€ Y, =Y, \{r}, for e € (0,&0], or ypr;(e) =0, j €,Y,, for e € (0, &g).

Thus, if ,n¢ ,, is a reduced Markov chain with transition period, then set ,X is a closed
class of communicative states, while r is a transient state, for every ¢ € (0, €¢).

Obviously, condition B also holds for the reduced semi-Markov processes ,1¢(t).

Taking into account that ,&¢; is a Markov time for the Markov renewal process
(Ne,ns Ke,n), we can write down the following system of stochastic equalities, for every
i,j € X,

N )
rKeinl(Mein = J) = Ke it IMei1 = J) +
+ (Keyit + rKeyrm1)IMesin = 7)I0Mer1 = J), (15)
N d )
rKe,r,lI( rNe,r,1 = ]) = Ks,r,ll(ns,r,l = ]) +

+ (KE7’I‘,1 + rKs,r,l)I(nsﬂ',l = T)I(rnsml = ])a
where:

(a) (Me,i1,Ke,i1) is a random vector, which takes values in space X x [0, 00) and has
the distribution P{ne ;1 = j,kei1 <t} = Qi5(t), 7 € X, t > 0, for every i € X;

(b) (#Me,i,1,rKe,i,1) is a random vector which takes values in the space ,X x [0, 00) and
has distribution P{»,‘T]EJ;J = j,rKgﬂ;_’l < t} = Pi{rne,l = j?TKE,l < t} = inj(t),
j e X, t >0, for every i € X;

(¢) MeinsKeyi1) and (Mer1, +Ner1) are independent random vectors, for every
i, 7 € X

Here, symbol 2 is used to show that random variables on the left and right hand sides
of the corresponding equality have the same distribution.

Let us introduce transition power-exponential moments, for o > 0, k =0,1,...,r # 0,
1€X,j€ X

(ks o,€) = f et Qi (dt). (16)

0

By computing exponential moments in stochastic relations (15) we get, for every
0<o0<po, r#0,i7€,.Xand ¢ € (0, ], the following system of linear equations for
the exponential moments ,¢,;(0, g, €), »$i;(0, 0, €),

’r‘d)’rj (05 0, 8) = d)Tj (07 0, 8) + ¢TT(O7 0, E) Td)’r‘j (07 0, E),
Td)l](oa o, E) = ¢l](07 o, E) + (biT(Ov 0, E) Td)rj(07 0, E)'
£)

It is possible that the moments ¢,..(0, p, €) or ¢;,-(0, p, €) equals to 0, while the moment
;0(0, p, €) equal to 400 in relation (17). In such cases, one should set the product 0 - oo
to be 0 when calculating the products at the right-hand side of equality (17).

However, inequality (7) and relation (17) imply that ,¢;;(0,po,€) < oo, for every
r#0,i€X, je,Xand ¢ € (0, &)

(17)
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Thus, relation (17) yields the following formulas for the moments ,¢,;(0,p,€) and
rd)ij(oa P, E)? for every 0 S 0 S Po, T 7£ Oaiaj € TX7

d)rj (07 P, 8)

1- d)m“(ov P, E) ,
d)ir(o’ P, £)¢Tj (0’ P, E)

r(sz (07 P, £) - d)’Lj (07 P, £) + 1— d)rr(oa D, S) .

Tt is useful to note that the second formula in relation (18) reduces to the first one, if
to assign ¢ = r in this formula.

Thus, condition C,, holds for the reduced semi-Markov processes ,M¢(t).

Obviously, »&i;(k, 0,€) < Li,pg—0rPi;(0,p0,€), for 0 < o < po, k =0,1,...,r # 0,
ie€X, je . Xand ¢ € (0, gl

Also, it is easily seen that for every 0 < p < pg, k=1,...,7#0,i € X, j € ., X
and ¢ € (0, go], function ,¢;;(0, o, €) has a derivative of order k, and it is the function
rcbij(kv o, £)'

Therefore, we can differentiate equations (17) and get the following system of linear
equation, for every 0 < p < pg, k=1,...,7#0,i €X, j € ,.X and ¢ € (0, ¢,

rd)'rj (07 P, 5) =
(18)

