
Òåîðiÿ éìîâiðíîñòåé Teoriya �Imovirnoste��
òà ìàòåìàòè÷íà ñòàòèñòèêà ta Matematychna Statystyka
Âèï. 97, 2017, ñ. 196�219 No. 97, 2017, pp. 196�219
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Abstract. Two estimators were recently developed in [1] for the slope of a line in the functional EIV

model. Both are unbiased, up to order σ4, where σ is the error standard deviation. One estimator

was constructed as a function of the maximum likelihood estimator (MLE). Therefore, it was called
Adjusted MLE (AMLE). The second estimator was constructed in a completely different approach.

Although both the estimators are unbiased, up to the order σ4, the latter estimator is much more

accurate than the AMLE. We study here these two estimators more rigorously, and we show why one
estimator outperforms the other one.
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1. Introduction

Regression models in which all the variables in the model are subject to errors are
known as Errors-In-Variables (EIV) models [8, 10, 14]. In the EIV linear model, the n
observed points {mi = (xi, yi)}ni=1 are considered as random perturbations of the true
points m̃1 = (x̃1, ỹ1)>, . . ., m̃n = (x̃n, ỹn)>, i. e.,

xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n, (1.1)

where δi and εi, for each i = 1, . . . , n, are i. i. d. normal random variables with zero mean
and variances σ2

x and σ2
y, respectively. The true points are lying on the true line and are

defined by

ỹi = α̃+ β̃x̃i, i = 1, . . . , n, (1.2)

where α̃ and β̃ are the true values of the intercept α and the slope β. This paper is
a continuation of our work in [1]; therefore, we will adopt the same assumptions about
the true points. That is, we will use the functional model, in which the true points
are unknown but fixed. Here we will assume that the ratio λ = σ2

ε/σ
2
δ is known. For

simplicity, we write σ2
δ = σ2 and σ2

ε = λσ2. In this case, the MLE of (α,β) in the
functional model is equivalent to the orthogonal distance regression that minimizes the
following:

F1(α,β) =
1

β2 + λ

n∑

i=1

d2
i , di = yi − α− βxi. (1.3)

To minimize this objective function, we first differentiate F1 with respect to α and
substitute its resulting expression α̂1 = ȳ − βx̄ back into the objective function (1.3).
Therefore, we obtain the following:

F1(β) =
1

β2 + λ

∑
d∗2i , (1.4)

where d∗i = y∗i − βx∗i . The notations x∗i and y∗i refer to the ‘centered’ coordinates of xi

and yi, i. e.,

x∗i = xi − x̄, y∗i = yi − ȳ, i = 1, . . . , n. (1.5)
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Here, we use the standard notation for sample means x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi,

while for the components of the so-called ‘scatter matrix’ we use the following:

sxx =
∑

(xi − x̄)2, syy =
∑

(yi − ȳ)2, sxy =
∑

(xi − x̄)(yi − ȳ). (1.6)

Therefore, differentiating Eq. (1.4) with respect to β gives the following quadratic equa-
tion

sxyβ
2 − (syy − λsxx)β− λsxy = 0. (1.7)

Equation (1.7) has two distinct roots, but the one that minimizes F1(β) is

β̂1 =
syy − λsxx +

√
(syy − λsxx)2 + 4s2

xy

2sxy
, (1.8)

if sxy 6=0 (which is true almost surely). Then, we find α̂1 = ȳ − β̂1x̄ [8].

A family of objective functions. Instead of restricting ourselves with only one ob-
jective function that led to the MLE, we considered in [1] a general class of objective
functions

F(α,β) = g(β)
∑

d2
i , di = yi − α− βxi, (1.9)

where g(β) is an arbitrary, smooth positive function of β. This class of objective functions
produces two popular estimators. The first estimator is the MLE that minimizes (1.9)
whenever g(β) = (β2 + λ)−1 =: g1(β) (say) and the second estimator is the least squares
estimator (LS) that minimizes F in (1.9) whenever the weight function g(β) = 1 =: g0(β)
(say). It should be clear that α = ȳ − βx̄ and

F(β) = g(β)
∑

d∗2i . (1.10)

Another estimator, β̂2 that will be discussed in this paper was developed in [1]. The

estimator β̂2 is the solution that minimizes the objective function F in (1.10) with the
weight

g(β) =
(
β2 + λ

)−n−3
n−2 =: g2(β).

With this weight, the new objective function leads to a new estimator β̂2. That is, it is
the solution, that minimizes (1.10) with the weight g2(β), and it is one of the roots of
the cubic equation

sxxβ
3 + (n− 4)sxyβ

2 −
[
(n− 3)syy − λ(n− 2)sxx

]
β− λ(n− 2)sxy = 0. (1.11)

The development of g2(β) comes after deriving the expression of the bias (up to the
second-order term) for the estimator that minimizes F in (1.10). The second-order
bias formula depends on g and its derivative, g′. Equating the second-order bias with
zero gives us an ordinary first-order linear differential equation (presented shortly). The
solution of this differential equation yields g2(β). We called this bias-correction by ‘pre-
bias elimination technique’, because we choose g = g2 that eliminates the second-order
bias in advance.

Moreover, we addressed another bias-correction technique, where the bias is eliminated
by subtracting the noisy version of the bias from the estimator itself. This bias correction
technique is well known in the literature, but we refer it here by ‘post-bias elimination
technique’. The new estimator comes as an adjustment of the MLE for its second-order
bias. Indeed, it is a function of the MLE and has the following form

β̌1 =

(
1− σ̂2

‖x∗‖2
)
β̂1, (1.12)

where

σ̂2 =
1

(β̂2
1 + λ)(n− 2)

∥∥∥y∗ − β̂1x
∗
∥∥∥

2

2
,
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where x∗ = (x1 − x̄, . . . , xn − x̄)
>

, y∗ = (y1 − ȳ, . . . , yn − ȳ)
>

. Since it is a modified
version of the MLE, we called β̌1 the ‘Adjusted Maximum Likelihood Estimator ’ (AMLE).

Even though we have derived the general formulas for the bias and the MSE in [1],
those formulas work only for estimators minimizing the objective function given in (1.9).
The AMLE does not minimize any objective function, those general formulas cannot be
applied. Therefore, the higher order bias and the higher order MSE shall be derived for
the AMLE in a completely different approach.

The numerical experiments in [1] show that the AMLE, β̌1, outperforms the MLE,

but it still falls behind β̂2, although both β̂2 and β̌1 were developed to eliminate the
second-order bias. They behave differently in practice. This motivates us to study them
further. To do so, we will derive the higher order terms for the bias and the MSE of β̌1

and β̂2, and then we will compare them.
This paper is organized as follows. Section 2 states some statistical assumptions and

presents previous results. Those results paves the road for Section 3, where we present
the higher order expansions of the bias as well as the MSE of the AMLE, and then we
compare between β̂2 and the AMLE, β̌1. This paper involves many technical derivations
that are deferred to the appendix.

In this paper, we use vector notations. Accordingly, (1.1) can be expressed as x = x̃+δδδ
and y = ỹ+εεε, where δδδ and εεε represent the vectors of all noisy errors that corrupt the first
and the second coordinates of the true vectors x̃ = (x̃1, . . . , x̃n)> and ỹ = (ỹ1, . . . , ỹn)>,
respectively.

2. Previous results

Anderson [5] proved that the MLEs of (α,β), i. e. α̂1 and β̂1, do not have finite

moments, i. e. E(|α̂1|) = ∞ and E(|β̂1|) = ∞, see also [13]. The infinite first moment’s
phenomenon is very common in EIV models. For instance, Chernov [11] proved that
the most accurate estimator, the MLEs, for the center and the radius of a circle in the
circle fitting problem have infinite moments too, while Zelniker and Clarkson [21] proved
that the ‘awkward’ Delogne–K̊asa method returns estimators with finite first moments.
Moreover, Al-Sharadqan et al. show that the first moment for several accurate estimators
do not exist [3] either. The infinite first moment problem also appears in other EIV
models, such as ellipse fitting [3] and multivariate EIV linear model [9].

Therefore, there is no direct approach to study the statistical properties of these
estimators. Traditionally, statisticians investigate the properties of estimators if their
moments are finite. If the moments are finite but have complicated formulas, statisticians
use the first few terms of the Taylor expansions of their means and their variances. That
is, before Anderson’s discovery, statisticians employed the Taylor expansion of (α̂1, β̂1)

in order to derive some ‘approximate’ formulas for the moments of α̂1 and β̂1 (including
their means and variances). Anderson demonstrated that all those formulas should be
regarded as moments of some approximations rather than ‘approximate moments’.

The MLE of (α1,β1) here have infinite variances and infinite mean squared errors!
This poses immediate methodological questions: (1) How can we characterize, in practical
terms, the accuracy of estimates whose theoretical MSE is infinite (and whose bias is
undefined)? (2) Is there any precise meaning to the widely accepted notion that the MLE

α̂1 and β̂1 are best? To answer these questions, we would rather study the moments of
their approximations rather than the approximations of their moments. With the aid of
Taylor approximation, we will take advantage of the first few terms of β̂1. These few
terms have finite moments because they are either quadratic or cubic form of Gaussian
vectors. That is, we can write β̂1 as β̂1 = β̂Approx + OP(σ4). Here β̂Approx has finite
moments while the reminder OP does not.
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The issue of the infinite moments for the MLE was ignored by practitioners because
of the excellent behavior of these estimators in real-life applications. Indeed, the infinite
moment of the estimators is barely seen in practice [2, 6, 7, 10] except when the noise
level is relatively large. Therefore, Chernov [10, pp. 17] experimentally investigated this
issue and discovered that if a set of n observations are distributed around a line segment
of length L, then the infinite first-moment occurs whenever σ

L is greater than or equal
to 0.24. This value is unrealistically high for computer vision and image processing;
therefore, the infinite first moment’s issue is rarely observed.

To investigate how close β̂approx is to β̂1, one could imagine an artificial example,
where the probability distribution function (CDF) of the MLE could be expressed as a
mixture distribution of the two distributions FX and FY with weight 1 − p and p for
some p ∈ (0, 1), respectively. Here, the random variable X has finite moments, and Y

has an infinite first moment. That is, Fβ̂1
= (1− p)FX + pFY , thus E(|β̂1|) =∞ even if

p = 10−6. Here p = 10−6 means that if one million samples were generated and the MLE
was computed for each sample, then, on average, only one sample would come from the
‘bad’ distribution (as the Cauchy distribution) Y , while all other samples would come
from the ‘good’ distribution X. This justifies how a very accurate estimator, as the MLE,
has infinite first moment.

