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Abstract. New algorithms for construction of asymptotic expansions for exponential and power-
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1. Introduction

We present new algorithms for construction of asymptotic expansions, without and
with explicit upper bounds for remainders, for exponential and power-exponential mo-
ments of hitting times for nonlinearly perturbed semi-Markov processes with finite phase
spaces.

Hitting times are also known under such names as first-rare-event times, first pas-
sage times, and absorption times, in theoretical studies, and as lifetimes, failure times,
extinction times, etc., in applications. These random functionals and their moments
play an important role in theory of semi-Markov processes. We refer to books [1–12]
and [15–20] containing results related to asymptotic expansions for perturbed Markov
chains and semi-Markov processes, including results concerned hitting times, as well as
their applications to asymptotic analysis of reliability, queuing, bio-stochastic systems,
information networks, and other models of perturbed stochastic processes and systems.
Also, we would like to mention the resent paper [14], where one can find a comprehensive
bibliography of works in the area and the corresponding bibliographical remarks.

We consider models, where the phase space for embedded Markov chains of pre-
limiting perturbed semi-Markov processes is one class of communicative states, while
it can asymptotically split in one or several closed classes of communicative states and,
possibly, a class of transient states.

The initial perturbation conditions are formulated in the forms of Laurent asymp-
totic expansions for power-exponential moments of transition times for perturbed semi-
Markov processes given in two alternative forms, without or with explicit upper bounds
for remainders. The algorithms are based on special time-space screening procedures for
sequential phase space reduction and algorithms for re-calculation of asymptotic expan-
sions and upper bounds for remainders, which constitute perturbation conditions for the
semi-Markov processes with reduced phase spaces. The final asymptotic expansions for
exponential and power-exponential moments of hitting times for nonlinearly perturbed
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semi-Markov processes are given in the form of Laurent asymptotic expansions, without
or with explicit upper bounds for remainders.

The present paper continues the line of research of book [4] and the recent authors’
works [14] and [15]. The book [4] contains a detailed presentation of results related
to the asymptotic analysis of quasi-stationary distributions for nonlinearly perturbed
semi-Markov processes, where the power-exponential moments of hitting times play the
central role. In this book, asymptotic expansions for power-exponential moments have
been obtained for the non-singularly perturbed semi-Markov processes with the simple
asymptotic communicative structure of the set of non-absorbing states, which, in this
case, consists of one communicative class plus possibly a class of transient states. How-
ever, the method (based on asymptotic analysis of generalised matrix inverses) used in
this book does not work well for the more complex model of singularly perturbed semi-
Markov processes, where the set of non-absorbing states has a more complex asymptotic
structure and can asymptotically split in several closed communicative classes of states
plus possibly a class of transient states. In this case, moments of hitting times can
be asymptotically unbounded functions of perturbation parameter due to presence of
asymptotically absorbing states or subsets of states. Their asymptotic analysis, with the
use of the generalised matrix inverses, becomes rather intricate. Also, the only asymp-
totic expansions with remainders given in the standard form of o(·) have been given in
this book. In works [14] and [15], asymptotic expansions are obtained for singularly per-
turbed semi-Markov processes, with remainders without and with explicit upper bounds
for remainders, but only for simpler power moments of hitting times.

In the present paper, we get asymptotic expansions for more complex power-exponenti-
al moments of hitting times for nonlinearly and singularly perturbed semi-Markov pro-
cesses. An important novelty of results presented in the paper is that the corresponding
asymptotic expansions are obtained with remainders given not only in the standard form
of o(·), but, also, in a more advanced form, with explicit power-type upper bounds for re-
mainders asymptotically uniform with respect to the perturbation parameter. The latter
asymptotic expansions for power-exponential moments of hitting times for nonlinearly
perturbed semi-Markov processes were not known before.

The corresponding computational algorithms have a universal character. They can be
applied to perturbed semi-Markov processes with an arbitrary asymptotic communicative
structure of phase spaces and are computationally effective due to the recurrent character
of computational procedures.

2. Laurent asymptotic expansions

Let A(ε) be a real-valued function defined on an interval (0, ε0], for some 0 < ε0 ≤
≤ 1, and given on this interval by a Laurent asymptotic expansion, A(ε) = ahA

εhA +
+ · · ·+ akA

εkA + oA
(
εkA
)
, where (a) −∞ < hA ≤ kA <∞ are integers, (b) coefficients

ahA
, . . . , akA

are real numbers, (c) function oA
(
εkA
)
/εkA → 0 as ε → 0. We refer

to the Laurent asymptotic expansion A(ε) as a (hA, kA)-expansion. We also refer to
A(ε) as a (hA, kA, δA, GA, εA)-expansion, if additionally (d)

∣∣oA
(
εkA
)∣∣ ≤ GAε

kA+δA , for
0 < ε ≤ εA, where (e) 0 < δA ≤ 1, 0 < GA < ∞, and 0 < εA ≤ ε0, We say that the
Laurent asymptotic expansion A(ε) is pivotal if it is known that ahA

6= 0.
It is also useful to mention that a constant a can be interpreted as function A(ε) ≡ a.

Thus, 0 can be represented, for any integer −∞ < h ≤ k < ∞, as the (h, k)-expansion,
0 = 0εh + · · · + 0εk + o

(
εk
)
, with remainder o(εk) ≡ 0. Also, 1 can be represented, for

any integer 0 ≤ k < ∞, as the (0, k)-expansion, 1 = 1 + 0ε + · · · + 0εk + o
(
εk
)
, with

remainder o
(
εk
)
≡ 0.
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Let us consider three Laurent asymptotic expansions, A(ε) = ahA
εhA + · · ·+akA

εkA +
+oA

(
εkA
)
, B(ε) = bhB

εhB + · · ·+bkB
εkB +oB

(
εkB
)
, and C(ε) = chC

εhC + · · ·+ckC
εkC +

+oC
(
εkC
)

defined on the interval (0, ε0].
Let us denote FA = maxhA≤i≤kA

|ai|, FB = maxhB≤i≤kB
|bi|, FC = maxhC≤i≤kC

|ci|.
The following lemma presents operational rules for Laurent asymptotic expansions.

The corresponding proofs can be found in the works of authors [14] and [15].

Lemma 1. The following operational rules take place for Laurent asymptotic expansions:

(i) If A(ε) is a (hA, kA)-expansion and c is a constant, then C(ε) = cA(ε) is a
(hC , kC)-expansion such that: (a) hC = hA, kC = kA; (b) chC+r = cahC+r,
r = 0, . . . , kC − hC . This expansion is pivotal if and only if chC

= cahA
6= 0.

(ii) Also, if A(ε) is a (hA,kA,δA,GA,εA)-expansion, then C(ε) is a (hC ,kC ,δC ,GC ,εC)-
expansion such that: (c) δC = δA; (d) GC = |c|GA; (e) εC = εA.

(iii) If A(ε) is a (hA, kA)-expansion and B(ε) is a (hB , kB)-expansion, then C(ε) =
= A(ε)+B(ε) is a (hC , kC)-expansion such that: (a) hC = hA∧hB, kC = kA∧kB;
(b) chC+r = ahC+r + bhC+r, r = 0, . . . , kC − hC , where ahC+r = 0 for 0 ≤ r <
< hA − hC and bhC+r = 0 for 0 ≤ r < hB − hC . This expansion is pivotal if and
only if chC

= ahC
+ bhC

6= 0.
(iv) Also, if A(ε) is a (hA,kA,δA,GA,εA)-expansion and B(ε) is a (hB ,kB ,δB ,GB ,εB)-

expansion, then C(ε) is a (hC , kC , δC , GC , εC)-expansion such that: (c) δC =
= δA ∧ δB; (d) GC = GA +FA(kA−kC) +GB +FB(kB −kC); (e) εC = εA ∧ εB.

(v) If A(ε) is a (hA, kA)-expansion and B(ε) is a (hB , kB)-expansion, then C(ε) =
= A(ε) · B(ε) is a (hC , kC)-expansion such that: (a) hC = hA + hB, kC =
= (kA +hB)∧ (kB +hA); (b) chC+r =

∑
0≤i≤r ahA+ibhB+r−i, r = 0, . . . , kC −hC .

This expansion is pivotal if and only if chC
= ahA

bhB
6= 0.