7'd)7"j(k7 0, 8) = 'I"A'rj(k7 0, 8) + ch‘?"(Oa o, 8) ch?'j (ka o, 8), (19)
r(bij(ka o, £) = TAij(ka o, E) + Cbir(oa o, £) Td)rj(ka o, 6)7
where,
r i (k 0,¢ ) (bzg k 0,¢ + Z ( >¢)27’ la 0, £) Tq)rj(la 0, 5)' (20)

Relation (19) yields the following formulas for moments ,&,;(k, 0, €) and ;5 (k, o, €),
which can be used, for every 0 < o < pg, k=0,1,...,7#0, 4,5 € . X and ¢ € (0, &g],

Arj(ks 0, €)
r¥r, k ’ T 025
ik, 0,8) = 1= ¢, (0,0€) (21)
ir 0, s TAT' k7 )
r$ij(k,0,€) = Aij(k,0,€) + ¢ (1 _Qq:) (0 jQ( £)Q :

Formulas (21) have recurrent character since expressions for functions ,A.;(k, g, €),
+Aij(k, o, €) include functions ,¢,;(l,0,¢),1=0,1,...,k—1.

For k = 0, formulas (21) reduce to formulas (18).

Let us define the hitting times for the reduced semi-Markov processes, for r # 0,

Ve, 0
rTe0 = Z rKen, where ,veo=min(n>1: ,m¢, =0), (22)
n=1
and the corresponding power-exponential moments, for o > 0, k =0,1,..., i € X

+®i(k, 0,€) = E; T8 g €20, (23)

For every € € (0, o], the semi-Markov processes n¢(t) and ,1.(¢) and, in sequel, the
hitting times T, ¢ and .7, are defined on the same probability space. This space can,
however, be different for different .

Moreover, the following proposition follows from the fact that hitting of state j € X
by the semi-Markov process .1 (t) can occur only at moments of hitting space ,.X by the
semi-Markov process 1¢(t). Its proof can be found, for example, in [14] and [15].

Lemma 3. For every state r # 0 and € € (0, o], the hitting times T. o and ,T¢ o to the
state 0, respectively, for semi-Markov processes e (t) and ;me(t), coincide.
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According Lemma 3, T, o and ,T¢ o are, in fact, the same random variable defined in
two different forms in terms, respectively, of processes 1. (t) and ,n¢(¢). The following
lemma, which is an obvious corollary of Lemma 3, plays an important role in what
follows.

Lemma 4. The exponential moments, . ®;o(0, 0,€) = P;(0, 0,€) < 00, for any 0 < o
< po, r#0,7€ X and ¢ € (0,¢9], and the power-exponential moments, .®;o(k, 0, €)
= ®;o(k,0,€) < oo forany 0 < o< pg, k=0,1,...,7#0, i€ X and ¢ € (0, &].

I IA

Let us summarise the above remarks.

Lemma 5. Conditions A-D,, assumed to hold for the semi-Markov processes 1e(t),
also hold for the reduced semi-Markov processes 1 (t).

Since condition D, holds for reduced semi-Markov processes ,1.(t), the following
inequalities also hold, for ¢ € (0, ],

'r‘d)'ii(oa Pos ‘E) < 17 1 7é Oar' (24)

5. ASYMPTOTIC EXPANSIONS FOR POWER-EXPONENTIAL MOMENTS
OF HITTING TIMES

Let us now describe algorithms for construction of asymptotic expansions for power-
exponential moments of hitting times.

Proofs of Theorems 1 and 2 presenting these algorithms are based on recurrent ap-
plication of operational rules for Laurent asymptotic expansions given in Lemma 1 to
the reduced semi-Markov processes constructed with the use of the recurrent time-space
screening procedures of phase space reduction described below. In fact, one should cor-
rectly describe to which functions, in which order, and which operational rules should
be applied for getting the corresponding expansions (their parameters, coefficients and
parameters of upper bounds for remainders) as well as to indicate some particular cases,
where the corresponding computational steps should be modified. This is exactly what
is done in the proofs of Theorems 1 and 2. An explicit writing down of the corresponding
operational formulas representing the recurrent algorithms described below (which could
be given as corollaries of the above theorems) would, in fact, replicate the above proofs
in the formal form, require implementation of a huge number of intermediate notations,
take too much space, etc., but would not add any new essential information about the
corresponding algorithms. That is why the decision was made, just, to say in each the-
orem that the description of the corresponding algorithm is given in its proof. This
makes formulations slightly unusual. But, as we think, this is the most compact way for
presentation of the corresponding asymptotic results and algorithms.