Al-Sharadqah and Chernov [2] investigated the issue of having an accurate estimator
with infinite moments in EIV models. They experimentally investigated the MLE for
both linear and circular regressions using this criterion. That is, the probability distri-
bution function of its approximation, say FApprox(x), is good enough, if it accounts for
‘almost all’ of Fβ̂1

(x) that can be represented as

Fβ̂1
(x) = (1− p)FApprox(x) + pFR(x) −∞ < x <∞, (2.1)

where FR(x) is some other probability distribution function (the ‘remainder’) and p is

sufficiently small positive real number. According to Eq. (2.1), the realizations of β̂1

are taken from the ‘good’ distribution FApprox with probability 1− p and from the ‘bad’
distribution fR with probability p.

Thorough intensive numerical experiments have been conducted and it was found that
the values of p for both linear and quadratic approximations are indeed very small as
long as σ/L lies below some typical values, such as 0.1. Therefore, under the small-noise
model adopted here, the MLE and its approximations are ‘virtually’ equal.

This paper is tailored for image processing applications, where the number of observ-
able points (pixels) is limited, and the noise is small. The typical value of the noise level
σ does not exceed 0.05L. Accordingly, we will study estimators whenever σ→ 0, which
is known as the small-sigma model.

The small-sigma model has a great impact on many research topics in image pro-
cessing, signal processing, computer vision, and many other research topics [10]. Its
importance stems from the following reason. On an image, the number of observed
points (pixels on a computer screen) n is usually strictly limited, but the noise level σ
is small. The small-noise model was firstly introduced by Kadane in the early 1970s
and used later by Anderson [7] and Kanatani [15] (see also [17] for a more persuasive
discussion). Such models were also studied by Amemiya, Fuller and Wolter [4, 20] ,who
made a more rigid assumption that n ∼ σ−a for some 0 < a < 2.

This paper focuses on comparing the two estimators according to their order of mag-
nitudes. We distinguish between terms of order σ2 and σ2/n. In typical computer vision
and imaging processing applications, the number of points typically lies between 10–20
(∼ 1

σ
) up to few hundreds (∼ 1

σ2 ). Table 1 classifies terms according to their dependence

on n. For example, terms with order of magnitude σ2/n are comparable with terms
of order σ3 or even σ4 (for relatively large n). Therefore, we will call the second-order
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Table 1. The order of magnitudes of the four terms in the MSE

σ2/n σ4 σ4/n σ6

Small samples (n ∼ 1/σ) σ3 σ4 σ5 σ6

Large samples (n ∼ 1/σ2) σ4 σ4 σ6 σ6

bias of order σ2 and σ2/n by the ‘essential second-order bias’ and the ‘non-essential
second-order bias’, respectively. Indeed, the non-essential bias vanishes for large n while
the essential bias persists.

In the analog of consistency of an estimator, we call an estimator geometrically consis-
tent if it returns the true values of the parameters whenever all the points are observed
without error (i. e., the data set is noiseless). Informally, limσ→0 θ̂(m1, . . . ,mn) = θ̃,

where θ̃ is the true value of the parameter vector. We should mention here that geomet-
ric consistency requirement is considered as the minimal requirement for any estimator
in geometric estimation problems.

This paper is a continuation of our work in [1], where the error analysis has been
developed to study the statistical properties for any geometrically consistent estimator
minimizing F . Firstly, for an estimator, say β̂, we have used its Taylor expansion around
the true value β̃, i. e.,

β̂ = β̃+ ∆1β̂+ ∆2β̂+ ∆3β̂+ ∆4β̂+OP

(
σ5
)
, (2.2)

where β̃ is the true value of β and

∆1β̂ =
∑

βxi
δi +

∑
βyi
εi,

∆2β̂ =
1

2

[∑

i,j

βxixj
δiδj +

∑

i,j

βxiyj
δiεj +

∑

i,j

βyiyj
εiεj

]

are the first- and the second-order errors, respectively. Also, the formal expressions of
the higher order error terms, i. e., ∆3β̂ and ∆4β̂, will be presented later. The symbol
βxi represents the first partial derivative of the estimator β̂ with respect to xi, i. e.,

β̂xi
= ∂β̂

∂xi
, evaluated at β̃ and (x̃k, ỹk), for all k = 1, . . . , n. Similarly, βxiyj

is the second

partial derivatives of β̂ with respect to xi and yj , i. e., β̂xiyj
= ∂2β̂

∂xi∂yj
, evaluated at β̃

and (x̃k, ỹk), for all k = 1, . . . , n. Accordingly, the following results have been established
in [1].

Theorem 2.1. Let κ(β) = (β2 + λ)g(β) and S = ‖x̃∗‖2
n , then

E
(
β̂
)

= β̃+ E
(
∆2β̂

)
+ E

(
∆4β̂

)
+O

(
σ6
)
,

where

E
(
∆2β̂

)
=
−κ̃′σ2

2g̃S
+

(
κ̃′ + β̃g̃

)
σ2

g̃nS
+O

(
σ4
)
, (2.3)

E
(
∆4β̂

)
=

σ4κ̃′

4g̃2S2

[
2κ̃′′ − 3g̃′κ̃′

g̃

]
+O

(
σ4/n

)
, (2.4)

where g̃ = g
(
β̃
)
, and κ̃′ and κ̃′′ be the first and the second derivatives of κ evaluated at

the true values of the set of observations and the true parameter β̃.

In the same analog, we called here every term of order of magnitude σ4 by ‘the fourth-
order essential bias’, while we called all other terms of order of magnitude σ4/na by the
fourth-order nonessential bias for any a > 0.
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Next, we turn our attention to the leading term of the bias. If we split the O(σ2)
terms into the essential second-order bias of order σ2 and non-essential terms of order
O(σ2/n), we obtain

biasess (β̂) =
−κ̃′σ2

2g̃S
. (2.5)

One might be interested in eliminating the essential second-order bias. This problem
can be accomplished by solving the ordinary differential equation (ODE) κ′

(
β̃
)

= 0, i. e.,
(
β̃2 + λ

)
g̃′ + 2β̃g̃ = 0, (2.6)

where n ≥ 3. Solving the ODE given in (2.6) yields g = g1. Accordingly, the minimum

value of the corresponding objective function can be achieved at the MLE, β̂1.
Furthermore, one can obtain a more accurate estimator whose its entire second-order

bias equals zero (i. e., its bias terms of magnitudes σ2 and σ2/n are both zero), then we
need to find the weight that solves the ordinary differential equation (ODE)

(n− 2)
(
β̃2 + λ

)
g′ + 2(n− 3)β̃g = 0, (2.7)

which leads to

g
(
β̃
)

=
(
β̃2 + λ

)−n−3
n−2 =: g2

(
β̃
)

as a solution of the ODE (2.7). This justifies the rationale of choosing g2. Based on that,

β̂2 is an estimator of β and it minimizes the objective function Fg2 (i. e., F when g = g2).
This gives us an estimator with a zero second-order bias. It is the only estimator that

eliminates the second-order bias. To compute this estimator, we solve
∂Fg2

∂β = 0, which

is reduced to solving the cubic equation given in (1.11). It is worth mentioning here that
the MLE given in (1.8) is the solution of the quadratic equation (1.7). Therefore, we can
consider (1.11) as a ‘correction’ of (1.7), and as such we can solve (1.11) numerically by
using the solution (1.8) of (1.7) as an initial guess. Alternatively, we might just solve the
cubic equation (1.11) by exact formulas, and select the root that minimizes the objective
function. We summarize these results in the following theorem.

Theorem 2.2. Up to an irrelevant scalar factor, the fit (1.10) has a zero-essential bias
if and only if g = g1(β) = 1

β2+λ . Moreover, for n ≥ 4, the fit given in (1.10) has a zero

second-order bias if and only if g = g2 (up to an irrelevant scalar factor). Furthermore,
without loss of generality, if we set S = 1, then

• For g(β) = g1(β); β̂ = β̂1 and

E
(
∆2β̂1

)
=
σ2

n
β̃ and E

(
∆4β̂1

)
= 0 +O

(
σ4/n

)
. (2.8)

• For g(β) = g2(β) and n ≥ 3; β̂ = β̂2 and nS = ‖x̃∗‖2 = sx̃x̃.

E
(
∆2β̂2

)
= 0 and E

(
∆4β̂2

)
=

2
(
n− 2 + (2n− 5)β̃2

)
β̃

(n− 2)3
(
1 + β̃2

) σ4 +O
(
σ4/n2

)
. (2.9)

Note here that β̂2 has zero second-order bias, while the MLE, β̂1, has a non-zero
essential second-order bias. This demonstrates why β̂2 outperforms β̂1 for intermediate
values of n, while both the estimators are comparably equal for large n. On the other
hand, we have derived a general formula for the MSE of all estimators solving Eq. (1.10).
The formula depends on the weight function g and its formal expression is

MSE
(
β̂
)

=

(
β̃2 + λ

)
σ2

nS
+
σ4

nS2

(
λ+

2β̃2 − λ
n

)
+

σ4

4g̃2nS2
×
[

(τ̃′ − 2β̃g̃)κ̃′ +

+ 4

(
1− 2

n

)(
−
(
β̃2 + λ

)
g̃κ̃′′ −

(
2β̃g̃ −

(
β̃2 + λ

)
g̃′
)
κ̃′
)

+
8β̃g̃κ̃′ + 4

(
7β̃2 + 2λ

)
g̃2

n

]
,



202 A. A. AL-SHARADQAH

up to order σ6.
As a standard statistical measure, the efficiency of any unbiased estimator can be

determined by the Cramér–Rao lower bound (CRB). Kanatani [16] in 1998 derived a
general CRB for arbitrary curves for any unbiased estimators. In geometric fitting prob-
lem, however, all estimators are biased. This makes the natural bound, CRB, is not
helpful.