(vi) Also, if A(ε) is a (hA,kA,δA,GA,εA)-expansion and B(ε) is a (hB ,kB ,δB ,GB ,εB)-
expansion, then C(ε) is a (hC , kC , δC , GC , εC)-expansion such that: (c) δC =
= δA ∧ δB; (d) GC = FAFB(kA − hA + 1)(kB − hB + 1) +GAFB(kB − hB + 1) +
+GBFA(kA − hA + 1) + GAGB; (e) εC = εA ∧ εB.

(vii) If A(ε) is a (hA, kA)-expansion, and B(ε) is a pivotal (hB , kB)-expansion such

that B(ε) 6= 0, ε ∈ (0, ε0], then C(ε) = A(ε)
B(ε) is a (hC , kC)-expansion such that:

(a) hC = hA−hB, kC = (kA−hB)∧ (kB−2hB +hA); (b) chC+r = b−1
hB

(
ahA+r−

−∑1≤i≤r bhB+ichC+r−i
)
, r = 0, . . . , kC − hC . This expansion is pivotal if and

only if chD
= ahA

/bhB
6= 0.

(viii) Also, if A(ε) is a (hA, kA, δA, GA, εA)-expansion and B(ε) is a pivotal
(hB , kB, δB , GB , εB)-expansion, then C(ε) is a (hC , kC , δC , GC , εC)-expansion

such that: (c) δC = δA∧δB; (d) GC =
( |bhB

|
2

)−1(
FA(kA−kA∧(hA+kB−hB))+

+GA+FBFD(kB−hB+1)(kD−hD+1)+GBFD(kD−hD+1)
)
; (e) εC = εA∧εB∧

∧
( |bhB

|
2(FB(kB−hB)+GB)

) 1
δB .

3. Perturbed semi-Markov processes

Let X = {0, . . . ,m} and (ηε,n,κε,n), n = 0, 1, . . ., be, for every ε ∈ (0, ε0], a Markov
renewal process, i.e., a homogeneous Markov chain with the phase space X × [0,∞),
an initial distribution p̄ε = 〈pε,i = P{ηε,0 = i, κε,0 = 0} = P{ηε,0 = i}, i ∈ X〉 and
transition probabilities, defined for (i, s), (j, t) ∈ X × [0,∞),

Qε,ij(t) = P
{
ηε,1 = j,κε,1 ≤ t

/
ηε,0 = i, κε,0 = s

}
.

Note that the above transition probabilities do not depend on variable s. In this case,
the random sequence ηε,n is also a homogeneous (embedded) Markov chain with the
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phase space X and the transition probabilities, defined for i, j ∈ X,

pij(ε) = Qε,ij(∞) = P{ηε,1 = j /ηε,0 = i}.
The following communication condition plays an important role:

A: There exist sets Yi ⊆ X, i ∈ X such that:
(a) probabilities pij(ε) > 0, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0];

(b) probabilities pij(ε) = 0, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0];
(c) there exists, for every pair of states i, j ∈ X, an integer nij ≥ 1 and a

chain of states i = lij,0, lij,1, . . . , lij,nij
= j such that lij,1 ∈ Ylij,0 , . . . ,

lij,nij
∈ Ylij,nij−1

.

We refer to sets Yi, i ∈ X as transition sets. Conditions A implies that all sets Yi 6= ∅,
i ∈ X and that the phase space X of Markov chain ηε,n is one class of communicative
states, for every ε ∈ (0, ε0].

The following condition excludes instant transitions:

B: Qε,ij(0) = 0, i, j ∈ X, for every ε ∈ (0, ε0].

Let us now introduce a semi-Markov process ηε(t) = ηε,νε(t), t ≥ 0, where νε(t) =
= max(n ≥ 0 : ζε,n ≤ t) is a number of jumps in the time interval [0, t] and ζε,n =
= κε,1 + · · ·+ κε,n, n = 0, 1, . . ., are sequential moments of jumps, for the semi-Markov
process ηε(t).

Let us introduce transition power-exponential moments of transition times, for % ≥ 0,
k = 0, 1, . . ., i, j ∈ X,

φij(k, %, ε) = Eiκ
k
ε,1e

%κε,1I(ηε,1 = j) =

∫ ∞

0

tke%tQε,ij(dt). (1)

Here and henceforth, notations Pi and Ei are used for conditional probabilities and
expectations under condition ηε,0 = i.

Conditions A (a)–(b) and B imply that, for every ε ∈ (0, ε0], moments φij(k, %, ε) ∈
∈ (0,∞], for % ≥ 0, k = 0, 1, . . ., j ∈ Yi, i ∈ X, and φij(k, %, ε) = 0, for % ≥ 0, k = 0, 1, . . .,

j ∈ Yi, i ∈ X.
Let us assume that the following condition holds for some ρ◦ > 0:

Cρ◦ : φij(0, ρ◦, ε) <∞, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0].

Obviously condition Cρ◦ implies that moments φij(k, %, ε) <∞, for any 0 ≤ % < ρ◦,
k = 0, 1, . . . , j ∈ Yi, i ∈ X.

It is appropriate to mention two important particular cases.
If Qε,ij(t) = I(t ≥ 1)pij(ε), t ≥ 0, i, j ∈ X, then ηε(t) = ηε,[t], t ≥ 0 is a discrete time

homogeneous Markov chain embedded in continuous time. In this case, φij(k, %, ε) =
= e%pij(ε) <∞, for % > 0, i, j ∈ X.

If Qε,ij(t) =
(
1− e−λi(ε)t

)
pij(ε), t ≥ 0, i, j ∈ X (here, 0 < λi(ε) < ∞, i ∈ X), then

ηε(t), t ≥ 0 is a continuous time homogeneous Markov chain. In this case, φij(k, %, ε) =

= kλi(ε)
(λi(ε)−%)k+1 pij(ε) <∞, for % < λi(ε), i, j ∈ X.

Let us define the hitting time for the semi-Markov process ηε(t) to the state 0 (of
course, this state can be replaced by any other state i ∈ X),

τε,0 =

νε,0∑

n=1

κε,n, where νε,0 = min(n ≥ 1 : ηε,n = 0). (2)

The object of our interest are power-exponential moments for hitting times, for % ≥ 0,
k = 0, 1, . . ., i ∈ X,

Φi(k, %, ε) = Eiτ
k
ε,0e

%τε,0 . (3)

Condition Cρ◦ does not imply that exponential moments Φi(0, ρ◦, ε) are finite.
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Necessary and sufficient conditions of finiteness for exponential moments of hitting
times are given in terms of so-called test-functions in [4] and [13].

We refer to functions v(i), i ∈ X defined on the space X and taking value in the interval
[0,∞) as test-functions.

Let us introduce condition:

Dρ◦ : There exist, for every ε ∈ (0, ε0], a test-function vε,ρ◦(i), i ∈ X, such that the
following test inequalities hold,

vε,ρ◦(i) ≥ φi0(0, ρ◦, ε) +
∑

j∈X,j 6=0

φij(0, ρ◦, ε)vε,ρ◦(j), i ∈ X. (4)

Lemma 2. Let conditions A, B and Cρ◦ hold. Then, the exponential moments
Φi0(0, ρ◦, ε) < ∞, i ∈ X, for ε ∈ (0, ε0], if and only if condition Dρ◦ holds. In this
case, inequalities Φi0(0, ρ◦, ε) ≤ vε,ρ◦(i), i ∈ X hold, for ε ∈ (0, ε0], and the exponential
moments Φi0(0, ρ◦, ε), i ∈ X are, for every ε ∈ (0, ε0], the unique solution for the system
of linear equations,

Φi0(0, ρ◦, ε) = φi0(0, ρ◦, ε) +
∑

j∈X,j 6=0

φij(0, ρ◦, ε)Φj0(0, ρ◦, ε), i ∈ X. (5)

In what follows, we always assume that conditions A, B, Cρ◦ , and Dρ◦ hold.
It is obvious that Φi0(k, %, ε) ≤ Lk,ρ0−%Φi0(0, ρ◦, ε) < ∞, for 0 ≤ % < ρ◦,

k = 0, 1, . . ., i ∈ X, where Lk,ρ0−% = supx≥0 x
ke−(ρ◦−%)x <∞.

