Teopia fimoBipHOCTEIT Teoriya Imovirnoster
Ta MaTEMATUYHA, CTATUCTHKA ta Matematychna Statystyka
Bum. 97, 2017, ¢. 196-219 No. 97, 2017, pp. 196-219

A COMPARATIVE STUDY FOR TWO NEWLY DEVELOPED
ESTIMATORS FOR THE SLOPE
IN FUNCTIONAL EIV LINEAR MODEL

A. A. AL-SHARADQAH

ABSTRACT. Two estimators were recently developed in [1] for the slope of a line in the functional EIV
model. Both are unbiased, up to order o4, where o is the error standard deviation. One estimator
was constructed as a function of the maximum likelihood estimator (MLE). Therefore, it was called
Adjusted MLE (AMLE). The second estimator was constructed in a completely different approach.
Although both the estimators are unbiased, up to the order o*, the latter estimator is much more
accurate than the AMLE. We study here these two estimators more rigorously, and we show why one
estimator outperforms the other one.
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1. INTRODUCTION

Regression models in which all the variables in the model are subject to errors are
known as Errors-In-Variables (EIV) models [8, 10, 14]. In the EIV linear model, the n
observed points {m; = (z;,y;)};_, are considered as random perturbations of the true

points my = (jlvgl)—ra R S (fnvgn)—r; i.e.,
wl:£2+617 yl:gl—'_elv Z:]-vvnv (11)
where §; and ¢;, for each i = 1,...,n, are i.1. d. normal random variables with zero mean

and variances 02 and 012}, respectively. The true points are lying on the true line and are
defined by

7 = &+ By, i=1,...,n, (1.2)
where & and [3 are the true values of the intercept o« and the slope 3. This paper is
a continuation of our work in [1]; therefore, we will adopt the same assumptions about
the true points. That is, we will use the functional model, in which the true points
are unknown but fixed. Here we will assume that the ratio A = 02 /0% is known. For
simplicity, we write 02 = 02 and 0? = Ac?. In this case, the MLE of (e, ) in the
functional model is equivalent to the orthogonal distance regression that minimizes the
following:

1 =
Fi(e, B) = B2 A ;dia di =yi — & — Px;. (1.3)
To minimize this objective function, we first differentiate F; with respect to o and
substitute its resulting expression &; = § — BZ back into the objective function (1.3).
Therefore, we obtain the following:

1 *
FiB) = grin > d?, (1.4)

where df = y; — fz;. The notations z} and y} refer to the ‘centered’ coordinates of x;
and vy, i.e.,

* —

x; = — T, v =y — 7, i=1,...,n. (1.5)
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Here, we use the standard notation for sample means z = 23" a;, 5 = 230" v,
while for the components of the so-called ‘scatter matrix’ we use the following:

Ser = Y (@i =), sy =2 (Wi =97 Say =Y (i —T)(yi — 7)- (1.6)
Therefore, differentiating Eq. (1.4) with respect to f gives the following quadratic equa-
tion

Szyﬁz - (Syy - )\Szx)ﬁ - 7\Szy =0. (1.7)
Equation (1.7) has two distinct roots, but the one that minimizes Fi () is
Syy — NSgz + \/(syy — Aszz)? + 482,

284y

B =

; (1.8)

if 4420 (which is true almost surely). Then, we find 6, = 7 — 17 [8].

A family of objective functions. Instead of restricting ourselves with only one ob-
jective function that led to the MLE, we considered in [1] a general class of objective
functions

Flo, B)=g(B) > di, di=y; —ox— Ba, (1.9)
where g(f) is an arbitrary, smooth positive function of 3. This class of objective functions
produces two popular estimators. The first estimator is the MLE that minimizes (1.9)
whenever g(B) = (B2 +A)~! = ¢1(B) (say) and the second estimator is the least squares
estimator (LS) that minimizes F in (1.9) whenever the weight function g(f) =1 =: go(p)
(say). It should be clear that o« = § — fZ and

F(B)=g(B) >_d;*. (1.10)

Another estimator, [32 that will be discussed in this paper was developed in [1]. The
estimator B2 is the solution that minimizes the objective function F in (1.10) with the
weight

_n=3
g(B) = (B*+A) "7 = g2(B).
With this weight, the new objective function leads to a new estimator Bg. That is, it is

the solution, that minimizes (1.10) with the weight g2(f), and it is one of the roots of
the cubic equation

2P + (0 —4)s,,B% — [(n —3)syy —A(n — 2)sm] B —A(n—2)sgz =0. (1.11)
The development of g>(f) comes after deriving the expression of the bias (up to the
second-order term) for the estimator that minimizes F in (1.10). The second-order
bias formula depends on g and its derivative, ¢’. Equating the second-order bias with
zero gives us an ordinary first-order linear differential equation (presented shortly). The
solution of this differential equation yields g2(f3). We called this bias-correction by pre-
bias elimination technique’, because we choose g = go that eliminates the second-order
bias in advance.