Theorem 1. The following propositions take place:

(i) If conditions A-F, hold for the semi-Markov processes M. (t), then these condi-
tions also hold for the reduced semi-Markov processes ,me(t), for every r # 0.
The corresponding pivotal (Thi_j [k, ], Th;;- [k, p])-expansions for the mized power-
exponential moments »§;;(k,p,€),k =0,...,d,j € ,Y;,i € X are given by the
algorithm described below, in the proof of the theorem.

(ii) If, additionally, condition Gg,, holds for the semi-Markov processes Mg (t), then
this condition also hold for the reduced semi-Markov processes ,Me(t). In this case,
the above (rh;j [k, p], Thfj [k, p]) -ezpansions are also the pivotal (Thjj [k, 0], rh;;- [k, pl,
+0i;lk, p), »Gijlk, ] reij[k, p])—empansions, with parameters .55k, p], »Gijlk,p],
r&ijk, p] given by the algorithm described below, in the proof of the theorem.
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Proof. Lemma 5 implies that conditions A-D,, hold for the semi-Markov processes
Me(t), with the same parameter €y as for the semi-Markov processes n¢(t), and the
transition sets ,.Y;, ¢ € .X given by relation (14).

In order to prove that condition Eg, also holds for semi-Markov processes ,ne(t),
with the same parameter ¢y and the transition sets ,.Y;, i € .X given by relation (14),
let us construct the corresponding asymptotic expansions appearing in this condition.

Let r #0,i € X and j,r € Y; NY,.

At the initial step, we construct the asymptotic expansions for exponential moments
+$ri(1,p,¢) and ,d;;(0, p, €) using formulas formulas (18) and the corresponding asymp-
totic expansions appearing in condition Eg ;.

First, proposition (vi) (the multiplication rule) of Lemma 1 should be applied to the
product ¢;,-(0,p, €) &, (0, p, €).

Second, proposition (vii) (the division rule) of Lemma 1 should be applied to the
(0,p,€)$r;(0,p,€)
1—-¢.(0,0,¢)
given in relation (8) should be used.

Third, proposition (iii) (the summation rule) of Lemma 1 should be applied to the

sum 5 (0,p, ) + LRG0,

If j ¢ Y, then ¢,;(0,p,e) = 0; if j ¢ Y, then ¢,;(0,p,e) = 0; if » ¢ Y, then
Gir(0,p,€) =0; if r ¢ Y, then 1 — ¢,-(0,p,€) = 1. In these cases, the above algorithm
is readily simplified.

According to Lemma 1, the (rh; [0, p], Th;-;- [0, p})—expansions,

quotient bir . Here, the asymptotic expansion for function 1 — ¢,-(0, p, €)

4
+hi;10,p]

rd)ij(oa P, £) = Z rdij [0 P, l]€ + 0o, p,i <5rh”[0 p]) (25)

l=rh;;[0,p]

yielded by the above algorithm, for » # 0, i € X, j € ,.Y;, are pivotal.

Steps of the algorithm described above should be recurrently repeated for k = 1,...,d.

Let assume that the corresponding pivotal asymptotic expansions for power-exponenti-
al moments ,&,;(l,p, €), r$i;(l,p,€), 1 =0,...,k—1 have been already constructed with
the use of formulas (20)—(21). In this case, the asymptotic expansions for moments
r$ri(k,p,€), »dij(k,p,€) can be constructed using the above asymptotic expansions,
formulas (20)—(21), and the corresponding asymptotic expansions appearing in condition
Eg,p, in the following way.

First, propositions (i) (the multiplication by constant rule) and (v) (the multiplication
rule) of Lemma 1 should be applied to the products (]f)d)q,«(k‘ —1,p,€)rdr(, p,€), for
l=0,...,k—1and g=1i,r.