In the early 2000’s, Chernov and Lesort [12] realized that Kanatani’s formula does not
work for any practical estimator in curve fitting problem. To overcome of this situation,
Chernov and Lesort [12] employed first-order analysis for any geometrically consistent
estimators. They showed that Kanatani’s formula work for all geometrically consistent
estimators, up to the leading order. Thus, Chernov and Lesort called it the Kanatani–
Cramér–Rao lower bound (KCR). From that time, the KCR has been used as a measure
for the efficiency for any meaningful estimator.

In the course of linear regression, the KCR lower bound means that the first leading
term of the ‘approximate’ covariance matrix has a natural bound given by

V ≥ σ2Vmin, Vmin =
λ+ β̃2

sxx

[
x̃x̃ −¯̃x
−¯̃x 1

]
, (2.10)

and hence, Vmin

(
β̂
)

= λ+β̃2

sxx
= λ+β̃2

nS .

This general formula for the MSE produces the MSE of the MLE β̂1 and β̂2. Their
MSE can be simply computed in terms of ‖x̃∗‖2 = nS. For the MLE, since κ̃′ = κ̃′′ = 0,
one obtains

MSE
(
β̂1

)
=

(
β̃2 + λ

)
σ2

‖x̃∗‖2 +

(
nλ+ 9β̃2 + λ

)
σ4

‖x̃∗‖4
λ=1
=

(
β̃2 + 1

)
σ2

‖x̃∗‖2 +

(
n + 9β̃2 + 1

)
σ4

‖x̃∗‖4 .

(2.11)

While the MSE of β̂2 is

MSE
(
β̂2

)
=

(
β̃2 + λ

)
σ2

‖x̃∗‖2 +
σ4

nS2

(
λ+

2β̃2 − λ
n

)
+

2σ4β̃2

n2(n− 2)S2
=

λ=1
=

(
β̃2 + 1

)
σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 ,

(2.12)

where we used here τ̃′ = 0 and κ̃′ = 2β̃g̃2
n−2 .

It is worth mentioning here that the MSE of any estimator can be decomposed into

MSE
(
β̂
)

= E
[(

∆1β̂
)2]

+ E
[(

∆2β̂
)2]

+ 2E
(
∆1β̂∆3β̂

)
.

The most significant term in this expansion is E
[(

∆1β̂
)2 ]

and it is of order σ2. This term
does not depend on g so the leading terms of the MSE for all methods minimizing F are
equal, and they all coincide with the KCR lower bound. Thus, all methods minimizing
(1.10) are statistically efficient in the KCR sense.

The second important term in the MSE comes from the essential bias. Its contribution

can be seen as part of E
[(

∆2β̂
)2 ]

(i. e., (essential bias + nonessential bias)2 + var
(
∆2β̂

)
).

These expressions were stated in Table 2. After a careful look at this table, one can
easily see why the MLE outperforms the LS, but both estimators still fall behind β̂2.

3. Main Results

In [1], it was shown that the newly developed estimator β̂2 is the best estimator

among all other estimators minimizing F in Eq. (1.10) including the least squares β̂0
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Table 2. The components of the mean squared error for each
of the three estimators: least-squares estimator β̂0, the MLE
β̂1, and the new proposed estimator β̂2.

Method E(∆1β̂)2 E(∆2β̂)2 = Bias(∆2β̂) + Var(∆2β̂) 2E(∆1β̂∆3β̂)

β̂0
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ σ4β̃2

nS2

[
n− 4 + 5

n

]
− 2σ4

nS2

(
1 − 3

n

)(
3β̃2 + λ

)

β̂1
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ σ4β̃2

n2S2
2σ4(3β̃2+λ)

n2S2

β̂2 (τ̃′ = 0, κ̃′ = 2βg2
n−2

)
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ 2σ4β̃2

n2(n−2)S2 0

and the MLE β̂1. Moreover, the numerical experiments of [1] showed that the AMLE β̌1

outperforms the MLE, but the AMLE still falls behind β̂2.
Although both estimators eliminate the second-order bias, they behave quite differ-

ently in numerical experiments and their accuracy are quite different. Therefore, we
devoted this paper to investigate why these estimators are quite different. In this paper,
we will derive the bias and the MSE of their approximations, then we will discuss our
findings.

Even though general formulas for the bias and the MSE have been derived in [1], those
formulas work only for an estimator minimizing such an objective function (as we have

seen for the geometric fit β̂1 and β̂2 when substituting g = g1 and g = g2, respectively,
in F). However, these general formulas cannot be applied to the AMLE because it does
not minimize any objective function. Therefore, we need to derive them directly. To
keep our calculations simple, we will only consider λ = 1.

To understand how this estimator works, we need to study the MLE first. Most of
the upcoming expressions in this section can be written in terms of Kronecker product,
and as such, we use some of its handy properties. These tools are presented below in
Definition 3.1, Proposition 3.1, and Theorem 3.1.

Definition 3.1. Let A be an m × n matrix and let B be a p × q matrix. Then the
Kronecker product of A and B is that (mp)× (nq) matrix defined by

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB


.

Furthermore, tr(A⊗B) = tr(A)tr(B).

Proposition 3.1. Let A1,B1,C1 be square matrices of size p and let A2 and B2 and
C2 be square matrices of size q. Then

tr(A1 ⊗A2(B1 ⊗B2 + C1 ⊗C2)) = tr(A1B1)tr(A2B2) + tr(A1C1)tr(A2C2).

Theorem 3.1 [19]. Let ζζζ be n−dimensional random vector with mean µ and covariance
matrix Σ and let A and B be symmetric matrices of size n then

E
(
ζζζ>Aζζζ

)
= tr(AΣ) + µ>Aµ. (3.1)

Moreover, if ζζζ ∼ N(0,Σ), where Σ is a positive definite matrix, then

E
(
ζζζ>Aζζζ · ζζζ>Bζζζ

)
= tr(AΣ) tr(BΣ) + 2tr(AΣBΣ).
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3.1. MLE and its approximations. Here we will derive the first four order error terms
of the MLE, namely ∆iβ̂1, for each i = 1, . . . , 4. This is a crucial step for studying the
AMLE. Moreover, one can use the results obtained in this section to validate Theorem 2.1.

Linear approximation and the KCR lower bound. We start our analysis with the
linear approximation, i. e. β̂L = β̃ + ∆1β̂1. Here, the first-order error term ∆1β̂1 is a
linear combination of δδδ and εεε that represents the vectors of all noisy errors corrupting
the first and the second coordinates of the vectors x̃ and ỹ. Using the first-order Taylor
expansion of Eq. (1.4) about the true value β̃ and keeping only terms of order σ2 yield

F1

(
β̂
)

=
1

1 + β̃2

∑(
ỹ∗i + ε∗i −

(
β̃+ ∆1β̂1

)
(x̃∗i + δ∗i )

)2

+OP

(
σ3
)

=

=
1

1 + β̃2

∑(
ε∗i − β̃δ∗i − x̃∗i ∆1β̂1

)2
+OP

(
σ3
)
, (3.2)

where both δ∗i = δi − δ̄ and ε∗i = εi − ε̄ denote the ‘centered’ errors. Accordingly, F1

attains its minimum at

∆1β̂1 =
(x̃∗)>

(
εεε∗ − β̃δδδ∗

)

‖x̃∗‖2 , (3.3)

where δδδ∗ and εεε∗ denote the vectors of δ∗i ’s and ε∗i ’s, respectively. Let h∗ denote the

combined vector of δ∗i ’s and ε∗i ’s; i. e., h∗ =
(
δδδ∗>, εεε∗>

)>
. The components of h∗ are

not independent random variables, but h and h∗ are related by h∗ = Nh, where N is a
(2n)× (2n) matrix defined by

N =

[
Nn 0n

0n Nn

]
, Nn = In − 1

n 1n. (3.4)

(Here 0n and 1n denote n× n matrices consisting zeroes and ones, respectively.) Thus,

we can express ∆1β̂1 as a linear function of the random vector h whose components are
independent.

∆1β̂1 =

(
−β̃(x̃∗)>, (x̃∗)>

)>
Nnh

‖x̃∗‖2 =

(
−β̃(x̃∗)>, (x̃∗)>

)>
h

‖x̃∗‖2 = G>h, (3.5)

where we used the relation (x̃∗)>Nn = (x̃∗)> and the ith component of G is

Gi =

{
−β̃x̃∗i /‖x̃∗‖2 for 1 ≤ i ≤ n,

x̃∗i−n/‖x̃∗‖2 for n + 1 ≤ i ≤ 2n.
(3.6)

Therefore, the linear approximation is

β̂L = β̃+ ∆1β̂1. (3.7)

Example 3.1 (variance and bias of linear approximation). From (3.5), we can find

the variance of β̂L. Since E(∆1β̂1) = 0, the linear approximation β̂L is an unbiased

estimator of β̃ (i. e. E(β̂L) = β̃). Thus,

Var
(
β̂L

)
= E

(
h>GG>h

)
= σ2tr

(
GG>

)
=

(
1 + β̃2

)
σ2

‖x̃∗‖2 . (3.8)

This follows from writing GG> as

GG> = a1 ⊗Bn, where a1 =
1

‖x̃∗‖4
(
−β̃, 1

)>(−β̃, 1
)
, Bn = x̃∗(x̃∗)>, (3.9)

and using Definition 3.1 and the fact tr(Bn) = ‖x̃∗‖2 = sx̃x̃.
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Example 3.1 shows that Var(β̂L) is of order σ2/n, which also attains the KCR. It also

indicates that the linear approximation is unbiased estimator of β̂1! Only in 1976, explicit
formulas for the density functions of the estimators α̂1 and β̂1 were derived; see [5, 7]. It
turns out that those densities are not normal and do not belong to any standard family of
probability densities. Those formulas are overly complicated and involve double-infinite
series. It was promptly noted [5] that they were not very useful for practical purposes.

Moreover, the probability density function of β̂1 is skewed except when β̃ = 0. Therefore,
the linear approximation β̂L (whose pdf is normal!) is not a good approximation for the
MLE. Accordingly, we will go further in our analysis by considering the quadratic and
the cubic approximations.