Moreover, we addressed another bias-correction technique, where the bias is eliminated
by subtracting the noisy version of the bias from the estimator itself. This bias correction
technique is well known in the literature, but we refer it here by ‘post-bias elimination
technique’. The new estimator comes as an adjustment of the MLE for its second-order
bias. Indeed, it is a function of the MLE and has the following form

. 52 R
B1= <1 - ||x*||2> B1, (1.12)

where )

)
2

1 £ A *
= Eeenl
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where x* = (z1 —Z,..., 2, — j)T, Y = —9 - Yn— gj)T. Since it is a modified
version of the MLE, we called 3, the ‘ Adjusted Mazimum Likelihood Estimator’ (AMLE).

Even though we have derived the general formulas for the bias and the MSE in [1],
those formulas work only for estimators minimizing the objective function given in (1.9).
The AMLE does not minimize any objective function, those general formulas cannot be
applied. Therefore, the higher order bias and the higher order MSE shall be derived for
the AMLE in a completely different approach.

The numerical experiments in [1] show that the AMLE, 1, outperforms the MLE,
but it still falls behind [327 although both Bg and B were developed to eliminate the
second-order bias. They behave differently in practice. This motivates us to study them
further. To do so, we will derive the higher order terms for the bias and the MSE of 34
and [32, and then we will compare them.

This paper is organized as follows. Section 2 states some statistical assumptions and
presents previous results. Those results paves the road for Section 3, where we present
the higher order expansions of the bias as well as the MSE of the AMLE, and then we
compare between Bg and the AMLE, ;. This paper involves many technical derivations
that are deferred to the appendix.

In this paper, we use vector notations. Accordingly, (1.1) can be expressed as x = x+8
and y = y+¢, where 8 and € represent the vectors of all noisy errors that corrupt the first
and the second coordinates of the true vectors X = (#1,...,2,)" and ¥ = (§1,...,%n) "
respectively.

)

2. PREVIOUS RESULTS

Anderson [5] proved that the MLEs of («,f), i.e. & and 1, do not have finite
moments, i.e. E(|6;|) = co and E(|B1]) = oo, see also [13]. The infinite first moment’s
phenomenon is very common in EIV models. For instance, Chernov [11] proved that
the most accurate estimator, the MLEs, for the center and the radius of a circle in the
circle fitting problem have infinite moments too, while Zelniker and Clarkson [21] proved
that the ‘awkward’ Delogne—Kasa method returns estimators with finite first moments.
Moreover, Al-Sharadqan et al. show that the first moment for several accurate estimators
do not exist [3] either. The infinite first moment problem also appears in other EIV
models, such as ellipse fitting [3] and multivariate EIV linear model [9].

Therefore, there is no direct approach to study the statistical properties of these
estimators. Traditionally, statisticians investigate the properties of estimators if their
moments are finite. If the moments are finite but have complicated formulas, statisticians
use the first few terms of the Taylor expansions of their means and their variances. That
is, before Anderson’s discovery, statisticians employed the Taylor expansion of (&1, Bl)
in order to derive some ‘approximate’ formulas for the moments of &; and Bl (including
their means and variances). Anderson demonstrated that all those formulas should be
regarded as moments of some approximations rather than ‘approximate moments’.