Let us assume that the following perturbation condition, based on Laurent asymptotic
expansions, holds, for some integer d ≥ 0 and real 0 < ρ < ρ◦:

Ed,ρ: φij(k, ρ, ε) =

h+
ij [k,ρ]∑

l=h−ij [k,ρ]

gij [k, ρ, l]ε
l + ok,ρ,ij

(
εh

+
ij [k,ρ]

)
, ε ∈ (0, ε0],

for k = 0, . . . , d, j ∈ Yi, i ∈ X, where
(a) −∞ < h−ij [k, ρ] ≤ h+

ij [k, ρ] < ∞ are integers, coefficients gij [k, ρ, l],

l = h−ij [k, ρ], . . . , h+
ij [k, ρ] are real numbers, and gij

[
k.ρ, h−ij [k, ρ]

]
> 0, for

k = 0, . . . , d, j ∈ Yi, i ∈ X;

(b) function ok,ρ,ij

(
εh

+
ij [k.ρ]

)/
εh

+
ij [k,ρ] → 0 as ε → 0, for k = 0, . . . , d, j ∈ Yi,

i ∈ X.

We refer here to the book [4], where the asymptotic expansions appearing in condition
Ed,ρ are explicitly given for the cases of discrete and continuous time Markov chains.

If ηε,0 6= 0, then the first hitting time τε,0 ≥ τε =
∑µε

n=1 κε,n, where µε =
= max(n ≥ 0 : ηε,n 6= ηε,0). This inequality implies that, for % ≥ 0, i 6= 0 and
ε ∈ (0, ε0],

Φi(0, %, ε) ≥ Eie
%τε =

∑

n≥1

φii(0, %, ε)
n−1

∑

j 6=i

φij(0, %, ε) =

∑
j 6=iφij(0, %, ε)

1− φii(0, %, ε)
. (6)

Thus, condition Dρ◦ implies that the following inequalities should also hold, for
ε ∈ (0, ε0],

φii(0, ρ◦, ε) < 1, i 6= 0. (7)

Condition Ed,ρ and inequalities (7) imply that the following condition should also
hold:

Fρ: For every i 6= 0, either (a) h−ii [0, ρ] > 0, or (b) h−ii [0, ρ] = 0 and gii[0, ρ, h
−
ii [0, ρ]] < 1,

or (c) h−ii [0, ρ] = 0, gii[0, ρ, h
−
ii [0, ρ]] = 1, h+

ii [0, ρ] ≥ 1 and there are non-zero terms
in the sequence, gii[0, ρ, 1], . . . , gii[0, ρ, h

+
ii [0, ρ]], moreover, the first such term, say

gii[0, ρ, li], where 1 ≤ li ≤ h+
ii [0, ρ], is a negative number.
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It is useful to note that proposition (i) of Lemma 1 and conditions Ed,ρ and Fρ imply
that the function,

1− φii(0, ρ, ε) = 1 +

h+
ii[0,ρ]∑

l=h−ii[0,ρ]

−gii[0, ρ, l]εl − o0,ρ,ii

(
εh

+
ii[0,ρ]

)
=

=

h̄+
ii[0,ρ]∑

l=h̄−ii[0,ρ]

ḡii[0, ρ, l]ε
l + ō0,ρ,ii

(
εh̄

+
ii[0,ρ]

)
, ε ∈ (0, ε0], (8)

is, for every i ∈ Yi, i 6= 0, a pivotal Taylor asymptotic expansion, with parameters
h̄−ii [0, ρ] equal to 0 if alternative (a) or (b) takes place, or li if alternative (c) takes place
in condition Fρ, h̄+

ii [0, ρ] = h+
ii [0, ρ], and the corresponding coefficients and remainder

determined in an obvious way by relation (8). Note also that 1 − φii(0, ρ, ε) ≡ 1, for
i ∈ Yi, i 6= 0.

Conditions Ed,ρ and Fρ guarantee that there exists ε′0 ∈ (0, ε0] such that function
φii(0, %, ε) given by the asymptotic expansion appearing in condition satisfies, for every
i 6= 0 and ε ∈ (0, ε′0], inequality 0 < φii(0, ρ, ε) < 1. For, simplicity, we just assume that
ε′0 = ε0.

In the case, where Laurent asymptotic expansions with explicit upper bounds for
remainders are the objects of interest, the assumption Ed (b) imposed on the remainders

ok,ij

(
εh

+
ij [k,ρ]

)
should be replaced by the following stronger condition:

Gd,ρ:
∣∣∣ok,ρ,ij

(
εh

+
ij [k,ρ]

)∣∣∣ ≤ Gij [k, ρ]εh
+
ij [k,ρ]+δij [k,ρ], 0 < ε ≤ εij [k, ρ], for k = 0, . . . , d,

j ∈ Yi, i ∈ X, where 0 < δij [k, ρ] ≤ 1, 0 ≤ Gij [k, ρ] < ∞, 0 < εij [k, ρ] ≤ ε0, for
k = 0, . . . , d, j ∈ Yi, i ∈ X.

It is also useful to note that, in this case, the above
(
h̄−ii [0, ρ], h̄+

ii [0, ρ]
)
-expansion for

function 1 − φii(0, ρ, ε) is a
(
h̄−ii [0, ρ], h̄+

ii [0, ρ], δii[k, ρ], Gii[k, ρ], εii[k, ρ]
)
-expansion, for

i 6= 0.
Condition Ed,ρ does not imply that there exist limits, limε→0 pij(ε), i, j ∈ X. However,

any sequence εn → 0 as n → ∞ obviously contains a subsequence εnN
→ 0 as N → ∞

such that there exist limits, limN→0 pij(εnN
) = pij(0), i, j ∈ X. Matrix ‖pij(ε)‖ is

stochastic, for every ε ∈ (0, ε0], and, thus, matrix ‖pij(0)‖ is also stochastic. It is
possible that matrix ‖pij(0)‖ has more zero elements than matrices ‖pij(ε)‖. Therefore,
a Markov chain η0,n, with the phase space X and the matrix of transition probabilities
‖pij(0)‖ can be non-ergodic, and its phase space X can consist of one or several closed
classes of communicative states plus, possibly, a class of transient states.

4. Reduced semi-Markov processes

In what follows, we assume that conditions A–Dρ0
hold.

Let us choose some state r 6= 0 and consider the reduced phase space rX = X \ {r},
with the state r excluded from the phase space X.

We define the sequential moments of hitting space rX by the embedded Markov chain,

rξε,n = min(k > rξε,n−1, ηε,k ∈ rX), n = 1, 2, . . ., where rξε,0 = 0, and the random
sequence,

(rηε,n, rκε,n) =

(
ηε,rξε,n ,

rξε,n∑

k=rξε,n−1+1

κε,k

)
, n = 1, 2, . . . , (rηε,0, rκε,0) = (ηε,0, 0).

This sequence is also a Markov renewal process with the phase space X× [0,∞), the
initial distribution rp̄ε = 〈rpε,i = pε,i, i ∈ X〉, and transition probabilities, defined for
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(i, s), (j, t) ∈ X× [0,∞),

rQε,ij(t) = P
{
rηε,1 = j, rκε,1 ≤ t

/
rηε,0 = i, rκε,0 = s

}
.

Obviously, transition probabilities rQε,ir(t) = 0, for i ∈ X, t ≥ 0.
The transition probabilities rQε,ij(t) are expressed via the transition probabilities

Qε,ij(t) by the following formula, for i ∈ X, j ∈ rX, t ≥ 0,

rQε,ij(t) = Pi{ηε,1 = j,κε,1 ≤ t}+

+
∞∑

n=0

Pi{ηε,1 = r,ηε,k+1 = r, 1 ≤ k ≤ n,ηε,n+2 = j,κε,1 + · · ·+ κε,n+2 ≤ t} =

= Qε,ij(t) +
∞∑

n=0

Qε,ir(t) ∗Q∗nε,rr(t) ∗Qε,rj(t). (9)

Here, symbol ∗ is used to denote the corresponding variant of convolution for the
above semi-Markov transition probabilities.