Quadratic and cubic approximations. The quadratic and the cubic approximations
of the MLE are given by the following general formulas

β̂Q = β̃+ ∆1β̂1 + ∆2β̂1, and β̂C = β̂Q + ∆3β̂1, (3.10)

where ∆3β̂1 involves all random terms of order OP(σ3).
Before presenting the formal expressions of these approximations, we introduce the

following terms:

α1 =
−r1 + 2β̃

2‖x̃∗‖4 , γ1 = −r1β̃
2 + 2β̃

2‖x̃∗‖2 , (3.11)

α2 = −r1β̃+ 2

2‖x̃∗‖4 , γ2 =
r1β̃+ 1

2‖x̃∗‖2 , (3.12)

α3 =
r1

2‖x̃∗‖4 , γ3 =
−r1

2‖x̃∗‖2 , (3.13)

where

r1 =
−2β̃

1 + β̃2
, r2 =

3β̃2 − 1

(1 + β̃2)2
. (3.14)

Also, let a and b be 2-by-2 symmetric matrices defined as

a =

[
α1 α2

α2 α3

]
and b =

[
γ1 γ2

γ2 γ3

]
. (3.15)

Theorem 3.2. Let β̂1 be the MLE of the slope β of the line y = α + βx and Bn =
= x̃∗(x̃∗)>. Then, the second order term ∆2β̂1 is a quadratic form of the combined error
h and it takes the formal expression

∆2β̂1 = h>N>QNh , (3.16)

where N = I2 ⊗Nn (cf. Eq. (3.4)) and Q is a (2n)× (2n) matrix defined by

Q = a⊗Bn + b⊗ In . (3.17)

Furthermore, the third-order term ∆3β̂1 is a tensor product of the centered-combined
error h∗ and it takes the form

∆3β̂1 = − 1

‖x̃∗‖2
[
G>h∗(h∗)>Ah∗ − r2‖x̃∗‖2(h∗)>GG>h∗G>h∗ +

+ r1‖x̃∗‖2G>h∗ · (h∗)>Qh∗ + 3r1E
>h∗(h∗)>GG>h∗ + 2E>h∗(h∗)>Qh∗

]
,

(3.18)

where E = (x̃>,0>)>, A = γ̂γγ1 ⊗ In, and

γ̂γγ1 =

[
r2β̃

2 + 2r1β̃+ 1 −(r2β̃+ r1)

−(r2β̃+ r1) r2

]
. (3.19)
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Example 3.2 (Variance and bias of the quadratic approximation). As a conse-

quence of Theorem 3.2, we find the components of the MSE of β̂Q. Since N is an
idempotent matrix,

tr (N>QN) = tr (QN), where QN = a⊗ (BnNn) + b⊗Nn, (3.20)

then, by Definition 3.1, we have

tr (QN) = tr(a)tr(BnNn) + tr(b)tr(Nn) =
β̃

‖x̃∗‖2 . (3.21)

Here we used tr(Nn) = n − 1, tr(BnNn) = ‖x̃∗‖2, tr(b) = 0, and tr(a) = β̃
‖x̃∗‖4 .

Consequently, Theorems 3.1 and 3.2 show that

bias(β̂Q) = σ2 tr (N>QN) =
β̃σ2

‖x̃∗‖2 . (3.22)

To compute the variance of β̂Q, we only need to compute the variance of ∆2β̂1. Being a
quadratic form of h,

Var(∆2β̂) = 2σ4tr
(
(N>QN)2

)
= 2σ4tr

(
(QN)2

)
,

where

tr
[
(QN)2

]
= tr(a2)tr(B2

nNn) + 2tr(ab)tr(BnNn) + tr(b2)tr(Nn) =
n + 2β̃2 − 1

2‖x̃∗‖4 .

Here we used

tr(B2
nNn) = ‖x̃∗‖4 , tr(a2) =

4(β̃2 + 2)

4‖x̃∗‖8 , tr(ab) =
−4

4‖x̃∗‖6 ,

and

tr(Nn) = n− 1 , tr(b2) =
2

4‖x̃∗‖4 .

By Theorem 3.1, we have

Var(∆2β̂1) =
n + 2β̃2 − 1

‖x̃∗‖4 σ4, Var(β̂Q) =
(1 + β̃2)σ2

‖x̃∗‖2 +
n + 2β̃2 − 1

‖x̃∗‖4 σ4. (3.23)

Example 3.2 shows that the leading term of Var(β̂Q) is of order σ2/n and attains the

KCR. Furthermore, the bias is a linear function of β̃. In particular, it overestimates the
true value of the parameter if β̃ > 0 and underestimates β̃ if β̃ < 0. The bias of β̂Q

has typical values of order σ2/n, so its contribution to the MSE is negligible (i. e. σ4/n2)

when n is large enough. This shows the MLE β̂1 has only a nonessential second-order
bias of order σ2/n.

Before going further, we need the following lemma.

Lemma 3.1. We have the following properties:

tr (GG>N) =
1 + β̃2

‖x̃∗‖2 , tr (Γ1N) =
1 + 3β̃2

1 + β̃2
, tr (Γ2N) = −4β̃.

Moreover,

tr(Γ1GG>N) =
3β̃2

‖x̃∗‖2 , tr(Γ2NQN) = −4β̃2 + 1

‖x̃∗‖2 .

Proof of Lemma 3.1. Recall that N = I2 ⊗Nn and GG> = a1 ⊗ Bn (see Eq. (3.9)).
Also we will use (x̃∗)>Nn = (x̃∗)> and tr(BnNn) = ‖x̃∗‖2. Thus,

tr(GG>N) = tr(a1)tr(BnNn) =
1 + β̃2

‖x̃∗‖2 .
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This proves the first assertion.
The second assertion follows from the definitions of Γ1 and N. Since tr(γ̂γγ1) = 0 and

tr(γγγ1) = 1+3β̃2

‖x̃∗‖2(1+β̃2)
, we obtain

tr(Γ1N) = tr(γγγ1) tr(BnNn) + tr(γ̂γγ1)tr(Nn) =
1 + 3β̃2

1 + β̃2
.

In the same manner, if one uses r1(1 + β̃2) = −2β̃, then the third assertion follows
immediately.

Next, we write GG>NΓ1N as

GG>NΓ1N =
(
a1 ⊗ (BnNn)

)(
γγγ1 ⊗ (BnNn) + γ̂γγ1 ⊗ (Nn)

)
. (3.24)

Since tr(a1γ̂γγ1) = −1
‖x̃∗‖4 and tr(a1γγγ1) = 3β̃2+1

‖x̃∗‖6 , we have

tr(Γ1GG>N) = tr(a1γγγ1) tr(BnNnBn) + tr(a1γ̂γγ1) tr(BnNn) =
3β̃2

‖x̃∗‖2 .

Finally, we prove the last assertion. The matrix Γ2NQN can be expressed as

Γ2NQN = γγγ2 ⊗ (BnNn) (a⊗Bn + b⊗ In).

Since tr(aγγγ2) = − 4β̃2+2
‖x̃∗‖6 and tr(bγγγ2) = 1

‖x̃∗‖4 , we have

tr(Γ2NQ) = tr(γγγ2a)tr(B2
nNn) + tr(γγγ2b)tr(BnNn) = −4β̃2 + 1

‖x̃∗‖2 .

This completes the proof of the lemma. �

The following theorem summarizes the final expression of the MSE of β̂1, up to order
σ4/n2. Its proof is deferred to the appendix.

Theorem 3.3. Let β̂1 be the MLE of β for the linear model y = α+ βx and let β̂Q be
its quadratic approximation, then

MSE(β̂Q) =
(1 + β̃2)σ2

‖x̃∗‖2 +
(n + 9β̃2 + 1)σ4

‖x̃∗‖4 , (3.25)

where bias2(β̂Q) = β̃2

‖x̃∗‖4σ
4.

3.2. Comparison between β̌1 and β̂2. To theoretically compare β̌1 and β̂2 in terms
of their MSEs, we will first find the MSE of β̌1. This step involves the expected values
of the product of two quadratic forms of h∗, δδδ∗, and γγγ∗ and it leads to many useful
identities. The identities are summarized in the following lemma while their derivations
are deferred to the appendix.

Lemma 3.2. Define ǎ1 = (−β̃, 1)>, γγγ∗ = εεε∗ − β̃δδδ∗, and

r1 =

[
−β̃ .5
.5 0

]
.

Also, define Σ1 = (In ⊗ ǎ1)Vn(ǎ>1 ⊗ In) = (ǎ1ǎ
>
1 )⊗Vn and Σ2 = r1 ⊗Vn. Then, the

following identities hold

E
[
(γγγ∗>Vnγγγ

∗)2
]

= n(n− 2)(β̃2 + 1)2σ4, (3.26)

E
(
(γγγ∗>Vnγγγ

∗)(h∗>Qh∗)
)

= (n− 2)‖x̃∗‖−2β̃(β̃2 + 1)σ4, (3.27)

E[(γγγ∗>Vnγγγ
∗)(γγγ∗>Bnγγγ

∗)] = (n− 2)‖x̃∗‖2(β̃2 + 1)2σ4, (3.28)

E
[
(γγγ∗>Vnγγγ

∗)(γγγ∗>Bnδδδ
∗)
]

= −(n− 2)‖x̃∗‖2β̃(β̃2 + 1)σ4, (3.29)
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E
(
h∗>((ǎ1ǎ1

>)⊗Bn)h∗ · h∗>Σ1h
∗) = (n− 2)‖x̃∗‖2(β̃2 + 1)2σ4, (3.30)

E
(
h∗>((ǎ1ǎ1

>)⊗Bn)h∗ · h∗>Σ2h
∗) = −(n− 2)‖x̃∗‖2β̃(β̃2 + 1)σ4, (3.31)

where Q = a⊗Bn + b⊗ In.

Now, we turn our attention to derive the MSE of β̌1, up to order σ6. For this purpose,
we will derive the explicit formulas for the second- and third-order error terms of σ̂2. If
σ̂2 is expanded about the true value β̃, then we have

σ̂2 =
1

n− 2

∑

i

(
a2
i + b2

i + 2aibi + 2aici
)(
f0 + f1∆1β̂1 + f1∆2β̂1 + f2∆1β̂

2
1

)
, (3.32)

where

f0 =
1

1 + β̃2
, f1 = − 2β̃

(1 + β̃2)2
, f2 = − 1− 3β̃2

(1 + β̃2)3
.