The MLE of (a1, 1) here have infinite variances and infinite mean squared errors!
This poses immediate methodological questions: (1) How can we characterize, in practical
terms, the accuracy of estimates whose theoretical MSE is infinite (and whose bias is
undefined)? (2) Is there any precise meaning to the widely accepted notion that the MLE
&; and Bl are best? To answer these questions, we would rather study the moments of
their approximations rather than the approximations of their moments. With the aid of
Taylor approximation, we will take advantage of the first few terms of ;. These few
terms have finite moments because they are either quadratic or cubic form of Gaussian
vectors. That is, we can write (31 as Bl = BApprox + Op(c*). Here G)Approx has finite
moments while the reminder Op does not.
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The issue of the infinite moments for the MLE was ignored by practitioners because
of the excellent behavior of these estimators in real-life applications. Indeed, the infinite
moment of the estimators is barely seen in practice [2, 6, 7, 10] except when the noise
level is relatively large. Therefore, Chernov [10, pp. 17] experimentally investigated this
issue and discovered that if a set of n observations are distributed around a line segment
of length L, then the infinite first-moment occurs whenever 7 is greater than or equal
to 0.24. This value is unrealistically high for computer vision and image processing;
therefore, the infinite first moment’s issue is rarely observed.

To investigate how close Bapprox is to [31, one could imagine an artificial example,
where the probability distribution function (CDF) of the MLE could be expressed as a
mixture distribution of the two distributions Fx and Fy with weight 1 — p and p for
some p € (0,1), respectively. Here, the random variable X has finite moments, and Y’
has an infinite first moment. That is, Ffil = (1 —p)Fx + pFy, thus E(\{31|) = oo even if

p = 1075, Here p = 10~ means that if one million samples were generated and the MLE
was computed for each sample, then, on average, only one sample would come from the
‘bad’ distribution (as the Cauchy distribution) Y, while all other samples would come
from the ‘good’ distribution X. This justifies how a very accurate estimator, as the MLE,
has infinite first moment.

Al-Sharadqah and Chernov [2] investigated the issue of having an accurate estimator
with infinite moments in EIV models. They experimentally investigated the MLE for
both linear and circular regressions using this criterion. That is, the probability distri-
bution function of its approximation, say Fapprox(2), is good enough, if it accounts for
‘almost all’ of Fj3 (x) that can be represented as

Fﬁl(m) = (1 _p)FApprox(x) +pFR(Jf) —oo < xr <00, (21)

where Fg(x) is some other probability distribution function (the ‘remainder’) and p is
sufficiently small positive real number. According to Eq. (2.1), the realizations of [31
are taken from the ‘good’ distribution Fapprox With probability 1 — p and from the ‘bad’
distribution fr with probability p.

Thorough intensive numerical experiments have been conducted and it was found that
the values of p for both linear and quadratic approximations are indeed very small as
long as o/L lies below some typical values, such as 0.1. Therefore, under the small-noise
model adopted here, the MLE and its approximations are ‘virtually’ equal.

This paper is tailored for image processing applications, where the number of observ-
able points (pixels) is limited, and the noise is small. The typical value of the noise level
0 does not exceed 0.05L. Accordingly, we will study estimators whenever o — 0, which
is known as the small-sigma model.

The small-sigma model has a great impact on many research topics in image pro-
cessing, signal processing, computer vision, and many other research topics [10]. Its
importance stems from the following reason. On an image, the number of observed
points (pixels on a computer screen) n is usually strictly limited, but the noise level o
is small. The small-noise model was firstly introduced by Kadane in the early 1970s
and used later by Anderson [7] and Kanatani [15] (see also [17] for a more persuasive
discussion). Such models were also studied by Amemiya, Fuller and Wolter [4, 20] ,who
made a more rigid assumption that n ~ 0~¢ for some 0 < a < 2.

This paper focuses on comparing the two estimators according to their order of mag-
nitudes. We distinguish between terms of order 02 and 02 /n. In typical computer vision
and imaging processing applications, the number of points typically lies between 10-20
(~ 1) up to few hundreds (~ 2 ). Table 1 classifies terms according to their dependence
on n. For example, terms with order of magnitude o?/n are comparable with terms
of order 0 or even o* (for relatively large n). Therefore, we will call the second-order
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Table 1. The order of magnitudes of the four terms in the MSE

o?/n ot ot/n o
Small samples (n ~ 1/0) o3 ot od o
Large samples (n ~ 1/0?) ot ot of o

bias of order 02 and 02/n by the ‘essential second-order bias’ and the ‘non-essential
second-order bias’, respectively. Indeed, the non-essential bias vanishes for large n while
the essential bias persists.

In the analog of consistency of an estimator, we call an estimator geometrically consis-
tent if it returns the true values of the parameters whenever all the _points are observed
without error (i.e., the data set is noiseless). Informally, hmcﬁoe(mh.. ,my) = 6
where 0 is the true Value of the parameter vector. We should mention here that geomet-
ric consistency requirement is considered as the minimal requirement for any estimator
in geometric estimation problems.