Second, proposition (iii) (the summation rule) of Lemma 1 should be recurrently
applied to the sum

Agi(nyk,p, ) = dgi(k, p, e +Z( )d>qr —1,p,€)rdrj(l,p,8) =

=0
= r}\qj (7’7/ - 17 ka P, 8) + (TL) d)qr(k - n,P, E) Td)Tj (na P, S)a

forn=1,...,k—1, in order to get the asymptotic expansion for sum

rAgji(k, 0,€) = vAgi(k — 1k, p,€) = dg;(k, 0, ¢ +Z( >¢qr —1L0.€) bl 0,8),

1=0
for g =1i,r.
Third, proposition (v) (the multiplication rule) of Lemma 1 should be applied to the
product ¢;-(0, 0, €) » Ay (k, 0, €).
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Fourth, proposition (vii) (the division rule) of Lemma 1 should be applied to the

. i (0,0,8) rArj(k,0,¢)
quotient 1= (0,0,6)

given in relation (8) should be used.

Fifth, the proposition (i) (the summation rule) of Lemma 1 should be applied to sum
wAij (K, 0,€) + ‘i’”(ffgf;(ﬁj;fg’“) .

As it was already mentioned above, five steps of the above algorithm should be recur-
rently repeated for k =1,2,...,d.

If j ¢ Y, then ¢;i(k,p,e) =0, k =0,...,d; if j ¢ Y, then ¢,;(k,p,e) = 0,
k=0,...,d;if r ¢ Y, then ¢;-(k,p,e) =0,k =0,...,d; if r ¢ Y, then ¢,.(k,p,e) =0,
k=1,....,d and 1 — ¢,(0,p,€¢) = 1. In these cases, the above recurrent algorithm is
readily simplified.

Note that parameter ¢y does not change in the multiplication and summation steps
as well as in the division step, since 1 — ¢,.-(0,p,€) > 0, € € (0, g9

According to Lemma 1, the (Thi_j [k, 0], Th;-;- [k, p])-expansions,

. Here, the asymptotic expansion for function 1 — ¢,-(0, p, €)

AN

N
rPij(k,0 ) = Y rgijlk, 0 le" + rokpis (5"h”[k’p])7 (26)
I=,h [k.p]

yielded by the above recurrent algorithm, for k = 1,...,d, r # 0,1 € X, j € ,.Y;, are
pivotal.

It remains to note that condition Ey4 , and inequalities (24) imply that condition F,,
also holds for the reduced semi-Markov process .1 (t), for every r # 0.

This completes the proof of proposition (i) of Theorem 1.

In order to prove proposition (ii) of Theorem 1, one should repeat the same sequence
of recurrent steps described above and, additionally, to apply to every intermediate
asymptotic expansion, obtained with the use of operational rules given in propositions
(i), (iii), (v) or (vii) of Lemma 1, the corresponding additional operational rules given,
respectively, in propositions (ii), (vi), (vi) or (viii), for computing parameters of the
corresponding upper bounds for remainders. ([l

Remark 1. It is worth to note that the above algorithm yields the asymptotic expansions
for mixed power-exponential moments ,¢;;(k,p, ) fork=1,...,d,r #0,i € X, j € ,Y,,
i. e., for the corresponding transition characteristics of the reduced semi-Markov processes
/Me(t) with transition period defined in Section 4.

Let us choose some state ¢ # 0 and let 7y = (Tg0,---sTqm) = (Tq.0s---sTqm)
be a permutation of the sequence (0,...,m) such that ry,m—1 = ¢, 7¢m = 0, and let
Tgn = (Tq.0s---,Tqn), = 0,...,m be the corresponding chain of growing sequences of
states from space X.

Theorem 2. The following propositions take place:

(i) Let conditions A-F, hold for the semi-Markov processes M (t). Then, for every
1 € X, the pivotal (i%_o[kv p],h%[k’, p])—eazpansions for the power-exponential mo-
ments of hitting times ®;o(k,p,€), k = 1,...,d, i = ¢q,0 are given, for every
q # 0, by the recurrent algorithm based on the sequential exclusion of states
Tq,0;- - -+ Tqm—2,q from the phase space X of the processes M (t). This algorithm is
described below, in the proof of the theorem. The above (hz_O [k, p], h;B [k, p]) -expan-
sions are invariant with respect to any permutation 7 m = (Tq.0,---,T¢m—2,4,0)
of sequence (0,...,m).