Thus, σ̂2 can be expressed as

σ̂2 = ∆2σ̂
2 + ∆3σ̂

2 + ∆4σ̂
2 +OP

(
σ5
)
. (3.33)

The expressions of these terms are summarized in the following lemma, while their deriva-
tions are deferred to the appendix.

Lemma 3.3.

∆2σ̂
2 =

f0(γγγ∗>Vnγγγ
∗)

n− 2
. (3.34)

∆3σ̂
2 =

∆1β̂1

n− 2

(
f1(γγγ∗>Vnγγγ

∗)− 2f0δδδ
∗>Vnγγγ

∗
)
. (3.35)

∆4σ̂
2 =

1

n− 2
(f1γγγ

∗>Vnγγγ
∗ − 2f0δδδ

∗>Vnγγγ
∗)∆2β̂1 + (f2γγγ

∗>Vnγγγ
∗ − 2f1δδδ

∗>Vnγγγ
∗)∆1β̂

2
1.

(3.36)

Based on this lemma, we now write

MSE(β̌1) = E

([(
1− σ̂2

‖x∗‖2
)
β̂1 − β̃

]2
)

=

= MSE(β̂1)− E

(
2∆β̂1σ̂

2β̂1

‖x∗‖2

)
+ E

(
σ̂4

‖x∗‖4 β̂
2
1

)
+O

(
σ6
)
. (3.37)

We will start with

E

(
σ̂4

‖x∗‖4 β̂
2
1

)
= E

[
σ̂4β̃2

‖x̃∗‖4

]
=

β̃2

‖x̃∗‖4E
[
(∆2σ̂

2)2
]
. (3.38)

Substituting ∆2σ̂
2 (see (3.34)) in (3.38) and using Lemma 3.2 give us

E

[
σ̂4β̃2

‖x̃∗‖4

]
=

f2
0 β̃

2E
[
(γγγ∗>Vnγγγ

∗)2
]

‖x̃∗‖4(n− 2)2
=

β̃2n

‖x̃∗‖4(n− 2)
+O

(
σ6
)
. (3.39)

Next we find E
(
σ̂2β̂1∆β̂1

‖x∗‖2
)

, which can be decomposed into three terms.

E

(
σ̂2β̂1∆β̂1

‖x∗‖2

)
= I + II + III, (3.40)

where

I = E

(
β̃∆2σ̂

2∆2β̂1

‖x̃∗‖2

)
, II = E

(
∆2σ̂

2∆1β̂1β̂1

‖x∗‖2

)
, III = E

(
∆3σ̂

2∆1β̂1β̃

‖x̃∗‖2

)
.
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The second-order error term of β̂1 was expressed in terms of the combined error vector
h∗ (cf. (3.16) and (3.17)). Therefore,

I = E

(
β̃f0(γγγ∗>Vnγγγ

∗)(h∗>Qh∗)
(n− 2)‖x̃∗‖2

)
=
β̃2σ4

‖x̃∗‖4 .

Next, we find

II =
1

‖x̃∗‖2E
[

∆2σ̂
2∆1β̂1

(
∆1β̂1 −

2β̃(x̃∗)>δδδ∗

‖x̃∗‖2

)]
=

=
f0

(n− 2)‖x̃∗‖6E
[
(γγγ∗>Vnγγγ

∗)
(

(γγγ∗>Bnγγγ
∗)− 2β̃(γγγ∗>Bnδδδ

∗)
)]

. (3.41)

Substituting (3.28) and (3.29) into (3.41) leads to

II =
σ4(3β̃2 + 1)

‖x̃∗‖4 . (3.42)

Lastly, we will prove that III = 0. That is, using (3.35) in Lemma 3.3, we can rewrite

∆1β̂1∆3σ̂
2 as

∆1β̂1∆3σ̂
2 =

∆1β̂
2
1

n− 2

(
f1(γγγ∗>Vnγγγ

∗)− 2f0δδδ
∗>Vnγγγ

∗
)
, (3.43)

which is a product of two quadratic forms of h∗. Indeed, recall that γγγ∗ = (ǎ>1 ⊗ In)h∗,
then

∆1β̂
2
1 =

γγγ∗>Bnγγγ
∗

‖x̃∗‖4 =
h∗>(ǎ1ǎ

>
1 ⊗Bn)h∗

‖x̃∗‖4 .

Also Σ2 = r1 ⊗Vn, then γγγ∗>Vnγγγ
∗ = h∗>Σ1h

∗ and δδδ∗>Vnγγγ
∗ = h∗>Σ2h

∗. Thus,

E(∆1β̂1∆3σ̂
2) = E

[
h∗>((ǎ1ǎ1

>)⊗Bn)h∗

(n− 2)‖x̃∗‖4
(
f1(h∗>Σ1h

∗)− 2f0(h∗>Σ2h
∗)
)]

, (3.44)

where f1 = −2β̃

(β̃2+1)2
.

Now, Substituting Eq. (3.30) and Eq. (3.31) into Eq. (3.44) yields E(∆1β̂∆3σ̂
2) = 0,

and as such, III = 0. Combining I, II, and III leads to

E

(
σ̂2β̂1∆β̂1

‖x∗‖2

)
=

(4β̃2 + 1)σ4

‖x̃∗‖4 +O
(
σ6
)
. (3.45)

Lastly,

MSE(β̌1) =
(1 + β̃2)σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 .

Elementary calculus can, now, helps us proving the following. For all values of n ≥ 3
and σ > 0, k(β̃) = MSE(β̂1)−MSE(β̌1) is an increasing function in |β̃|. This shows that
post-bias elimination reduces the variation of the new estimator.

More importantly, the MSEs of both of the estimators β̌1 and β̂2 are equal, up to
order σ6. This means that both estimators differ in their third-order term of their MSEs.
Since our analysis shows that indeed both methods eliminate O(σ2) bias, we will track
their higher order terms.

We find the bias of β̌1, where

β̌1 = β̂1 −
σ̂2β̂1

‖x∗‖2 := β̂1 − C

up to order σ4/n2. Then we will compare the biases of β̂2 and β̌1. Smaller bias means
a better estimator.
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To find the bias of β̌1, we only need to find E(C), where C is expressed as

C = C̃ + ∆1C + ∆2C + ∆3C + ∆4C +OP

(
σ5
)
.

Here C̃ = 0 since σ̂2 ∼ OP(σ2). The expected values of ∆1C and ∆3C equal to zero,
and as such

E(∆2C) = E

(
σ̂2β̂

‖x∗‖2

)
=
β̃E(∆2σ̂

2)

‖x̃∗‖2 =
σ2β̃

‖x̃∗‖2 .

The fourth-order error term of C is the complicated one. To track our sequel analysis
we present the following lemma that summarizes some needed expressions while their
derivations are deferred to the appendix.

Lemma 3.4. Recall all definitions in Lemma 3.2 and define Σ3 = (s1s
>
1 ) ⊗ In, where

s1 = (1, 0)>. Then

E
(
(γγγ∗>Vnγγγ

∗)‖δδδ∗‖2
)

= σ4(n− 2)
(

(β̃2 + 1)(n− 1) + 2β̃2
)
. (3.46)

E
(

(γγγ∗>Vnγγγ
∗)(δδδ∗>Bnδδδ

∗)
)

= (n− 2)‖x̃∗‖2(β̃2 + 1)σ4. (3.47)

E
(

(δδδ∗>Vnγγγ
∗)(δδδ∗>Bnγγγ

∗)
)

= (n− 2)‖x̃∗‖2(β̃2 + 5)σ4. (3.48)

E
(

(δδδ∗>Vnγγγ
∗)(h∗>Qh∗)

)
= (n− 2)‖x̃∗‖−2(1− β̃2)σ4. (3.49)

E
(

(γγγ∗>Vnγγγ
∗)(δδδ∗>Bnγγγ

∗)
)

= −σ4(n− 2)‖x̃∗‖2β̃(β̃2 + 1). (3.50)

Now, to simplify our calculations, we write

E(∆4C) = I′ + II′ + III′,

where

I′ =
1

‖x̃∗‖2E
[

∆2σ̂
2

(
∆2β̂−

2∆1β̂〈x̃∗, δδδ∗〉
‖x̃∗‖2 + β̃

(
−‖δδδ

∗‖2
‖x̃∗‖2 + 4

〈x̃∗, δδδ∗〉2
‖x̃∗‖4

))]
.

II′ =
1

‖x̃∗‖2E
(

∆1β̂∆3σ̂
2 − 2β̃∆3σ̂

2(x̃∗>δδδ∗)
‖x̃∗‖2

)
.

III′ =
β̃

‖x̃‖2E(∆4σ̂
2).

We start with I′. Here we have

I′ =
f0

(n− 2)‖x̃∗‖2E
[
(
γγγ∗>Vnγγγ

∗)
(

∆2β̂1 −
2∆1β̂1(x̃∗>δδδ∗)
‖x̃∗‖2 − β̃‖δδδ

∗‖2
‖x̃∗‖2 +

4β̃(x̃∗>δδδ∗)2

‖x̃∗‖4

)]
.

(3.51)

After using the definition of ∆2β̂1, and as such, Eq. (3.27), the first term becomes

f0

(n− 2)‖x̃∗‖2E
((
γγγ∗>Vnγγγ

∗)∆2β̂1

)
=

σ4β̃

‖x̃∗‖4 . (3.52)

Thus, we need to find

f0

(n− 2)‖x̃∗‖4E
[
(
γγγ∗>Vnγγγ

∗)
(
−2∆1β̂1〈x̃∗, δδδ∗〉 − β̃‖δδδ∗‖2 +

4β̃〈x̃∗, δδδ∗〉2
‖x̃∗‖2

)]
=

=
f0

(n− 2)‖x̃∗‖4E
[
γγγ∗>Vnγγγ

∗

‖x̃∗‖2 ·
(
−2γγγ∗TBnδδδ

∗ + 4 β̃δδδ∗>Bnδδδ
∗
)
− β̃(γγγ∗>Vnγγγ

∗)‖δδδ∗‖2
]
.