This paper is a continuation of our work in [1], where the error analysis has been
developed to study the statistical properties for any geometrically consistent estimator
minimizing F. Firstly, for an estimator, say B, we have used its Taylor expansion around
the true value [3, i.e.,

B=B+A1B+ 2B+ AsB + AyB + Op(c®), (2.2)

where B is the true value of B and

AR =) Babi+ Y Bycti
A 1
Asfp = 3 Z Baix;0:0; + Z By, 0i€; + Z Byiy; €i€j
are the first- and the second—order erTors, respectlvely Also the formal expressions of

the higher order error terms, i.e. Asﬁ and A4[3, will be presented later. The symbol
Bz, represents the first partial derlvatlve of the estimator [3 with respect to z;, i.e.,

me = 9B evaluated at p and (Tk, r), for all k = 1,...,n. Similarly, B.,,, is the second
partial derlvatlves of [3 with respect to z; and y;, i.e., Bxiyj = df gy , evaluated at [3

and (Zg, k), for all k = 1,...,n. Accordingly, the following results have been established
in [1].

Theorem 2.1. Let k(B) = (B2 +A)g(B) and S = 1% H , then
E(B) =B +E(A2pB) + E(A4[3) +0(c%),
where
ke (@ 4PR)et
E(A2B) = %55 s +0(0%), (2.3)
4=/ b
“(0B) = g | -5 | o) e

where g = g(B), and K and K" be the first and the second derivatives of K evaluated at

the true values of the set of observations and the true parameter E.

In the same analog, we called here every term of order of magnitude o* by ‘the fourth-
order essential bias’, while we called all other terms of order of magnitude o /n® by the
fourth-order nonessential bias for any a > 0.
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Next, we turn our attention to the leading term of the bias. If we split the O(0?)
terms into the essential second-order bias of order o2 and non-essential terms of order

O(0?/n), we obtain

. —k'0?

biasess (B) = 255

One might be interested in eliminating the essential second-order bias. This problem

can be accomplished by solving the ordinary differential equation (ODE) «’(B) =0, i.e.,

(B2 +A)§ +2Bg =0, (2.6)

where n > 3. Solving the ODE given in (2.6) yields g = g;. Accordingly, the minimum
value of the corresponding objective function can be achieved at the MLE, (31.

Furthermore, one can obtain a more accurate estimator whose its entire second-order

bias equals zero (i. e., its bias terms of magnitudes 02 and 02 /n are both zero), then we
need to find the weight that solves the ordinary differential equation (ODE)

(n—2)(B*+A)g' +2(n —3)Bg =0, (2.7)

(2.5)

which leads to o
g(B) = (B*+2) "% = g:(B)
as a solution of the ODE (2.7). This justifies the rationale of choosing g». Based on that,

Bo is an estimator of f and it minimizes the objective function Fy, (i.e., F when g = g2).
This gives us an estimator with a zero second-order bias. It is the only estimator that

eliminates the second-order bias. To compute this estimator, we solve 8;};2 = 0, which
is reduced to solving the cubic equation given in (1.11). It is worth mentioning here that
the MLE given in (1.8) is the solution of the quadratic equation (1.7). Therefore, we can
consider (1.11) as a ‘correction’ of (1.7), and as such we can solve (1.11) numerically by
using the solution (1.8) of (1.7) as an initial guess. Alternatively, we might just solve the
cubic equation (1.11) by exact formulas, and select the root that minimizes the objective

function. We summarize these results in the following theorem.

Theorem 2.2. Up to an irrelevant scalar factor, the fit (1.10) has a zero-essential bias
if and only if g = g1(B) = ﬁ Moreover, for n > 4, the fit given in (1.10) has a zero
second-order bias if and only if g = g2 (up to an irrelevant scalar factor). Furthermore,
without loss of generality, if we set S =1, then

o For g(B) = g1(B); B = B1 and
. 2
E(A2B1) =

B and E(AdBr) =0+ 0(o"/n). (2.8)
e For g(B) = g2(B) and n >

3; B = (32 and nS = ||X*||? = szz-

2(n -2+ (2n—5)p?)B
TR D) o +0(c*/n%). (2.9

Note here that Bg has zero second-order bias, while the MLE, [31, has a non-zero
essential second-order bias. This demonstrates why [32 outperforms Bl for intermediate
values of n, while both the estimators are comparably equal for large n. On the other
hand, we have derived a general formula for the MSE of all estimators solving Eq. (1.10).
The formula depends on the weight function g and its formal expression is

MSE(B) = (BNt o ()\+ 26" - A) ;=

E(AQBQ) =0 and E(A4Bg) =

~/ A
nsS nS?2 n (T = 2Bg)K +

+4<1 - Z) (~(B2+N)aR" — (265 — (B +N)7) R ) + ’
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up to order oS.