(ii) If, additionally, condition Ggq,p holds for the semi-Markov processes n¢(t), then

the above (h;o[k, p],hjo[k, p])—expansions for the power-exponential moments of
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hitting times @,O(k,p,e), k= ,d, i = q,0 also are, for every q # 0, piv-
otal (hzo[k o], i [k, o], »dio[k, ],T Zo[k‘ pl, réiolk, p]) -ezpansions, with parameters
7omOi0lk, 0], 7. Giolk, Pl 7 mezo[k p| given by the algorithm described below, in
the proof of the theorem.

Proof. Let us exclude state r; o from the phase space of the semi-Markov process 1 (%)
using the time-space screening procedure described in Section 4. Let Ner, o (t) = ryomelt
be the corresponding reduced semi-Markov process, with the phase’ space r, X =
=X\ {rq,0}. The above procedure can be repeated. The state 741 can be excluded from
the phase space of the semi-Markov process Ne 7, (t). Let ez, (£) = r, 1 Ter, o (t) be the
corresponding reduced semi-Markov process, with the phase space », , X = X\ {r4,0,7¢,1}.
By continuing the above procedure for states r; 2, ..., 74 n, We construct the reduced semi-
Markov process N7, . (t) = 7, . Mer,._.(t). This semi-Markov process has the phase
space , X =X\ {rg0,7¢,1,---,Tqn}

Let 7, .Y, i € 5, X and 7, &ii(k,p,¢€), j € 7,,Yi, i € 7,,_,X be, respectively,
the transition sets and transition power-exponential moments for process ner, , (t) =
= rynMerg . (t) defined in the same way as the transition sets ,Y;, i € X and the
transition power-exponential moments ,;;(k, p,¢€), j € ,Y;, i € X for process ;1 (t).

Theorem 1 implies, by induction, that conditions A-F, hold for the reduced semi-
Markov processes Ne (), Me,r (1) - -+ Ner, . (1)

Thus, the recurrent application of the algorithm described in Theoreml to processes
Neryo(t ) vy Ne,r,. (1) let us construct the pivotal Laurent asymptotic expansions for
transition power- exponential moments 7, &;i(k,p,¢€), 5 €7, Yi, i €5, X

Let us take n = m — 1. In this case, the semi-Markov process Nz, ,,_, (t) has the
phase space 7, X = {0}, which is a one-state set. Also, the space 7, , ,X = {q,0} is
a two-states set.

By Lemma 4, the power-exponential moments of hitting times, ®;o(k, p, €), coincide
for the semi-Markov processes Ne(t), Ne,r, o (), -+ Ner, i (t), for every k = 0,...,d,
1=q,0.

Also, for the reduced semi-Markov process Ne 7, ., (t) = ¢Ne.7, .._.(t), the exponential
moment ®io(k, p,€) =7, ,,_, Pio(k,p,€), for every k =0,...,d, i = q,0.

Thus, the recurrent algorithm of sequential phase space reduction described above
let to comstruct, for k = 1,...,d, i = q,0, the pivotal (hyl[k,p], [k, p])-expansions
expansion,

At k.0l

Dio(k,p, €) = Z Giolk, p, 1e! + 0k.p.0; (8%[]“’9]), (27)
l=hjyk,p]

The above Laurent asymptotic expansions coincide with the corresponding Laurent
asymptotic expansions for the transition power-exponential moments 7 .., ®io(k, p, €).

The summation and multiplication operational rules for Laurent asymptotic expan-
sions presented in propositions (iii) and (v) of Lemma 1 possess commutative, associative
and distributive properties, which should be understood as identities for the correspond-
ing Laurent asymptotic expansions, i.e., identities for the corresponding parameters h, k,
coefficients and remainders of functions represented in two alternative forms in the cor-
responding functional identities. We refer to works of the authors [14, 15], for the corre-
sponding details.

This makes it possible to prove that the Laurent asymptotic expansions for power-
exponential moments », ., dio(k, p, €) are are invariant with respect to any permutation
Tgm = (Tq.0,- - s Tq.m—2,¢,0) of sequence (0,...,m).

This legitimates notations (with omitted index 7, _,) used for parameters, coefficients
and remainder in the asymptotic expansions (27).
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Let 0 <n <m—2and 7y, = (rq0,--.,7,) be apermutation of the sequence 7 .