The above formula directly implies the following formula for transition probabilities
of the embedded Markov chain rηε,n, for i ∈ X, j ∈ rX,

rpij(ε) = rQε,ij(∞) = pij(ε) + pir(ε)
prj(ε)

1− prr(ε)
. (10)

The transition distributions for the Markov chain rηε,n, are concentrated on the re-
duced phase space rX, i. e., for every i ∈ X,

∑

j∈rX
rpij(ε) =

∑

j∈rX
pij(ε) + pir(ε)

∑

j∈rX

prj(ε)

1− prr(ε)
=

=
∑

j∈rX
pij(ε) + pir(ε) = 1. (11)

If the initial distribution p̄ε is concentrated on the phase space rX, i. e., pε,r = 0,
then the random sequence (rηε,n, rκε,n), n = 0, 1, . . . can also be considered as a Markov
renewal process with the reduced phase rX× [0,∞), the initial distribution

rp̄ε =
〈
pε,i = P{rηε,0 = i, rκε,0 = 0} = P{rηε,0 = i}, i ∈ rX

〉

and transition probabilities rQε,ij(t), t ≥ 0, i, j ∈ rX.
If the initial distribution p̄ is not concentrated on the phase space rX, i. e., pε,r > 0,

then the random sequence (rηε,n, rκε,n), n = 0, 1, . . . can be considered as a Markov
renewal process with so-called transition period.

Respectively, one can define the transformed semi-Markov process,

rηε(t) = rηε,rνε(t), t ≥ 0, (12)

where rνε(t) = max(n ≥ 0 : rζε,n ≤ t) is a number of jumps at time interval [0, t], for
t ≥ 0, and rζε,n = rκε,1 + · · ·+ rκε,n, n = 0, 1, . . . are sequential moments of jumps, for
the semi-Markov process rηε(t).

If the initial distribution p̄ε is concentrated on the phase space rX, then process rηε(t)
can be considered as a standard semi-Markov process with the reduced phase rX, the
initial distribution rp̄ε = 〈rpi = P{rηε(0) = i}, i ∈ rX〉 and transition probabilities

rQε,ij(t), t ≥ 0, i, j ∈ rX.
According to the above remarks, we can refer to the process rηε(t) as a reduced

semi-Markov process.
If the initial distribution p̄ε is not concentrated on the phase space rX, then the process

rηε(t) can be interpreted as a reduced semi-Markov process with transition period.



178 D. S. SILVESTROV, S. D. SILVESTROV

Let us introduce the following sets, for i, r ∈ X,

Y+
ir = {j ∈ rX : j ∈ Yi} and Y−ir =

{
{j ∈ rX : j ∈ Yr} if r ∈ Yi,

∅ if r /∈ Yi,
(13)

and

rYi = Y−ir ∪ Y+
ir, i ∈ X. (14)

It is readily seen that, for every r 6= 0, condition A holds for the reduced Markov
chains rηε,n, with the phase space rX. In this case, rYi, i ∈ rX are the corresponding
transition sets.

Condition A implies that prr(ε) ∈ [0, 1), r 6= 0, ε ∈ (0, ε0].
This relations and formulas (10)–(11) imply that transition probabilities rprj(ε) > 0,

j ∈ rYr = Yr \ {r}, for ε ∈ (0, ε0], or rprj(ε) = 0, j ∈ rYr, for ε ∈ (0, ε0].
Thus, if rηε,n is a reduced Markov chain with transition period, then set rX is a closed

class of communicative states, while r is a transient state, for every ε ∈ (0, ε0].
Obviously, condition B also holds for the reduced semi-Markov processes rηε(t).
Taking into account that rξε,1 is a Markov time for the Markov renewal process

(ηε,n, κε,n), we can write down the following system of stochastic equalities, for every
i, j ∈ rX,





rκε,i,1I(rηε,i,1 = j)
d
= κε,i,1I(ηε,i,1 = j) +

+ (κε,i,1 + rκε,r,1)I(ηε,i,1 = r)I( rηε,r,1 = j),

rκε,r,1I( rηε,r,1 = j)
d
= κε,r,1I(ηε,r,1 = j) +

+ (κε,r,1 + rκε,r,1)I(ηε,r,1 = r)I(rηε,r,1 = j),

(15)

where:

(a) (ηε,i,1, κε,i,1) is a random vector, which takes values in space X× [0,∞) and has
the distribution P{ηε,i,1 = j,κε,i,1 ≤ t} = Qij(t), j ∈ X, t ≥ 0, for every i ∈ X;

(b) (rηε,i,1, rκε,i,1) is a random vector which takes values in the space rX×[0,∞) and
has distribution P{rηε,i,1 = j, rκε,i,1 ≤ t} = Pi{rηε,1 = j, rκε,1 ≤ t} = kQij(t),
j ∈ kX, t ≥ 0, for every i ∈ X;

(c) (ηε,i,1, κε,i,1) and (rηε,r,1, rηε,r,1) are independent random vectors, for every
i, r ∈ X.

Here, symbol
d
= is used to show that random variables on the left and right hand sides

of the corresponding equality have the same distribution.
Let us introduce transition power-exponential moments, for % ≥ 0, k = 0, 1, . . ., r 6= 0,

i ∈ X, j ∈ rX,

rφij(k, %, ε) =

∫ ∞

0

tke%t rQε,ij(dt). (16)

By computing exponential moments in stochastic relations (15) we get, for every
0 ≤ % ≤ ρ0, r 6= 0, i, j ∈ rX and ε ∈ (0, ε0], the following system of linear equations for
the exponential moments rφrj(0, %, ε), rφij(0, %, ε),

{
rφrj(0, %, ε) = φrj(0, %, ε) + φrr(0, %, ε) rφrj(0, %, ε),

rφij(0, %, ε) = φij(0, %, ε) + φir(0, %, ε) rφrj(0, %, ε).
(17)

It is possible that the moments φrr(0, ρ, ε) or φir(0, ρ, ε) equals to 0, while the moment
φj0(0, ρ, ε) equal to +∞ in relation (17). In such cases, one should set the product 0 ·∞
to be 0 when calculating the products at the right-hand side of equality (17).

However, inequality (7) and relation (17) imply that rφij(0, ρ0, ε) < ∞, for every
r 6= 0, i ∈ X, j ∈ rX and ε ∈ (0, ε0].
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Thus, relation (17) yields the following formulas for the moments rφrj(0, ρ, ε) and

rφij(0, ρ, ε), for every 0 ≤ % ≤ ρ0, r 6= 0, i, j ∈ rX,




rφrj(0, ρ, ε) =
φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
,

rφij(0, ρ, ε) = φij(0, ρ, ε) +
φir(0, ρ, ε)φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
.

(18)

It is useful to note that the second formula in relation (18) reduces to the first one, if
to assign i = r in this formula.

Thus, condition Cρ0
holds for the reduced semi-Markov processes rηε(t).

Obviously, rφij(k, %, ε) ≤ Lk,ρ0−% rφij(0, ρ◦, ε), for 0 ≤ % < ρ◦, k = 0, 1, . . . , r 6= 0,
i ∈ X, j ∈ rX and ε ∈ (0, ε0].

Also, it is easily seen that for every 0 ≤ % < ρ0, k = 1, . . ., r 6= 0, i ∈ X, j ∈ rX
and ε ∈ (0, ε0], function rφij(0, %, ε) has a derivative of order k, and it is the function

rφij(k, %, ε).
Therefore, we can differentiate equations (17) and get the following system of linear

equation, for every 0 ≤ % < ρ0, k = 1, . . ., r 6= 0, i ∈ X, j ∈ rX and ε ∈ (0, ε0],
{

rφrj(k, %, ε) = rλrj(k, %, ε) + φrr(0, %, ε) rφrj(k, %, ε),

rφij(k, %, ε) = rλij(k, %, ε) + φir(0, %, ε) rφrj(k, %, ε),
(19)

where,

rλij(k, %, ε) = φij(k, %, ε) +
k−1∑

l=0

(
k

l

)
φir(k − l, %, ε) rφrj(l, %, ε). (20)

Relation (19) yields the following formulas for moments rφrj(k, %, ε) and rφij(k, %, ε),
which can be used, for every 0 ≤ % < ρ0, k = 0, 1, . . ., r 6= 0, i, j ∈ rX and ε ∈ (0, ε0],





rφrj(k, %, ε) =
rλrj(k, %, ε)

1− φrr(0, %, ε)
,

rφij(k, %, ε) = rλij(k, %, ε) +
φir(0, %, ε) rλrj(k, %, ε)

1− φrr(0, %, ε)
.