As a standard statistical measure, the efficiency of any unbiased estimator can be
determined by the Cramér—Rao lower bound (CRB). Kanatani [16] in 1998 derived a
general CRB for arbitrary curves for any unbiased estimators. In geometric fitting prob-
lem, however, all estimators are biased. This makes the natural bound, CRB, is not
helpful.

In the early 2000’s, Chernov and Lesort [12] realized that Kanatani’s formula does not
work for any practical estimator in curve fitting problem. To overcome of this situation,
Chernov and Lesort [12] employed first-order analysis for any geometrically consistent
estimators. They showed that Kanatani’s formula work for all geometrically consistent
estimators, up to the leading order. Thus, Chernov and Lesort called it the Kanatani—
Cramér—Rao lower bound (KCR). From that time, the KCR has been used as a measure
for the efficiency for any meaningful estimator.

In the course of linear regression, the KCR lower bound means that the first leading
term of the ‘approximate’ covariance matrix has a natural bound given by
AN+p2[ 77 -7

57

\% > cy2‘/min7 Vmin = (210)

SCEI

and hence, Vmin(ﬁ) — MB? _ )‘IEQ.

This general formula for the MSE produces the MSE of the MLE Bl and [%2. Their
MSE can be simply computed in terms of ||x*||? = nS. For the MLE, since k' = k" = 0,
one obtains

(B> +A)0® | (nA+9B% +A)o* oy (B*+1)0” | (n+9B% +1)o

MSE(B;) = _ - _ —
(B1) = e R EIE .
While the MSE of B, is
. (B2+A)o® o 22 — A 202
MSE =2 1+ (A =
B) =T e\ M T ) T e g
(2.12)

a1 (B2+1)0? 262 \ (n—1)0?
= e T Ve
E n—2) =]
where we used here ¥ = 0 and K’ = %.
It is worth mentioning here that the MSE of any estimator can be decomposed into

MSE(B) = E[(Alfsﬂ + E[(AQB)Q} +2E(ABASR).

The most significant term in this expansion is E [(Al [3)2] and it is of order o2. This term
does not depend on g so the leading terms of the MSE for all methods minimizing F are
equal, and they all coincide with the KCR lower bound. Thus, all methods minimizing
(1.10) are statistically efficient in the KCR sense.

The second important term in the MSE comes from the essential bias. Its contribution
can be seen as part of E [(Agé)z} (i.e., (essential bias + nonessential bias)? + var(AQB)).
These expressions were stated in Table 2. After a careful look at this table, one can
easily see why the MLE outperforms the LS, but both estimators still fall behind Bg.

3. MAIN RESULTS

In [1], it was shown that the newly developed estimator BQ is the best estimator
among all other estimators minimizing F in Eq. (1.10) including the least squares g
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Table 2. The components of the mean squared error for each
of the three estimators: least- -squares estimator (50, the MLE
[51, and the new proposed estimator [52

Method E(A1B)? (AQB)2 = Bias(AgB) + Var(Agp) 2E(A1BA3B)
Bo ol [A+ R+ Sl a4 2] | 250 e Y
By (['32:;\)02 [7\+ 2p 4\] + Zzgz 204 7(L32f352+>\)
b (7 =0 & = 2 | PP [ ]+t e 0

and the MLE (. Moreover, the numerical experiments of [1] showed that the AMLE {3,
outperforms the MLE, but the AMLE still falls behind [32.

Although both estimators eliminate the second-order bias, they behave quite differ-
ently in numerical experiments and their accuracy are quite different. Therefore, we
devoted this paper to investigate why these estimators are quite different. In this paper,
we will derive the bias and the MSE of their approximations, then we will discuss our
findings.

Even though general formulas for the bias and the MSE have been derived in [1], those
formulas work only for an estimator minimizing such an objective function (as we have
seen for the geometric fit [31 and BQ when substituting g = g1 and g = gs, respectively,
in F). However, these general formulas cannot be applied to the AMLE because it does
not minimize any objective function. Therefore, we need to derive them directly. To
keep our calculations simple, we will only consider A = 1.