The corresponding reduced semi-Markov process nez | (t) is constructed as the se-
quence of states for the initial semi-Markov process me(t) at sequential moments of
its hitting into the same reduced phase space 7 X = X\ {ryg,....,75,} = 7 X =
=X\ {rq1,...,7¢n}. The times between sequential jumps of the reduced semi-Markov
process MNe (t) are the times between sequential instants of hitting the above reduced
phase space by the initial semi-Markov process 1 ().

This obviously implies that the transition power-exponential moment 7 . &i;(k,p,¢)
is, for every k =0,...,d, j€s, Yy, i €5, X, n=0,...,m—1, invariant (as functions
of ¢) with respect to any permutation 77 ,, of the sequence 7 ;..

Moreover, as follows from the recurrent algorithms presented above, the transition
power-exponential moment . $;;(k,p, €) is a rational function of the initial transition
power-exponential moment ¢;;(k, p,¢€), j € Y;, i € X (quotients of sums of products for
some of these moments).

By using identity arithmetical transformations (disclosure of brackets, imposition of
a common factor out of the brackets, bringing a fractional expression to a common
denominator, permutation of summands or multipliers, elimination of expressions with
equal absolute values and opposite signs in the sums and elimination of equal expressions
in quotients) the rational functions Fq,n¢ij(k7 p, €) can be transformed, respectively, into
the rational functions ﬁ’;,nd)ij (k, p, €) and wise versa.

In fact, one should only check this for the case, where the permutation f;)n is obtained
from the sequence 7, ,, by exchange of a pair of neighbour states r,; and ry;41, for some
0 <1 <n—1. Then, the proof can be repeated for a pair of neighbour states for the
sequence 77;7”, etc. In this way, the proof can be expanded to the case of an arbitrary
permutation 7 ,, of the sequence 7, ,. The above mentioned poof of pairwise permutation
invariance involves processes 7, ,_ ¢ (t) (for the moment, we denote as 7, -, ne(t) =ne(t)
the initial semi-Markov process), », Ne(t) and 7, Ne(t). It is absolutely analogous, for
0 <1 < n-—1. Taking this into account, we just show how this proof can be accomplished
for the case [ = 0.

The transition exponential moments 7, , $;;(0,p,¢€) and f;.ld)ij((), p,e) for the se-
quences Tq1 = (ro,r1) and 7, ; = (r1,7o) (here, 4,5 # ro,71) can be transformed into
the same symmetric (with respect to rop and r1) rational function of the corresponding
exponential moments, using the identity arithmetical transformations listed above,

Cbr '(0,975)
T i'07 ) =7 i'oa ) ro Wir Oa ) e =
q,1¢3( p E) Od)]( P £)+ Od) 1( P 8)1_ ro¢r1r1(07p7£)
¢r0j(07pa€)
1 - (bTo’l‘o (07 p? 6)

TOT1 0, )
+ (@ir, (0,0, €) + birg (0, 0, ) i) o, ( (g :)e)) )

Prgi(0,p,
(1150, 0,2) + bror (0,0, &) g2 BT
>< P
brory (0,p,
1= q)rlrl (07 P E) - d)rl”‘o (07 P, F,)#i((ipil)
= $i;(0,p, &)+

+

= d)ij (Oa P, E) + d)iro (07 P, £)

d)iro (Oa P, E)(broj (Oa P, 8)(1 - d>7’1r1 (Oa P, E)) +
(1 - d)’roro (Oa P, 8))(1 - d)TlTl (05 P, € ) - (bro'rl (07 P, €>¢T1T0 (Oa P, E)
d)ir’o (07 P, E)Cb’r‘o’l“l (07 P, £)¢T1j(07 P, 5)
£

)
* (1 - d)T‘o"'o (Oa P, S))(l - d)7"17’1 (Oa P, )) - 4)7‘07"1 (07 P, 5)(1)7“17'0 (Oa P, E) -
+ d)iT1 (Oa P, 8)¢)7‘1j(05 P, 8)(1 - d>7‘07‘0 (O, P, E)) +
(]— - d)ToTo (07 pa E))(l - d)?”ﬂ“l (Oa p? E)) - d)T‘oT’l (07 pa E)q)m?“o (03 p7 E)
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+ d)iTl (07 P, E)Cb’r‘l’l“o (07 P, E)d)’roj (07 P, 5) _
(1 - d)roro (0, P, S))(l - ¢T'17‘1 (Oa P, 5)) - q)T'on (07 P, £)¢T'1T‘o (O’ P, 5)
= . ) Tld)Toj(Oa p,a) _
ORI e (WS

=5, (0,0, €). (28)

The above proof for the power-exponential moments 7, ¢4;(k, p, €) is analogous.