(3.53)
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With the aid of identities (3.29), (3.46), and (3.47), one can show that

f0

(n− 2)‖x̃∗‖4E
[
(
γγγ∗>Vnγγγ

∗)
(
−2∆1β̂1〈x̃∗, δδδ∗〉 − β̃‖δδδ∗‖2 +

4β̃〈x̃∗, δδδ∗〉2
‖x̃∗‖2

)]
=

=
σ4

‖x̃∗‖4
(

(7− n)β̃− 2f0β̃
3
)
. (3.54)

Substituting (3.52) and (3.54) in (3.51) yields

I′ =
σ4
(

(8− n)β̃− 2f0β̃
3
)

‖x̃∗‖4 . (3.55)

Similarly, we will compute II′. Since E(∆3σ̂
2∆1β̂1) = 0, we have

II′ = −2β̃‖x̃∗‖−4E[∆3σ̂
2(x̃∗>δδδ∗)].

Substitute (3.35) in II′ and use (3.29) and (3.48) to get

II′ =
−2β̃

(n− 2)‖x̃∗‖4E
[
∆1β̂1

(
f1(γγγ∗>Vnγγγ

∗)− 2f0δδδ
∗>Vnγγγ

∗
)

(x̃∗>δδδ∗)
]

=

=
−2β̃

(n− 2)‖x̃∗‖6E
[
δδδ∗>Bnγγγ

∗
(
f1(γγγ∗>Vnγγγ

∗)− 2f0 δδδ
∗>Vnγγγ

∗
)]

=

=
2β̃f0σ

4

‖x̃∗‖4 . (3.56)

Finally, we compute III′. From (3.36) and ∆2β̂1 = h∗>Qh∗ and ∆1β̂
2
1 = 1

‖x̃∗‖4γγγ
∗>Bnγγγ

∗

III′ =
β̃

(n− 2)‖x̃‖2E
[
(f1γγγ

∗>Vnγγγ
∗ − 2f0δδδ

∗>Vnγγγ
∗)∆2β̂1 +

+ (f2γγγ
∗>Vnγγγ

∗ − 2f1δδδ
∗>Vnγγγ

∗)∆1β̂
2
]

=

=
β̃

(n− 2)‖x̃‖2E
[
(f1γγγ

∗>Vnγγγ
∗ − 2f0δδδ

∗>Vnγγγ
∗)h∗>Qh∗+

+
1

‖x̃∗‖4 (f2γγγ
∗>Vnγγγ

∗ − 2f1δδδ
∗>Vnγγγ

∗)γγγ∗>Bnγγγ
∗
]
.

Now using (3.27), (3.28), (3.49), and (3.50), one has

III′ =
−β̃(2f0 + 1)

‖x̃‖4 . (3.57)

Combining (3.55)–(3.57) gives us

E(∆4C) = − (2f0β̃
3 + (n− 7)β̃)σ4

‖x̃∗‖4 . (3.58)

Hence,

E(β̌1) = β̃+
σ2β̃

‖x̃∗‖2 −
(
σ2β̃

‖x̃∗‖2 −
(2f0β̃

3 + (n− 7)β̃)σ4

‖x̃∗‖4

)
= β̃+

(2f0β̃
3 + (n− 7)β̃)σ4

‖x̃∗‖4 .

Accordingly, our results can be summarized in the following theorem.

Theorem 3.4. Let β̂ be the MLE of β and β̌ = (1− σ̂2

‖x∗‖2 )β̂, then

bias(β̌1) =
(2f0β̃

3 + (n− 7)β̃)σ4

‖x̃∗‖4 .
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Figure 1. The contour map of the ratio of the fourth-order bias of β̌1

to the fourth order bias if β̂2 over the region (n, β̃) ∈ (15, 200)×(0, 10).

MSE(β̌1) =
(1 + β̃2)σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 .

Note that, here, the bias of β̌1 presented in Theorem 3.4 depends on ‖x∗‖2 =
=
∑n

i=1(xi − x̄)2, and as such, it is of order n. A simple comparison between the results

in Theorem 3.4 and Equation (2.9) shows that bias(β̌1) ∼ σ4/n while bias(β̂2) ∼ σ4/n2.

Therefore, bias(β̂2) ∼ bias(β̌1)/n. Figure 1 represents the contour map of the ratio of
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the fourth-order bias of β̌1 to the fourth-order bias of β̂2 over the region β̃ ∈ (0, 10) and
n ∈ (15, 200). It is clear that this ratio is always more than 2 and it reaches 71 in some

parts of this region. These observations demonstrate that the bias of β̂2 is much smaller
than the bias of β̌1. Accordingly, β̂2 outperforms the AMLE β̌1.

Finally, we should emphasize here that these results are valid whenever σL is small.

4. Appendix

Proof of Theorem 3.2. At first, we will expand 1
1+β̂2

1

about the true value β̃ to obtain

1

1 + β̂2
1

= f0 + f1 ∆1β̂1 + f1 ∆2β̂1 + f2 ∆1β̂
2
1 +OP

(
σ3
) def

= h(β̂1) +OP

(
σ3
)
,

where f0 = 1
1+β̃2

, f1 = − 2β̃

(1+β̃2)2
, and f2 = − 1−3β̃2

(1+β̃2)3
. Keeping only terms of order σ4

yields

F(β̂1) = h(β̂1)
∑

z2
i +OP

(
σ5
)
, (4.1)

where zi = ai + bi for each i = 1, . . . , n.
The random numbers ai and bi have typical values of order σ and σ2, respectively.

Their formal expressions are defined by

ai = β̃δ∗i + x̃∗i ∆1β̂1 − ε∗i , (4.2)

bi = x̃∗i ∆2β̂1 + δ∗i ∆1β̂1 . (4.3)

We can find ∆2β̂1 by setting the derivative ∂F
∂∆2β̂1

to zero. Using the fact
∑

aix̃
∗
i = 0

yields

dF
d∆2β̂1

= f1

∑
a2
i + 2h(β̂1)

∑
zix̃
∗
i + 2h(β̂1)

∑
ziδ
∗
i =

= f1

∑
a2
i + 2f0‖x̃∗‖2∆2β̂1 + 4f0

∑
x̃∗i δ

∗
i ∆1β̂1 + 2f0

∑
δ∗i
(
β̃δ∗i − ε∗i

)
,

where we omitted the remainder OP(σ3) for brevity.

Let us denote r1 = f1
f0

= −2β̃

1+β̃2
. Then, we obtain

−2‖x̃∗‖2∆2β̂1 = r1

∑
a2
i + 4

∑
x̃∗i δ
∗
i ∆1β̂1 + 2

∑
δ∗i (β̃δ∗i − ε∗i ) =

= r1

(
−2‖x̃∗‖2∆1β̂

2
1 + ‖x̃∗‖2∆1β̂

2
1 +

∑(
β̃δ∗i − ε∗i

)2)
+

+ 2
∑

δ∗i
(
β̃δ∗i − ε∗i

)
+ 4

∑
δ∗i x̃
∗
i ∆1β̂1 =

def
= I + II + III. (4.4)

The variables I, II, and III are defined and simplified below. In matrix notations, each
term in the above expression can be written as a quadratic form of h∗as follows.

I = −r1‖x̃∗‖2∆1β̂
2
1 = (h∗)>Q1h

∗, (4.5)

II = r1

∑(
β̃δ∗i − ε∗i

)2
+ 2

∑
δ∗i (β̃δ∗i − ε∗i ) = (h∗)>Q2h

∗, (4.6)

III = 4
∑

δ∗i x̃
∗
i ∆1β̂1 = (h∗)>Q3h

∗, (4.7)

where

Q1 =

[ −r1β̃2

‖x̃∗‖2 Bn
r1β̃
‖x̃∗‖2 Bn

r1β̃
‖x̃∗‖2 Bn

−r1
‖x̃∗‖2 Bn

]
, Q2 =

[
(r1β̃

2 + 2β̃)In −(r1β̃+ 1)In
−(r1β̃+ 1)In r1In

]
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and

Q3 =

[
− 4β̃
‖x̃∗‖2 Bn

2
‖x̃∗‖2 Bn

2
‖x̃∗‖2 Bn 0n

]
.

Combining (4.4)–(4.7) gives

∆2β̂1 = h∗>Qh∗ = h>N>n QNnh,

where Q = 1
2‖x̃∗‖2

(
Q1 + Q2 + Q3

)
.

Next, we find ∆3β̂1 by expanding 1
1+β̂2

1

about the true value β̃, i.e.,

1

1 + β̂2
1

= f0 + f1 ∆β̂1 + f2 ∆β̂2
1 + f3 ∆β̂3

1 +OP

(
σ4
) def

= h(β̂1) +OP

(
σ4
)
,

where ∆β̂1 = ∆1β̂1 + ∆2β̂1 + ∆3β̂1 + OP(σ4) and f3 = f(3)(β̃)
3! , while f0, f1, and f2

are defined earlier. The random variable h(β̂1) can be clearly rewritten as h(β̂1) =

= h̃ + ∆1h + ∆2h + ∆3h, where h̃ = f0, ∆1h = f1∆1β̂1, ∆2h = f1∆2β̂1 + f2∆1β̂
2
1, and

∆3h = f1∆3β̂1 + 2f2∆1β̂1∆2β̂1 + f3∆1β̂
3
1. Thus,

F(β̂1) = h(β̂1)
∑

z2
i +OP

(
σ7
)
, (4.8)

where

zi = β̃δ∗i + x̃∗i ∆1β̂1 − ε∗i + x̃∗i ∆2β̂1 + δ∗i ∆1β̂1 + x̃∗i ∆3β̂1 + δ∗i ∆2β̂1 + δ∗i ∆3β̂1. (4.9)

Therefore, it is more appropriate to write zi = ai + bi + ci + di, where ai and bi are
defined in (4.2), while

ci = x̃∗i ∆3β̂1 + δ∗i ∆2β̂1 and di = δ∗i ∆3β̂1

represent the cubic and the quadric forms of e∗i , respectively. Note that ∂h(β)

∂∆3β̂1
= f1 +

+ 2f2∆1β̂1 +OP(σ2), hence differentiating F(β̂1) with respect to ∆3β̂1 yields

dF(β)

d∆3β̂1

= (f1 + 2f2∆1β̂1)
∑

z2
i + 2h(β)

∑
zi(x̃

∗
i + δ∗i ) +OP

(
σ7
)

=

= 2f2∆1β̂1

∑
a2
i + f1

∑
(a2

i + 2aibi) + 2h̃
∑[

(ai + bi + ci)x̃
∗
i + (ai + bi)δ

∗
i

]
+

+ 2∆1h
∑[

(ai + bi)x̃
∗
i + aiδ

∗
i

]
+ 2∆2h

∑
aix̃
∗
i +OP

(
σ4
)
.