(21)

Formulas (21) have recurrent character since expressions for functions rλrj(k, %, ε),

rλij(k, %, ε) include functions rφrj(l, %, ε), l = 0, 1, . . . , k − 1.
For k = 0, formulas (21) reduce to formulas (18).
Let us define the hitting times for the reduced semi-Markov processes, for r 6= 0,

rτε,0 =

rνε,0∑

n=1

rκε,n, where rνε,0 = min(n ≥ 1 : rηε,n = 0), (22)

and the corresponding power-exponential moments, for % ≥ 0, k = 0, 1, . . ., i ∈ X,

rΦi(k, %, ε) = Ei rτ
k
ε,0 e

% rτε,0 . (23)

For every ε ∈ (0, ε0], the semi-Markov processes ηε(t) and rηε(t) and, in sequel, the
hitting times τε,0 and rτε,0 are defined on the same probability space. This space can,
however, be different for different ε.

Moreover, the following proposition follows from the fact that hitting of state j ∈ rX
by the semi-Markov process rηε(t) can occur only at moments of hitting space rX by the
semi-Markov process ηε(t). Its proof can be found, for example, in [14] and [15].

Lemma 3. For every state r 6= 0 and ε ∈ (0, ε0], the hitting times τε,0 and rτε,0 to the
state 0, respectively, for semi-Markov processes ηε(t) and rηε(t), coincide.



180 D. S. SILVESTROV, S. D. SILVESTROV

According Lemma 3, τε,0 and rτε,0 are, in fact, the same random variable defined in
two different forms in terms, respectively, of processes ηε(t) and rηε(t). The following
lemma, which is an obvious corollary of Lemma 3, plays an important role in what
follows.

Lemma 4. The exponential moments, rΦi0(0, %, ε) = Φi0(0, %, ε) <∞, for any 0 ≤ % ≤
≤ ρ0, r 6= 0, i ∈ X and ε ∈ (0, ε0], and the power-exponential moments, rΦi0(k, %, ε) =
= Φi0(k, %, ε) <∞ for any 0 ≤ % < ρ0, k = 0, 1, . . ., r 6= 0, i ∈ X and ε ∈ (0, ε0].

Let us summarise the above remarks.

Lemma 5. Conditions A–Dρ0
assumed to hold for the semi-Markov processes ηε(t),

also hold for the reduced semi-Markov processes rηε(t).

Since condition Dρ◦ holds for reduced semi-Markov processes rηε(t), the following
inequalities also hold, for ε ∈ (0, ε0],

rφii(0, ρ◦, ε) < 1, i 6= 0, r. (24)

5. Asymptotic expansions for power-exponential moments
of hitting times

Let us now describe algorithms for construction of asymptotic expansions for power-
exponential moments of hitting times.

Proofs of Theorems 1 and 2 presenting these algorithms are based on recurrent ap-
plication of operational rules for Laurent asymptotic expansions given in Lemma 1 to
the reduced semi-Markov processes constructed with the use of the recurrent time-space
screening procedures of phase space reduction described below. In fact, one should cor-
rectly describe to which functions, in which order, and which operational rules should
be applied for getting the corresponding expansions (their parameters, coefficients and
parameters of upper bounds for remainders) as well as to indicate some particular cases,
where the corresponding computational steps should be modified. This is exactly what
is done in the proofs of Theorems 1 and 2. An explicit writing down of the corresponding
operational formulas representing the recurrent algorithms described below (which could
be given as corollaries of the above theorems) would, in fact, replicate the above proofs
in the formal form, require implementation of a huge number of intermediate notations,
take too much space, etc., but would not add any new essential information about the
corresponding algorithms. That is why the decision was made, just, to say in each the-
orem that the description of the corresponding algorithm is given in its proof. This
makes formulations slightly unusual. But, as we think, this is the most compact way for
presentation of the corresponding asymptotic results and algorithms.

Theorem 1. The following propositions take place:

(i) If conditions A–Fρ hold for the semi-Markov processes ηε(t), then these condi-
tions also hold for the reduced semi-Markov processes rηε(t), for every r 6= 0.
The corresponding pivotal (rh

−
ij [k, ρ], rh

+
ij [k, ρ])-expansions for the mixed power-

exponential moments rφij(k, ρ, ε), k = 0, . . . , d, j ∈ rYi, i ∈ X are given by the
algorithm described below, in the proof of the theorem.

(ii) If, additionally, condition Gd,ρ holds for the semi-Markov processes ηε(t), then
this condition also hold for the reduced semi-Markov processes rηε(t). In this case,
the above

(
rh
−
ij [k, ρ], rh

+
ij [k, ρ]

)
-expansions are also the pivotal

(
rh
−
ij [k, ρ], rh

+
ij [k, ρ],

rδij [k, ρ], rGij [k, ρ] rεij [k, ρ]
)
-expansions, with parameters rδij [k, ρ], rGij [k, ρ],

rεij [k, ρ] given by the algorithm described below, in the proof of the theorem.
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Proof. Lemma 5 implies that conditions A–Dρ0
hold for the semi-Markov processes

rηε(t), with the same parameter ε0 as for the semi-Markov processes ηε(t), and the
transition sets rYi, i ∈ rX given by relation (14).

In order to prove that condition Ed,ρ also holds for semi-Markov processes rηε(t),
with the same parameter ε0 and the transition sets rYi, i ∈ rX given by relation (14),
let us construct the corresponding asymptotic expansions appearing in this condition.

Let r 6= 0, i ∈ X and j, r ∈ Yi ∩ Yr.
At the initial step, we construct the asymptotic expansions for exponential moments

rφrj(1, ρ, ε) and rφij(0, ρ, ε) using formulas formulas (18) and the corresponding asymp-
totic expansions appearing in condition Ed,ρ.

First, proposition (vi) (the multiplication rule) of Lemma 1 should be applied to the
product φir(0, ρ, ε)φrj(0, ρ, ε).

Second, proposition (vii) (the division rule) of Lemma 1 should be applied to the

quotient
φir(0,ρ,ε)φrj(0,ρ,ε)

1−φrr(0,ρ,ε) . Here, the asymptotic expansion for function 1−φrr(0, ρ, ε)

given in relation (8) should be used.
Third, proposition (iii) (the summation rule) of Lemma 1 should be applied to the

sum φij(0, ρ, ε) +
φir(0,ρ,ε)φrj(0,ρ,ε)

1−φrr(0,ρ,ε) .

If j /∈ Yi then φij(0, ρ, ε) ≡ 0; if j /∈ Yr then φrj(0, ρ, ε) ≡ 0; if r /∈ Yi then
φir(0, ρ, ε) ≡ 0; if r /∈ Yr then 1 − φrr(0, ρ, ε) ≡ 1. In these cases, the above algorithm
is readily simplified.

According to Lemma 1, the
(
rh
−
ij [0, ρ], rh

+
ij [0, ρ]

)
-expansions,

rφij(0, ρ, ε) =

rh
+
ij [0,ρ]∑

l=rh
−
ij [0,ρ]

rgij [0, ρ, l]ε
l + ro0,ρ,ij

(
εrh

+
ij [0,ρ]

)
, (25)

yielded by the above algorithm, for r 6= 0, i ∈ X, j ∈ rYi, are pivotal.
Steps of the algorithm described above should be recurrently repeated for k = 1, . . . , d.
Let assume that the corresponding pivotal asymptotic expansions for power-exponenti-

al moments rφrj(l, ρ, ε), rφij(l, ρ, ε), l = 0, . . . , k−1 have been already constructed with
the use of formulas (20)–(21). In this case, the asymptotic expansions for moments

rφrj(k, ρ, ε), rφij(k, ρ, ε) can be constructed using the above asymptotic expansions,
formulas (20)–(21), and the corresponding asymptotic expansions appearing in condition
Ed,ρ, in the following way.