To understand how this estimator works, we need to study the MLE first. Most of
the upcoming expressions in this section can be written in terms of Kronecker product,
and as such, we use some of its handy properties. These tools are presented below in
Definition 3.1, Proposition 3.1, and Theorem 3.1.

Definition 3.1. Let A be an m X n matrix and let B be a p x ¢ matrix. Then the
Kronecker product of A and B is that (mp) X (ng) matrix defined by

a B ap2B -+ a1,B

CL21B CLQQB cee agnB
A®B= . . . .

amlB amQB o amnB

Furthermore, tr(A ® B) = tr(A)tr(B).

Proposition 3.1. Let A1,B1,C; be square matrices of size p and let As and By and
C, be square matrices of size q. Then

tr(A1 X Ag(Bl RBs+C1® CQ)) = tr(A1B1)tr(A2B2) + tI‘(Alcl)tI‘(AQCQ).

Theorem 3.1 [19]. Let ¢ be n—dimensional random vector with mean W and covariance
matriz X and let A and B be symmetric matrices of size n then

E(CTAC) = tr(AS) + uT Ap (3.1)
Moreover, if { ~ N(0,3X), where X is a positive definite matriz, then

E(CTAC CTBC> — t1(A) tr(BX) + 2tr(ASBY).
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3.1. MLE and its approximations. Here we will derive the first four order error terms
of the MLE, namely A;B1, for each i = 1,...,4. This is a crucial step for studying the
AMLE. Moreover, one can use the results obtained in this section to validate Theorem 2.1.

Linear approximation and the KCR lower bound. We start our analysis with the
linear approximation, i.e. BL =B+ Alfgl. Here, the first-order error term A;f; is a
linear combination of & and € that represents the vectors of all noisy errors corrupting
the first and the second coordinates of the vectors x and y. Using the first-order Taylor
expansion of Eq. (1.4) about the true value B and keeping only terms of order o? yield

Fi(B) = HlBQ Z(z}ﬁ—aj - (B+A1f31)(§:;f+5j))2+op(03) _
= 1 _:BQ Z(ej - B‘Sf — AlBl)2 +OP(G3), (3.2)

where both 8 = §; — 6 and &} = ¢; — € denote the ‘centered’ errors. Accordingly, F;
attains its minimum at

(%) (" — p87)
[l ’

where 8" and €* denote the vectors of 5}’s and €}’s, respectively. Let h* denote the

AiBy = (3.3)

combined vector of §;’s and ¢’s; i.e., h* = (5*T,£*T)T. The components of h* are
not independent random variables, but h and h* are related by h* = Nh, where N is a
(2n) x (2n) matrix defined by

N, O 1
N = [ O: NT; }, N, =1, -7 1,. (3.4)
(Here 0,, and 1,, denote n X n matrices consisting zeroes and ones, respectively.) Thus,
we can express A1 as a linear function of the random vector h whose components are
independent.

23 * it 3 T DS * < ¥ T
(_B(X )Tv(x )T) Nnh _ (_B(X )Ta(x )T) h

[I%*[|> %2

AiBy = —GTh, (3.5)

where we used the relation (X*)TN,, = (X*) and the i*" component of G is

i{—BgE;‘/Hi*H? for 1 < i <n, 56

i, /Ix*? forn+1<i<2n.
Therefore, the linear approximation is
BL =B+ A1 (3.7)

Ezample 3.1 (variance and bias of linear approximation). From (3.5), we can find
the variance of 1. Since E(A;f1) = 0, the linear approximation fBr, is an unbiased
estimator of B (i.e. E(fr) = B). Thus,

. 1+ B2)o?
Var(B) =E(h"GG'h) = ¢*tr(GG ") = (HFXBHQ)U (3.8)
This follows from writing GG T as
GG' = a; ® B, where a; = ﬁ(_ﬁ, 1)T(_B, 1), B,=x"(x")T, (3.9)

and using Definition 3.1 and the fact tr(B,,) = ||x*||? = szz.
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Example 3.1 shows that Var(Br,) is of order 62/n, which also attains the KCR. It also
indicates that the linear approximation is unbiased estimator of 31! Only in 1976, explicit
formulas for the density functions of the estimators &; and 1 were derived; see [5, 7]. It
turns out that those densities are not normal and do not belong to any standard family of
probability densities. Those formulas are overly complicated and involve double-infinite
series. It was promptly noted [5] that they were not very useful for practlcal purposes.
Moreover, the probability den51ty function of [31 is skewed except when [5 = 0. Therefore,
the linear approximation BL (whose pdf is normall) is not a good approximation for the
MLE. Accordingly, we will go further in our analysis by considering the quadratic and
the cubic approximations.