Due to commutative, associative and distributive properties of operations rules for
Laurent asymptotic expansions, the above arithmetical transformations do not affect
the corresponding asymptotic expansions for functions r, , ¢4;(k, p,€) and, thus, these
expansions are invariant with respect to any permutation F(’Ln of the sequence 7 .

Therefore, the Laurent asymptotic expansions for the transition power-exponential
moments 7, &;;(k, p, €) and qund)ij(k, P, €), given by the recurrent algorithm of sequen-
tial phase space reduction described above, are identical.

We refer to the book of authors [15], where one can find an analogous proof, con-
cerned the invariance property of the corresponding Laurent asymptotic expansions for
transition power moments for hitting times, presented in the more detailed form.

The described above recurrent algorithm for construction of Laurent asymptotic ex-
pansions for power-exponential moments ®;o(k, p,€), k = 0,...,d, i = ¢,0 can be re-
peated for every g # 0.

This completes the proof of proposition (i) of Theorem 2.

In order to prove proposition (ii) of Theorem 2, one should repeat the same sequence of
recurrent steps described above and, additionally, to apply to every intermediate asymp-
totic expansion, obtained above with the use of operational rules given in propositions
(i), (iii), (v), and (vii) of Lemma 1, the corresponding additional operational rules
given, respectively, in propositions (ii), (vi), (vi), and (viii) of Lemma 1, for comput-
ing parameters of the corresponding upper bounds for remainders.

Unfortunately, the summation and multiplication operational rules for Laurent asymp-
totic expansion with explicit upper bound for remainders, presented in propositions (iv)
and (vi) of Lemma 1, possess commutative but do not possess associative and distributive
properties. This makes parameters parameters 7, 8:0[k, 0], 7,,,Giolk,p], 7, €[k, p],
k=0,...,d,i=q,0 given by the algorithm described below dependent of the choice of

the sequence 7 p,, for g # 0. O
Remark 2. Formulas for parameter ¢ given in Lemma 1 imply, however, that, the
following explicit inequalities take place, for any sequence of states 74 ., and k£ =0,...,d,
i=q,0,q#0,

diolk, p] > 8" [k, p] = di;[n, p]. (29)

Fim . “min
’ J€Y;,ie€X,n=0,...,k

We would like to note that, despite bulky forms, the algorithms for computing coef-
ficients in the asymptotic expansions, and parameters for upper bound for remainders
presented in Theorems 1 and 2, are computationally effective due to their recurrent
character.

In conclusion, we would like to mention again that the power-exponential moments,
which are interesting objects themselves, play the central role in studies of so-called quasi-
stationary phenomena in stochastic systems. This phenomena describe the behaviour of
stochastic systems with random lifetimes. The core of the quasi-stationary phenomenon
is that one can observe something that resembles a stationary behaviour of the system
before the lifetime goes to the end. The corresponding quasi-stationary distribution can
be expressed via the exponential moments of sojourn times and the first order power-
exponential moments of return times, with parameter p, which is the characteristic root
for the distributions of the corresponding return times. Related formulas, comments and



186

D. S. SILVESTROV, S. D. SILVESTROV

examples of applications to asymptotic analysis of perturbed queuing systems and bio-
stochastic systems can be found in the book [4]. Also, related numerical examples can be
found in the book [15]. The asymptotic expansions for quasi-stationary distributions of
nonlinearly perturbed semi-Markov processes do involve higher order power-exponential
moments of return times and asymptotic expansions for these moments. We hope to
publish the corresponding asymptotic results for nonlinearly and singularly perturbed
semi-Markov processes in a near future.
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ACUMIITOTUYHI PO3KJIAIUN OJI CTEIEHEBO-EKCIIOHEHIIIMHIX
MOMEHTIB YACIB JOCATHEHHAA OJIAd HEJITHIMHO 3BYPEHUX
HAIIIBMAPKOBCBKUX ITPOIIECIB