First, propositions (i) (the multiplication by constant rule) and (v) (the multiplication

rule) of Lemma 1 should be applied to the products
(
k
l

)
φqr(k − l, ρ, ε) rφrj(l, ρ, ε), for

l = 0, . . . , k − 1 and q = i, r.
Second, proposition (iii) (the summation rule) of Lemma 1 should be recurrently

applied to the sum

rλqj(n, k, ρ, ε) = φqj(k, ρ, ε) +

n∑

l=0

(
k

l

)
φqr(k − l, ρ, ε) rφrj(l, ρ, ε) =

= rλqj(n− 1, k, ρ, ε) +

(
k

n

)
φqr(k − n, ρ, ε) rφrj(n, ρ, ε),

for n = 1, . . . , k − 1, in order to get the asymptotic expansion for sum

rλqj(k, %, ε) = rλqj(k − 1, k, ρ, ε) = φqj(k, %, ε) +

k−1∑

l=0

(
k

l

)
φq,r(k − l, %, ε) rφrj(l, %, ε),

for q = i, r.
Third, proposition (v) (the multiplication rule) of Lemma 1 should be applied to the

product φir(0, %, ε) rλrj(k, %, ε).
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Fourth, proposition (vii) (the division rule) of Lemma 1 should be applied to the

quotient
φir(0,%,ε) rλrj(k,%,ε)

1−φrr(0,%,ε) . Here, the asymptotic expansion for function 1−φrr(0, ρ, ε)

given in relation (8) should be used.
Fifth, the proposition (i) (the summation rule) of Lemma 1 should be applied to sum

rλij(k, %, ε) +
φir(0,%,ε) rλrj(k,%,ε)

1−φrr(0,%,ε) .

As it was already mentioned above, five steps of the above algorithm should be recur-
rently repeated for k = 1, 2, . . . , d.

If j /∈ Yi then φij(k, ρ, ε) ≡ 0, k = 0, . . . , d; if j /∈ Yr then φrj(k, ρ, ε) ≡ 0,
k = 0, . . . , d; if r /∈ Yi then φir(k, ρ, ε) ≡ 0, k = 0, . . . , d; if r /∈ Yr then φrr(k, ρ, ε) ≡ 0,
k = 1, . . . , d and 1 − φrr(0, ρ, ε) ≡ 1. In these cases, the above recurrent algorithm is
readily simplified.

Note that parameter ε0 does not change in the multiplication and summation steps
as well as in the division step, since 1− φrr(0, ρ, ε) > 0, ε ∈ (0, ε0].

According to Lemma 1, the
(
rh
−
ij [k, ρ], rh

+
ij [k, ρ]

)
-expansions,

rφij(k, ρ, ε) =

rh
+
ij [k,ρ]∑

l=rh
−
ij [k,ρ]

rgij [k, ρ, l]ε
l + rok,ρ,ij

(
εrh

+
ij [k,ρ]

)
, (26)

yielded by the above recurrent algorithm, for k = 1, . . . , d, r 6= 0, i ∈ X, j ∈ rYi, are
pivotal.

It remains to note that condition Ed,ρ and inequalities (24) imply that condition Fρ
also holds for the reduced semi-Markov process rηε(t), for every r 6= 0.

This completes the proof of proposition (i) of Theorem 1.
In order to prove proposition (ii) of Theorem 1, one should repeat the same sequence

of recurrent steps described above and, additionally, to apply to every intermediate
asymptotic expansion, obtained with the use of operational rules given in propositions
(i), (iii), (v) or (vii) of Lemma 1, the corresponding additional operational rules given,
respectively, in propositions (ii), (vi), (vi) or (viii), for computing parameters of the
corresponding upper bounds for remainders. �
Remark 1. It is worth to note that the above algorithm yields the asymptotic expansions
for mixed power-exponential moments rφij(k, ρ, ε) for k = 1, . . . , d, r 6= 0, i ∈ X, j ∈ rYi,
i. e., for the corresponding transition characteristics of the reduced semi-Markov processes

rηε(t) with transition period defined in Section 4.

Let us choose some state q 6= 0 and let r̄q,m = 〈rq,0, . . . , rq,m〉 = 〈rq,0, . . . , rq,m〉
be a permutation of the sequence 〈0, . . . ,m〉 such that rq,m−1 = q, rq,m = 0, and let
r̄q,n = 〈rq,0, . . . , rq,n〉, n = 0, . . . ,m be the corresponding chain of growing sequences of
states from space X.

Theorem 2. The following propositions take place:

(i) Let conditions A–Fρ hold for the semi-Markov processes ηε(t). Then, for every

i ∈ X, the pivotal
(
ḣ−i0[k, ρ], ḣ+

i0[k, ρ]
)
-expansions for the power-exponential mo-

ments of hitting times Φi0(k, ρ, ε), k = 1, . . . , d, i = q, 0 are given, for every
q 6= 0, by the recurrent algorithm based on the sequential exclusion of states
rq,0, . . . , rq,m−2, q from the phase space X of the processes ηε(t). This algorithm is

described below, in the proof of the theorem. The above
(
ḣ−i0[k, ρ], ḣ+

i0[k, ρ]
)
-expan-

sions are invariant with respect to any permutation r̄q,m = 〈rq,0, . . . , rq,m−2, q, 0〉
of sequence 〈0, . . . ,m〉.

(ii) If, additionally, condition Gd,ρ holds for the semi-Markov processes ηε(t), then

the above
(
ḣ−i0[k, ρ], ḣ+

i0[k, ρ]
)
-expansions for the power-exponential moments of
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hitting times Φi0(k, ρ, ε), k = 1, . . . , d, i = q, 0 also are, for every q 6= 0, piv-

otal
(
ḣ−i0[k, ρ], ḣ+

i0[k, ρ], rδ̇i0[k, ρ], rĠi0[k, ρ], rε̇i0[k, ρ]
)
-expansions, with parameters

r̄i,mδi0[k, ρ], r̄i,mGi0[k, ρ], r̄i,mεi0[k, ρ] given by the algorithm described below, in
the proof of the theorem.

Proof. Let us exclude state ri,0 from the phase space of the semi-Markov process ηε(t)
using the time-space screening procedure described in Section 4. Let ηε,r̄q,0 (t) = rq,0ηε(t)

be the corresponding reduced semi-Markov process, with the phase space r̄q,0X =
= X \ {rq,0}. The above procedure can be repeated. The state rq,1 can be excluded from
the phase space of the semi-Markov process ηε,r̄q,0(t). Let ηε,r̄q,1(t) = rq,1ηε,r̄q,0(t) be the
corresponding reduced semi-Markov process, with the phase space r̄q,1X = X\{rq,0, rq,1}.
By continuing the above procedure for states rq,2, . . . , rq,n, we construct the reduced semi-
Markov process ηε,r̄q,n(t) = rq,nηε,r̄q,n−1

(t). This semi-Markov process has the phase
space r̄q,nX = X \ {rq,0, rq,1, . . . , rq,n}.

Let r̄q,nYi, i ∈ r̄q,n−1X and r̄q,nφij(k, ρ, ε), j ∈ r̄q,nYi, i ∈ r̄q,n−1X be, respectively,
the transition sets and transition power-exponential moments for process ηε,r̄q,n(t) =
= rq,nηε,r̄q,n−1

(t) defined in the same way as the transition sets rYi, i ∈ X and the
transition power-exponential moments rφij(k, ρ, ε), j ∈ rYi, i ∈ X for process rηε(t).

Theorem 1 implies, by induction, that conditions A–Fρ hold for the reduced semi-
Markov processes ηε(t),ηε,r̄q,0(t), . . . ,ηε,r̄q,n(t).

Thus, the recurrent application of the algorithm described in Theorem1 to processes
ηε,r̄q,0(t), . . . ,ηε,r̄q,n(t) let us construct the pivotal Laurent asymptotic expansions for
transition power-exponential moments r̄q,nφij(k, ρ, ε), j ∈ r̄q,nYi, i ∈ r̄q,n−1

X.
Let us take n = m − 1. In this case, the semi-Markov process ηε,r̄q,m−1

(t) has the
phase space r̄q,m−1X = {0}, which is a one-state set. Also, the space r̄q,m−2X = {q, 0} is
a two-states set.

By Lemma 4, the power-exponential moments of hitting times, Φi0(k, ρ, ε), coincide
for the semi-Markov processes ηε(t), ηε,r̄q,0(t), . . . ,ηε,r̄q,m−1

(t), for every k = 0, . . . , d,
i = q, 0.

Also, for the reduced semi-Markov process ηε,r̄q,m−1
(t) = qηε,r̄q,m−2

(t), the exponential
moment Φi0(k, ρ, ε) = r̄q,m−1φi0(k, ρ, ε), for every k = 0, . . . , d, i = q, 0.