Here dF(β̂1)

d∆3β̂1
contains terms of order OP(σ), OP(σ2), and OP(σ3). Predictably, terms of

the first and the second leading orders vanish. This follows from
∑

aix̃
∗
i = 0 and

2h̃
∑

bix̃i + 2h̃
∑

aiδ
∗
i + f1

∑
a2
i = 0,

which follows (4.4). Thus, dF(β̂1)

d∆3β̂1
becomes

dF(β̂1)

d∆3β̂1

= 2f2∆1β̂1

∑
a2
i +2f1

∑
aibi+2f0

∑
(cix̃

∗
i +biδ

∗
i )+2f1∆1β̂1

∑
(bix̃

∗
i +aiδ

∗
i ).

Equating dF(β̂1)

d∆3β̂1
to zero, substituting the value of ci, and solving for ∆3β̂1 yield

∆3β̂1 = − 1

‖x̃∗‖2
(
r2∆1β̂1

∑
a2
i + r1

∑
aibi +

∑
biδ
∗
i +

+ r1∆1β̂1

∑
(bix̃

∗
i + aiδ

∗
i ) +

∑
x̃∗i δ
∗
i ∆2β̂1

)
,
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where we set r2 = f2/f0 = −(1 − 3β̃2)/(1 + β̃2)2. Next, we substitute the values of ai
and bi in the previous equation to get

∆3β̂1 = − 1

‖x̃∗‖2
(

∆1β̂1

∑[
(r2β̃

2 + 2r1β̃+ 1)(δ∗i )2 − 2(r2β̃+ r1)δ∗i ε
∗
i + r2(ε∗i )2

]
−

− r2‖x̃∗‖2∆1β̂
3
1 + 3r1

(∑
δ∗i x̃
∗
i

)
∆1β̂

2
1 + r1‖x̃∗‖2∆1β̂1∆2β̂1 + 2

(∑
δ∗i x̃
∗
i

)
∆2β̂1

)
,

and further

∆3β̂1 = − 1

‖x̃∗‖2
(
G>h∗ · (h∗)>Ah∗ − r2‖x̃∗‖2(h∗)>GG>h∗ ·G>h∗ +

+ r1‖x̃∗‖2G>h∗ · (h∗)>Qh∗ + 3r1E
>h∗ · (h∗)>GG>h∗ + 2 E>h∗ · (h∗)>Qh∗

)
,

where E = (x̃>,0>)> and A = γ̂γγ1 ⊗ In with

γ̂γγ1 =

[
(r2β̃

2 + 2r1β̃+ 1) −(r2β̃+ r1)

−(r2β̃+ r1) r2

]

(recall that ∆1β̂1 = G>h∗, ∆2β̂1 = (h∗)>Qh∗ and Bn = x̃∗ ∗ (x̃∗)>). This completes
the proof of the theorem. �

Proof of Theorem 3.3. To derive the MSE of β̂1, we need to compute E(∆1β̂1∆3β̂1),
we start first with defining

Γ1 = A− r2‖x̃∗‖2GG> + 3r1GE> = γγγ1 ⊗Bn + γ̂γγ1 ⊗ In,

Γ2 = 2 GE> + r1‖x̃∗‖2GG> = γγγ2 ⊗Bn .

with

γγγ1 =
1

‖x̃∗‖2
[
−r2β̃

2 − 3r1β̃
3
2r1 + r2β̃

3
2r1 + r2β̃ −r2

]
,

γγγ2 =
1

‖x̃∗‖2
[

r1β̃
2 − 2β̃ 1− r1β̃

1− r1β̃ r1

]
.

(4.10)

Multiplying ∆3β̂1 by ∆1β̂1 yields

∆1β̂1∆3β̂1 = − 1

‖x̃∗‖2
(

(h∗)>GG>h∗ · (h∗)>Ah∗ − r2‖x̃∗‖2((h∗)>GG>h∗)2 +

+ r1‖x̃∗‖2(h∗)>GG>h∗ · (h∗)>Qh∗ + 3r1(h∗)>GE>h∗ · (h∗)>GG>h∗ +

+ 2(h∗)>GE>h∗ · (h∗)>Qh∗
)
.

Then, after simple algebra, we get

∆3β̂1∆1β̂1 = − 1

‖x̃∗‖2
(

(h∗)>GG>h∗ · h∗Γ1h
∗ + (h∗)>Qh∗ · h∗Γ2h

∗
)
. (4.11)

Based on the previous argument, one gets

E(∆1β̂1∆3β̂1) = − σ4

‖x̃∗‖2
[
tr(Γ1N)tr(GG>N) + tr(Γ2N)tr(QN) +

+ 2tr(Γ1NGG>N) + 2tr(Γ2NQN)
]
,

(4.12)

which simply becomes

E(∆1β̂1∆3β̂1) =
1 + 3β̃2

‖x̃∗‖4 σ
4 . (4.13)
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Also it is easy to verify that

E((∆2β̂)2) =
n + 3β̃2 − 1

‖x̃∗‖4 σ4 . (4.14)

Finally, if Eqs. (3.8), (4.14), and (4.13) are substituted into

MSE(β̂1) = E(∆1β̂
2
1) + E(∆2β̂

2
1) + 2E(∆1β̂1∆3β̂1) +O

(
σ6
)
, (4.15)

then the theorem will be established. �

Proof of Lemma 3.2. The proofs for all these identities go straightforward by using
Theorems 3.1. Starting with (3.26), we notice that both Vn and Nn are idempotent

matrices with tr(VnNn) = n− 2, and γγγ∗ ∼ N
(
0n, (1 + β̃2)σ2Nn

)
, then

E
[
(γγγ∗>Vnγγγ

∗)2
]

= σ4(β̃2 + 1)2
(
[tr(VnNn)]2 + 2 tr(VnNn)]

)
= n(n− 2)(β̃2 + 1)2σ4.

The second identity in (3.27) can be obtained after γγγ∗ is expressed in terms of h∗ (i. e.,
γγγ∗ = (ǎ>1 ⊗ In)h∗). Therefore,

E
(
(γγγ∗>Vnγγγ

∗)(h∗>Qh∗)
)

= E
(
(h∗>Σ1h

∗)(h∗>Qh∗)
)
.

After simple calculations

tr(Σ1N) = tr(ǎ1ǎ
>
1 )tr(VnNn) = (β̃2 + 1)(n− 2),

and tr(QN) = β̃
‖x̃∗‖2 . Besides,

tr(Σ1NQN) = tr
(
(ǎ1ǎ

>
1 )a

)
tr(VnNnBn) + tr

(
(ǎ1ǎ

>
1 )b

)
tr(VnNn) = 0.

This follows immediately from tr((ǎ1ǎ
>
1 )b) = 0, tr((ǎ1ǎ

>
1 )a) = β̃(β̃2+1)

‖x̃∗‖4 , and VnNnBn =

= VnBn = 0n. As an immediate consequence,

E
(
(γγγ∗>Vnγγγ

∗)(h∗>Qh∗)
)

= σ4(β̃2 + 1)(tr(Σ1N)tr(QN) + 2 tr(Σ1NQN)) =

= (n− 2)‖x̃∗‖−2β̃(β̃2 + 1)σ4.

Next, we compute (3.28). Again, since VnNnBn = VnBn = 0n,

E[(γγγ∗>Vnγγγ
∗)(γγγ∗>Bnγγγ

∗)] = σ4tr
[
ǎ1ǎ
>
1 )
]2

tr(VnNn)tr(BnNn) = (n−2)‖x̃∗‖2(β̃2+1)2σ4.

In the same way, (3.29) follows by expressing both of γγγ∗ and δδδ∗ in terms of h∗

E
[
(γγγ∗>Vnγγγ

∗)(γγγ∗>Bnδδδ
∗)
]

= E
[
(h∗>Σ1h

∗)(h∗>(r1 ⊗Bn)h∗)
]

=

= σ4tr(Σ1N)tr((r1 ⊗Bn)N),

where other terms equal zero because of VnBn = 0n. Thus,

E
[
(γγγ∗>Vnγγγ

∗)(γγγ∗>Bnδδδ
∗)
]

= σ4tr(ǎ1ǎ
>
1 )tr(r1)tr(VnNn)tr(BnNn) =

= E
[
(h∗>Σ1h

∗)(h∗>(r1 ⊗Bn)h∗)
]

=

= −β̃(β̃2 + 1)(n− 2)‖x̃∗‖2σ4.

(Here we used tr(ǎ1ǎ
>
1 ) = β̃2 + 1, tr(r1) = −β̃, and VnBn = 0n.

No, we derive (3.30), which becomes

E
(
h∗>((ǎ1ǎ1

>)⊗Bn)h∗ · h∗>Σ1h
∗) = σ4[tr(ǎ1ǎ1

>) ]2tr(Bn)tr(VnNn) =

= (β̃2 + 1)2(n− 2)‖x̃∗‖2σ4.

Lastly, we prove (3.31), which can be expressed as

E
(
h∗>((ǎ1ǎ1

>)⊗Bn)h∗ · h∗>Σ2h
∗) = σ4tr((ǎ1ǎ1

>))tr(r1)tr(Bn)tr(VnNn).

Thus,
E
(
h∗>((ǎ1ǎ1

>)⊗Bn)h∗ · h∗>Σ2h
∗) = −β̃(β̃2 + 1)(n− 2)‖x̃∗‖2σ4.
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This completes the proof of the lemma. �

Proof of Lemma 3.3. Using (3.32), we write ∆2σ̂
2 = f0

n−2

∑n
i=1 a

2
i , where

n∑

i=1

a2
i = ‖γγγ∗‖2 − 2(γγγ∗>x̃∗)∆1β̂+ ‖x̃∗‖2∆1β̂

2.

The identity ‖x̃∗‖2∆1β̂ = γγγ∗>x̃∗ and Vn = In − Bn

‖x̃∗‖2 leads to
∑n

i=1 a
2
i = γγγ∗>Vnγγγ

∗,
and as such,

∆2σ̂
2 =

f0(γγγ∗>Vnγγγ
∗)

n− 2
.