J. C. CUIBBECTPOB, C. J1. CIJIbBBECTPOB

AHoTaliss. Hasegeno HOBI amropuTmu moOYJ0BU ACUMIITOTHYHHUX DO3KJIAJIB JIJIsT €KCIIOHEHIIHHUX Ta
CTEMeHEBO-6KCIOHEHIIIMHNX MOMEHTIB 9aciB HOCATHEHHS AJjIs HeIiHiHO 30ypeHHX HAIiBMAPKOBCHKHX
mporeciB. AaropuTMu 6a3yI0THCA Ha CIEMIAJbHAX TPOIEIyPax MOCIIIOBHOTO CKOPOYEHHsI (pa30BOTO IPO-
CTOPY Ta CHCTEMATHYHOMY BHKOPHCTAHHI ONEPALiMHOTO YHUCIEHHS [JIsi ACHMITOTHYHUX PO3KJaziB Jlo-
paHa, 3aCTOCOBAHMX JO Yacy JOCATHEHHS Ajs 30ypeHHUX HaliBMapKOBChKUX mporecis. Ili aaropurmu
MalOTh yHiBepcanbHHE xapakTep. Bomum moxkyTs OyTm 3acrocoBaHi mo HesiHifino 30ypeHux HamiBMap-
KOBCBHKHUX IIPOIIECIB i3 JOBIJIBHOIO ACUMITOTHYHOI KOMYHIKATHBHOIO CTPYKTYDPOIO (DAa30BOTO IPOCTOPY.
AcuMnToruvHi PO3KIAAM MOZAHO ¥ ABOX (hopmax, 6e3 Ta 3 SIBHUMH OI[iHKAMY 3aJIUIMIKIB. Ajropurmu €
0OYHCTIOBAIBHO eheKTUBHUMH 3aBAAKH PEKYPEHTHOMY XapaKTepy BiAMOBITHUX OOYUCTIOBAJIBHUX MPO-

nenyp.

ACUMIITOTUYECKHUE PA3JIO2KEHUA
JJIsI CTEINMEHHO-9KCIIOHEHIIMAJIBHBIX MOMEHTOB BPEMIiEH
JOCTUXKEHUA [JIsI HEJIMHENHO BO3MVIIIEHHBIX
ITIOJIYMAPKOBCKHIX IIPOIIECCOB

. C. CWJIBBECTPOB, C. . CUJIBBECTPOB

AunHoTanus. IlpuBeseHsl HOBBIE AJITOPUTMBI MOCTPOEHUST ACHMITOTHIECKUX PA3IIOKEHUHN JIJIs 9KCIIO-
HEHIIMAJbHBIX W CTENEHHO-IKCIOHEHIIMAJIbHBIX MOMEHTOB BPEMEH JOCTHUXKEHWS [JIsT HEJUHEHHO BO3MY-
IMEHHBIX MMOJTYMAPKOBCKUX IMPOIECCOB. AJITOPUTMBI OCHOBAHBI HA CHEITHAIBHBIX MPOIEIYPaX MOCTIeI0-
BATEJBHOIO COKpAIleHus (ha30BOro MPOCTPAHCTBA M CHCTEMATUYECKOM HCIOJIB30BAHUM OIEPAIMOHHOTO
MCYHUCJIEHU AJid aCUMITOTHYECKUX Pa3Jioxkenuit JIopana, IpuMEHEHHBIX KO BPEMEHAM [OCTUXKEHUA J1J14
BO3MYIIEHHBIX 10Ty MAPKOBCKHUX IIPOIECCOB. DTH aJIrOPUTMBI UMEIOT YHUBEPCAJIbHEBLI XapakTep. OHU MO-
ryT ObITh IPUMEHEHBI K HEJIMHEHHO BO3MYIIEHHBIM IOy MaPKOBCKUAM IIPOIECCAM € IPOU3BOJILHOM acuMII-
TOTHYECKOH KOMMYHUKATHBHONW CTPYKTYpOil (pa30BOTO MPOCTPAHCTBA. ACHMITOTHYECKHAE DA3IOXKEHHUS
ImaHBl B OBYX (popmax, 0e3 U C SBHBIMH OIEHKAMH OCTATKOB. AJICOPUTMBI SIBJISIFOTCS BBIYUCAUTEIBHO
3 PeKTUBHBIME O1arofapsa peKKypeHTHOMY XapaKTepy COOTBETCTBYIONIUX BBIYHUCIUTENBHBIX IIPOLEAYD.