Thus, the recurrent algorithm of sequential phase space reduction described above
let to construct, for k = 1, . . . , d, i = q, 0, the pivotal

(
ḣ−i0[k, ρ], ḣ+

i0[k, ρ]
)
-expansions

expansion,

Φi0(k, ρ, ε) =

ḣ+
ij [k,ρ]∑

l=ḣ−i0[k,ρ]

ġi0[k, ρ, l]εl + ȯk,ρ,0j

(
εḣ

+
i0[k,ρ]

)
, (27)

The above Laurent asymptotic expansions coincide with the corresponding Laurent
asymptotic expansions for the transition power-exponential moments r̄q,m−1

φi0(k, ρ, ε).
The summation and multiplication operational rules for Laurent asymptotic expan-

sions presented in propositions (iii) and (v) of Lemma 1 possess commutative, associative
and distributive properties, which should be understood as identities for the correspond-
ing Laurent asymptotic expansions, i.e., identities for the corresponding parameters h, k,
coefficients and remainders of functions represented in two alternative forms in the cor-
responding functional identities. We refer to works of the authors [14, 15], for the corre-
sponding details.

This makes it possible to prove that the Laurent asymptotic expansions for power-
exponential moments r̄q,m−1φi0(k, ρ, ε) are are invariant with respect to any permutation
r̄q,m = 〈rq,0, . . . , rq,m−2, q, 0〉 of sequence 〈0, . . . ,m〉.

This legitimates notations (with omitted index r̄q,m−1
) used for parameters, coefficients

and remainder in the asymptotic expansions (27).
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Let 0 ≤ n ≤ m− 2 and r̄′q,n = 〈rq,0, . . . , r′q,n〉 be a permutation of the sequence r̄q,n.
The corresponding reduced semi-Markov process ηε,r̄′q,n(t) is constructed as the se-

quence of states for the initial semi-Markov process ηε(t) at sequential moments of
its hitting into the same reduced phase space r̄′q,nX = X \ {r′q,0, . . . , r′q,n} = r̄q,nX =

= X \ {rq,1, . . . , rq,n}. The times between sequential jumps of the reduced semi-Markov
process ηε,r̄′q,n(t) are the times between sequential instants of hitting the above reduced

phase space by the initial semi-Markov process ηε(t).
This obviously implies that the transition power-exponential moment r̄q,nφij(k, ρ, ε)

is, for every k = 0, . . . , d, j ∈ r̄q,nYi, i ∈ r̄q,n−1
X, n = 0, . . . ,m−1, invariant (as functions

of ε) with respect to any permutation r̄′q,n of the sequence r̄q,n.
Moreover, as follows from the recurrent algorithms presented above, the transition

power-exponential moment r̄q,nφij(k, ρ, ε) is a rational function of the initial transition
power-exponential moment φij(k, ρ, ε), j ∈ Yi, i ∈ X (quotients of sums of products for
some of these moments).

By using identity arithmetical transformations (disclosure of brackets, imposition of
a common factor out of the brackets, bringing a fractional expression to a common
denominator, permutation of summands or multipliers, elimination of expressions with
equal absolute values and opposite signs in the sums and elimination of equal expressions
in quotients) the rational functions r̄q,nφij(k, ρ, ε) can be transformed, respectively, into
the rational functions r̄′q,nφij(k, ρ, ε) and wise versa.

In fact, one should only check this for the case, where the permutation r̄′q,n is obtained
from the sequence r̄q,n by exchange of a pair of neighbour states rq,l and rq,l+1, for some
0 ≤ l ≤ n − 1. Then, the proof can be repeated for a pair of neighbour states for the
sequence r̄′q,n, etc. In this way, the proof can be expanded to the case of an arbitrary
permutation r̄′q,n of the sequence r̄q,n. The above mentioned poof of pairwise permutation
invariance involves processes r̄q,l−1

ηε(t) (for the moment, we denote as r̄q,−1
ηε(t) = ηε(t)

the initial semi-Markov process), r̄q,lηε(t) and r̄q,l+1
ηε(t). It is absolutely analogous, for

0 ≤ l ≤ n−1. Taking this into account, we just show how this proof can be accomplished
for the case l = 0.

The transition exponential moments r̄q,1φij(0, ρ, ε) and r̄′q,1φij(0, ρ, ε) for the se-

quences r̄q,1 = 〈r0, r1〉 and r̄′q,1 = 〈r1, r0〉 (here, i, j 6= r0, r1) can be transformed into
the same symmetric (with respect to r0 and r1) rational function of the corresponding
exponential moments, using the identity arithmetical transformations listed above,

r̄q,1φij(0, ρ, ε) = r0
φij(0, ρ, ε) + r0

φir1
(0, ρ, ε)

r0
φr1j(0, ρ, ε)

1− r0
φr1r1

(0, ρ, ε)
=

= φij(0, ρ, ε) + φir0
(0, ρ, ε)

φr0j(0, ρ, ε)

1− φr0r0
(0, ρ, ε)

+

+ (φir1
(0, ρ, ε) + φir0

(0, ρ, ε)
φr0r1(0, ρ, ε)

1− φr0r0
(0, ρ, ε)

)×

×
(φr1j(0, ρ, ε) + φr1r0

(0, ρ, ε)
φr0j(0,ρ,ε)

1−φr0r0
(0,ρ,ε) )

1− φr1r1
(0, ρ, ε)− φr1r0

(0, ρ, ε)
φr0r1

(0,ρ,ε)

1−φr0r0
(0,ρ,ε)

=

= φij(0, ρ, ε)+

+
φir0

(0, ρ, ε)φr0j(0, ρ, ε)(1− φr1r1
(0, ρ, ε))

(1− φr0r0
(0, ρ, ε))(1− φr1r1

(0, ρ, ε))− φr0r1
(0, ρ, ε)φr1r0

(0, ρ, ε)
+

+
φir0(0, ρ, ε)φr0r1(0, ρ, ε)φr1j(0, ρ, ε)

(1− φr0r0
(0, ρ, ε))(1− φr1r1

(0, ρ, ε))− φr0r1
(0, ρ, ε)φr1r0

(0, ρ, ε)
+

+
φir1

(0, ρ, ε)φr1j(0, ρ, ε)(1− φr0r0
(0, ρ, ε))

(1− φr0r0
(0, ρ, ε))(1− φr1r1

(0, ρ, ε))− φr0r1
(0, ρ, ε)φr1r0

(0, ρ, ε)
+
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+
φir1

(0, ρ, ε)φr1r0
(0, ρ, ε)φr0j(0, ρ, ε)

(1− φr0r0
(0, ρ, ε))(1− φr1r1

(0, ρ, ε))− φr0r1
(0, ρ, ε)φr1r0

(0, ρ, ε)
=

= r1φij(0, ρ, ε) + r1φir0(0, ρ, ε)
r1φr0j(0, ρ, ε)

1− r1
φr0r0

(0, ρ, ε)
=

= r̄′q,1φij(0, ρ, ε). (28)

The above proof for the power-exponential moments r̄q,nφij(k, ρ, ε) is analogous.
Due to commutative, associative and distributive properties of operations rules for

Laurent asymptotic expansions, the above arithmetical transformations do not affect
the corresponding asymptotic expansions for functions r̄q,nφij(k, ρ, ε) and, thus, these
expansions are invariant with respect to any permutation r̄′q,n of the sequence r̄q,n.

Therefore, the Laurent asymptotic expansions for the transition power-exponential
moments r̄q,nφij(k, ρ, ε) and r̄′q,nφij(k, ρ, ε), given by the recurrent algorithm of sequen-
tial phase space reduction described above, are identical.

We refer to the book of authors [15], where one can find an analogous proof, con-
cerned the invariance property of the corresponding Laurent asymptotic expansions for
transition power moments for hitting times, presented in the more detailed form.

The described above recurrent algorithm for construction of Laurent asymptotic ex-
pansions for power-exponential moments Φi0(k, ρ, ε), k = 0, . . . , d, i = q, 0 can be re-
peated for every q 6= 0.

This completes the proof of proposition (i) of Theorem 2.
In order to prove proposition (ii) of Theorem 2, one should repeat the same sequence of

recurrent steps described above and, additionally, to apply to every intermediate asymp-
totic expansion, obtained above with the use of operational rules given in propositions
(i), (iii), (v), and (vii) of Lemma 1, the corresponding additional operational rules
given, respectively, in propositions (ii), (vi), (vi), and (viii) of Lemma 1, for comput-
ing parameters of the corresponding upper bounds for remainders.