The third order error term of σ̂2 is

∆3σ̂
2 =

1

n− 2

∑

i

(f1∆1β̂a
2
i + 2f0aibi),

but
n∑

i=1

aibi = ∆1β̂

n∑

i=1

aiδδδ
∗
i = ∆1β̂(∆1β̂x̃∗T δ∗ − γγγ∗>δδδ∗) = ∆1β̂

(
γγγ∗>Bnδ

∗

‖x̃∗‖2 − γγγ∗>δδδ∗
)
.

Therefore,
∑

i aibi = −δδδ∗>Vnγγγ
∗.

∆3σ̂
2 =

1

n− 2

∑

i

(f1∆1β̂a
2
i + 2f0aibi) =

∆1β̂

n− 2

(
f1(γγγ∗>Vnγγγ

∗)− 2f0δδδ
∗>Vnγγγ

∗
)
.

In the same approach, we get

∆4σ̂
2 =

1

n− 2

∑

i

a2
i (f1∆2β̂+ f2∆1β̂

2) + 2f1aibi∆1β̂+ 2f0aici. (4.16)

Using the fact
∑

i aix̃
∗
i = 0 reduces this expression to

∆4σ̂
2 =

1

n− 2

∑

i

a2
i (f1∆2β̂+ f2∆1β̂

2) + 2f1aiδ
∗
i ∆1β̂

2 + 2f0aiδ
∗
i ∆2β̂ =

=
1

n− 2

∑

i

(f1a
2
i + 2f0aiδ

∗
i )∆2β̂+ (f2a

2
i + 2f1aiδ

∗
i )∆1β̂

2.

From the previous expressions and ∆1β̂
2 = γγγ∗>Bnγγγ

∗

‖x̃∗‖4 we get,

∆4σ̂
2 =

1

n− 2
(f1γγγ

∗>Vnγγγ
∗ − 2f0δδδ

∗>Vnγγγ
∗)∆2β̂+ (f2γγγ

∗>Vnγγγ
∗ − 2f1δδδ

∗>Vnγγγ
∗)∆1β̂

2.

This completes the proof of the lemma. �

Proof of Lemma 3.4. Equation (3.46) follows immediately from

E
(
(γγγ∗>Vnγγγ

∗)‖δδδ∗‖2
)

= E
(
(h∗>Σ1h

∗) · (h∗>Σ3h
∗)
)

=

= σ4
(
tr(ǎ1ǎ

>
1 )tr(s1s

>
1 )tr(VnNn)tr(Nn) + 2 tr(ǎ1ǎ

>
1 s1s

>
1 )tr(VnNn)

)
=

= σ4
(

(β̃2 + 1)(n− 2)(n− 1) + 2β̃2(n− 2)
)

=

= σ4(n− 2)
(

(β̃2 + 1)(n− 1) + 2β̃2
)
.

Next, we verify (3.47). Since γγγ∗>Vnγγγ
∗ = h∗>Σ1h

∗ and δδδ∗>Bnδδδ
∗ = h∗>(s1s

>
1 ⊗Bn)h∗,

we have

E
[
(γγγ∗>Vnγγγ

∗)(δδδ∗>Bnδδδ
∗)
]

= E
[
(h∗>Σ1h

∗)(h∗>(s1s
>
1 ⊗Bn)h∗)

]
=

= σ4
(
tr(Σ1N)tr((s1s

>
1 ⊗Bn)N) + 2 tr(Σ1(s1s

>
1 ⊗Bn)N)

)
=
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= σ4
(
tr(ǎ1ǎ

>
1 )tr(VnNn)tr(BnNn) + 2 tr(ǎ1ǎ

>
1 s1s

>
1 )tr(VnBnNn)

)
=

= (n− 2)‖x̃∗‖2(β̃2 + 1)σ4.

Now, we verify (3.48). Since δδδ∗>Vnγγγ
∗ = h∗>(r1 ⊗ Vn)h∗ and γγγ∗>Bnδδδ

∗ =
= h∗>(r1 ⊗Bn)h∗, we have

E
[
(δδδ∗>Vnγγγ

∗)(γγγ∗>Bnδδδ
∗)
]

= E
[
(h∗>Σ2h

∗)(h∗>(r1 ⊗Bn)h∗)
]

=

= σ4(tr(Σ2N)tr((r1 ⊗Bn)N) + 2 tr(Σ2(r1 ⊗Bn)N)) =

= σ4
(
tr(r2

1)tr(VnNn)tr(BnNn) + 2 tr(r2
1)tr(VnBnNn)

)
=

= (β̃2 + .5)(n− 2)‖x̃∗‖2σ4.

Next, we verify (3.49). Note that

(δδδ∗>Vnγγγ
∗)(h∗>Qh∗) = h∗>(r1 ⊗Vn)h∗ · h∗>(a⊗Bn + b⊗ In)h∗.

Thus

E
(

(δδδ∗>Vnγγγ
∗)(h∗>Qh∗)

)
= tr(r1)tr(VnNn)(tr(a)tr(Bn) + tr(b)tr(Nn)) +

+ 2 tr(r1b)tr(VnNn)

=
(n− 2)(1− β̃2)σ4

‖x̃∗‖2 ,

which follows from tr(r1b) = 1
2‖x̃∗‖2 , tr(r1) = −β̃, tr(a) = β̃

‖x̃∗‖4 , tr(b) = 0, and

VnBn = 0n (see (3.11)–(3.15)).
Lastly, we prove (3.50). Since

E
(

(γγγ∗>Vnγγγ
∗)(δδδ∗>Bnγγγ

∗)
)

= σ4
(
tr(ǎ1ǎ

>
1 )tr(r1)tr(VnNn)tr(Bn)

)
=

= −σ4(n− 2)‖x̃∗‖2β̃(β̃2 + 1).

This completes the proof of the lemma. �

The author would like to thank the reviewers and the editor for providing many
suggestions that resulted in improving this paper.
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ÏÎÐIÂÍßËÜÍÅ ÄÎÑËIÄÆÅÍÍß ÄÂÎÕ ÍÅÙÎÄÀÂÍÎ ÐÎÇÐÎÁËÅÍÈÕ
ÎÖIÍÎÊ ÄËß ÊÎÅÔIÖI�ÍÒÀ ÍÀÕÈËÓ Ó ÔÓÍÊÖIÎÍÀËÜÍIÉ

ËIÍIÉÍIÉ ÌÎÄÅËI Ç ÏÎÕÈÁÊÀÌÈ Ó ÇÌIÍÍÈÕ

À. À. ÀËÜ-ØÀÐÀÄÊÀÕ

Àíîòàöiÿ. Íåùîäàâíî â [1] áóëè ðîçðîáëåíi äâi îöiíêè äëÿ êîåôiöi¹íòà íàõèëó ëiíi¨ ó ôóíêöiî-
íàëüíié ìîäåëi ç ïîõèáêàìè ó çìiííèõ. Âîíè îáèäâi ¹ íåçìiùåíèìè äî ïîðÿäêó σ4, äå σ� ñòàíäàðòíå
âiäõèëåííÿ ïîõèáêè. Îäíà ç îöiíîê áóëà ïîáóäîâàíà ÿê ôóíêöiÿ îöiíêè ìàêñèìàëüíî¨ âiðîãiäíîñòi
(ÎÌÂ). Òîìó ¨¨ íàçâàíî ïîêðàùåíîþ ÎÌÂ. Äðóãó îöiíêó ïîáóäîâàíî çà äîïîìîãîþ çîâñiì iíøîãî
ïiäõîäó. Õî÷à îáèäâi îöiíêè ¹ íåçìiùåíèìè äî ïîðÿäêó σ4, îñòàííÿ îöiíêà ¹ íàáàãàòî òî÷íiøîþ,
íiæ ïîêðàùåíà ÎÌÂ. Òóò ìè âèâ÷à¹ìî öi äâi îöiíêè áiëüø ñòðîãî i ïîêàçó¹ìî, ÷îìó îäíà îöiíêà
ïåðåâåðøó¹ iíøó.

ÑÐÀÂÍÈÒÅËÜÍÎÅ ÈÑÑËÅÄÎÂÀÍÈÅ ÄÂÓÕ ÍÅÄÀÂÍÎ
ÐÀÇÐÀÁÎÒÀÍÍÛÕ ÎÖÅÍÎÊ ÄËß ÊÎÝÔÔÈÖÈÅÍÒÀ ÍÀÊËÎÍÀ

Â ÔÓÍÊÖÈÎÍÀËÜÍÎÉ ËÈÍÅÉÍÎÉ ÌÎÄÅËÈ
Ñ ÎØÈÁÊÀÌÈ Â ÏÅÐÅÌÅÍÍÛÕ

À. À. ÀËÜ-ØÀÐÀÄÊÀÕ

Àííîòàöèÿ. Íåäàâíî â [1] áûëè ðàçðàáîòàíû äâå îöåíêè äëÿ êîýôôèöèåíòà íàêëîíà ëèíèè â
ôóíêöèîíàëüíîé ìîäåëè ñ îøèáêàìè â ïåðåìåííûõ. Îíè îáå ÿâëÿþòñÿ íåñìåù¼ííûìè äî ïîðÿäêà
σ4, ãäå σ� ñòàíäàðòíîå îòêëîíåíèå îøèáêè. Îäíà èç îöåíîê áûëà ïîñòðîåíà êàê ôóíêöèÿ îöåí-
êè ìàêñèìàëüíîãî ïðàâäîïîäîáèÿ (ÎÌÏ). Ïîýòîìó å¼ íàçâàëè óëó÷øåííîé ÎÌÏ. Âòîðàÿ îöåíêà
áûëà ïîñòðîåíà ñ ïîìîùüþ ñîâñåì äðóãîãî ïîäõîäà. Õîòÿ îáå îöåíêè ÿâëÿþòñÿ íåñìåù¼ííûìè äî
ïîðÿäêà σ4, ïîñëåäíÿÿ îöåíêà � íàìíîãî òî÷íåå, ÷åì óëó÷øåííàÿ ÎÌÏ. Çäåñü ìû èçó÷àåì ýòè äâå
îöåíêè áîëåå ñòðîãî è ïîêàçûâàåì, ïî÷åìó îäíà îöåíêà ïðåâîñõîäèò äðóãóþ.