Unfortunately, the summation and multiplication operational rules for Laurent asymp-
totic expansion with explicit upper bound for remainders, presented in propositions (iv)
and (vi) of Lemma 1, possess commutative but do not possess associative and distributive
properties. This makes parameters parameters r̄q,mδi0[k, ρ], r̄q,mGi0[k, ρ], r̄q,mεi0[k, ρ],
k = 0, . . . , d, i = q, 0 given by the algorithm described below dependent of the choice of
the sequence r̄q,m, for q 6= 0. �

Remark 2. Formulas for parameter δC given in Lemma 1 imply, however, that, the
following explicit inequalities take place, for any sequence of states r̄q,m and k = 0, . . . , d,
i = q, 0, q 6= 0,

r̄i,mδi0[k, ρ] ≥ δ∗[k, ρ] = min
j∈Yi,i∈X,n=0,...,k

δij [n, ρ]. (29)

We would like to note that, despite bulky forms, the algorithms for computing coef-
ficients in the asymptotic expansions, and parameters for upper bound for remainders
presented in Theorems 1 and 2, are computationally effective due to their recurrent
character.

In conclusion, we would like to mention again that the power-exponential moments,
which are interesting objects themselves, play the central role in studies of so-called quasi-
stationary phenomena in stochastic systems. This phenomena describe the behaviour of
stochastic systems with random lifetimes. The core of the quasi-stationary phenomenon
is that one can observe something that resembles a stationary behaviour of the system
before the lifetime goes to the end. The corresponding quasi-stationary distribution can
be expressed via the exponential moments of sojourn times and the first order power-
exponential moments of return times, with parameter ρ, which is the characteristic root
for the distributions of the corresponding return times. Related formulas, comments and
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examples of applications to asymptotic analysis of perturbed queuing systems and bio-
stochastic systems can be found in the book [4]. Also, related numerical examples can be
found in the book [15]. The asymptotic expansions for quasi-stationary distributions of
nonlinearly perturbed semi-Markov processes do involve higher order power-exponential
moments of return times and asymptotic expansions for these moments. We hope to
publish the corresponding asymptotic results for nonlinearly and singularly perturbed
semi-Markov processes in a near future.
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ÀÑÈÌÏÒÎÒÈ×ÍI ÐÎÇÊËÀÄÈ ÄËß ÑÒÅÏÅÍÅÂÎ-ÅÊÑÏÎÍÅÍÖIÉÍÈÕ
ÌÎÌÅÍÒIÂ ×ÀÑIÂ ÄÎÑßÃÍÅÍÍß ÄËß ÍÅËIÍIÉÍÎ ÇÁÓÐÅÍÈÕ

ÍÀÏIÂÌÀÐÊÎÂÑÜÊÈÕ ÏÐÎÖÅÑIÂ

Ä. Ñ. ÑIËÜÂÅÑÒÐÎÂ, Ñ. Ä. ÑIËÜÂÅÑÒÐÎÂ

Àíîòàöiÿ. Íàâåäåíî íîâi àëãîðèòìè ïîáóäîâè àñèìïòîòè÷íèõ ðîçêëàäiâ äëÿ åêñïîíåíöiéíèõ òà

ñòåïåíåâî-åêñïîíåíöiéíèõ ìîìåíòiâ ÷àñiâ äîñÿãíåííÿ äëÿ íåëiíiéíî çáóðåíèõ íàïiâìàðêîâñüêèõ

ïðîöåñiâ. Àëãîðèòìè áàçóþòüñÿ íà ñïåöiàëüíèõ ïðîöåäóðàõ ïîñëiäîâíîãî ñêîðî÷åííÿ ôàçîâîãî ïðî-

ñòîðó òà ñèñòåìàòè÷íîìó âèêîðèñòàííi îïåðàöiéíîãî ÷èñëåííÿ äëÿ àñèìïòîòè÷íèõ ðîçêëàäiâ Ëî-

ðàíà, çàñòîñîâàíèõ äî ÷àñó äîñÿãíåííÿ äëÿ çáóðåíèõ íàïiâìàðêîâñüêèõ ïðîöåñiâ. Öi àëãîðèòìè

ìàþòü óíiâåðñàëüíèé õàðàêòåð. Âîíè ìîæóòü áóòè çàñòîñîâàíi äî íåëiíiéíî çáóðåíèõ íàïiâìàð-

êîâñüêèõ ïðîöåñiâ iç äîâiëüíîþ àñèìïòîòè÷íîþ êîìóíiêàòèâíîþ ñòðóêòóðîþ ôàçîâîãî ïðîñòîðó.

Àñèìïòîòè÷íi ðîçêëàäè ïîäàíî ó äâîõ ôîðìàõ, áåç òà ç ÿâíèìè îöiíêàìè çàëèøêiâ. Àëãîðèòìè ¹

îá÷èñëþâàëüíî åôåêòèâíèìè çàâäÿêè ðåêóðåíòíîìó õàðàêòåðó âiäïîâiäíèõ îá÷èñëþâàëüíèõ ïðî-

öåäóð.

ÀÑÈÌÏÒÎÒÈ×ÅÑÊÈÅ ÐÀÇËÎÆÅÍÈß
ÄËß ÑÒÅÏÅÍÍÎ-ÝÊÑÏÎÍÅÍÖÈÀËÜÍÛÕ ÌÎÌÅÍÒÎÂ ÂÐÅÌ�Í

ÄÎÑÒÈÆÅÍÈß ÄËß ÍÅËÈÍÅÉÍÎ ÂÎÇÌÓÙ�ÍÍÛÕ
ÏÎËÓÌÀÐÊÎÂÑÊÈÕ ÏÐÎÖÅÑÑÎÂ

Ä. Ñ. ÑÈËÜÂÅÑÒÐÎÂ, Ñ. Ä. ÑÈËÜÂÅÑÒÐÎÂ

Àííîòàöèÿ. Ïðèâåäåíû íîâûå àëãîðèòìû ïîñòðîåíèÿ àñèìïòîòè÷åñêèõ ðàçëîæåíèé äëÿ ýêñïî-

íåíöèàëüíûõ è ñòåïåííî-ýêñïîíåíöèàëüíûõ ìîìåíòîâ âðåì¼í äîñòèæåíèÿ äëÿ íåëèíåéíî âîçìó-

ùåííûõ ïîëóìàðêîâñêèõ ïðîöåññîâ. Àëãîðèòìû îñíîâàíû íà ñïåöèàëüíûõ ïðîöåäóðàõ ïîñëåäî-

âàòåëüíîãî ñîêðàùåíèÿ ôàçîâîãî ïðîñòðàíñòâà è ñèñòåìàòè÷åñêîì èñïîëüçîâàíèè îïåðàöèîííîãî

èñ÷èñëåíèÿ äëÿ àñèìïòîòè÷åñêèõ ðàçëîæåíèé Ëîðàíà, ïðèìåí¼ííûõ êî âðåìåíàì äîñòèæåíèÿ äëÿ

âîçìóùåííûõ ïîëóìàðêîâñêèõ ïðîöåññîâ. Ýòè àëãîðèòìû èìåþò óíèâåðñàëüíûé õàðàêòåð. Îíè ìî-

ãóò áûòü ïðèìåíåíû ê íåëèíåéíî âîçìóùåííûì ïîëóìàðêîâñêèì ïðîöåññàì ñ ïðîèçâîëüíîé àñèìï-

òîòè÷åñêîé êîììóíèêàòèâíîé ñòðóêòóðîé ôàçîâîãî ïðîñòðàíñòâà. Àñèìïòîòè÷åñêèå ðàçëîæåíèÿ

äàíû â äâóõ ôîðìàõ, áåç è ñ ÿâíûìè îöåíêàìè îñòàòêîâ. Àëãîðèòìû ÿâëÿþòñÿ âû÷èñëèòåëüíî

ýôôåêòèâíûìè áëàãîäàðÿ ðåêêóðåíòíîìó õàðàêòåðó ñîîòâåòñòâóþùèõ âû÷èñëèòåëüíûõ ïðîöåäóð.