Quadratic and cubic approximations. The quadratic and the cubic approximations
of the MLE are given by the following general formulas

Bo =B+ A1B1 +Aspy, and P = Bg + Asp, (3.10)

where Asf; involves all random terms of order Op (o).
Before presenting the formal expressions of these approximations, we introduce the
following terms:

—r1+2p 1B’ + 2B
x = —, vi=— — , (3.11)
2| 2|+
7‘1[?) + 2 Tlfg +1
Xy = — =1 Y2 = Sizaae (3.12)
2|5+ ||* 2|2
1 —T1
X3 = Sizxa’ Y3 = Sz (3.13)
2%+ 2[|x*|?
where ~ _
-2 3% -1
R = BT -1 (3.14)
14 32 (1+p2)?
Also, let a and b be 2-by-2 symmetric matrices defined as
a=| %1 * and b=| 1 Y2 | (3.15)
X2 A3 Y2 Y3

Theorem 3.2. Let Bl be the MLE of the slope B of the liney = o+ Pz and B,
= X*(x )T. Then, the second order term AQB1 is a quadratic form of the combined error
h and it takes the formal expression

AsBy =h'NTQNh, (3.16)
where N =1, @ N,, (¢f. Eq. (3.4)) and Q is a (2n) x (2n) matriz defined by
Q=a®B,+bal,. (3.17)

Furthermore, the third-order term AgBl is a tensor product of the centered-combined
error h* and it takes the form

A3Bl ||~ ||2 [GTh*(h*)TAh* o 7,,2”5&*” (h*)TGGTh*GTh*

+7r[|%**G h* - (h*)"Qh* + 37 E"h*(h*)"GG "h* + 2ETh*(h*)TQh*} ,

(3.18)
where E= (7,017, A=y, ®1,, and
= ~ A
A1 — |: TQB +~2T16+1 (TQB +T1) (319)
—(raB +11) T2
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Ezample 3.2 (Variance and bias of the quadratic approximation). As a conse-
quence of Theorem 3.2, we find the components of the MSE of 3q. Since N is an
idempotent matrix,

tr (N"QN) = tr (QN), where QN = a® (B,N,,) + b N,,, (3.20)
then, by Definition 3.1, we have

tr (QIN) = tr(a)tr(B,,N,,) + tr(b)tr(N,,) = . (3.21)

Here we used tr(N,,) = n — 1, tr(B,N,) = [X°[?, tr(b) = 0, and tr(a) = L.
Consequently, Theorems 3.1 and 3.2 show that
_ B

= (3.22)
[[%*(|?

bias(Bq) = o tr (NTQN)

To compute the variance of BQ, we only need to compute the variance of Asp. Being a
quadratic form of h,

Var(A2f) = 2¢%tr((NTQN)?) = 20%tr((QN)?),

where
2 2 2 2 n+ 262 —1
tr[(QN)?] = tr(a®)tr(B;N,,) + 2tr(ab)tr(B,N,,) + tr(b*)tr(N,,) = BT
Here we used
_ 4(B%2+2) —4
tr(BEN,,) = [|x*[|*, tr(a®) = —r==", tr(ab) = ——,
Ajx*1® 4%l
and 5
tr(N,)=n—1, tr(b?) = —.
4%+
By Theorem 3.1, we have
X 22— 1 R 1+ p2)o? 2p2 -1
Var(Azf1) = n—‘_”i(j”4047 Var(Bq) = ( H;(EHQ)G g +|)~(E|4 ! (3.23)

Example 3.2 shows that the leading term of Var(Bq) is of order 62 /n and attains the
KCR. Furthermore, the bias is a linear function of . In particular, it overestimates the
true value of the parameter if > 0 and underestimates B if p < 0. The bias of BQ
has typical values of order 02 /n, so its contribution to the MSE is negligible (i.e. 0*/n?)
when n is large enough. This shows the MLE B, has only a nonessential second-order
bias of order o2 /n.

Before going further, we need the following lemma.

Lemma 3.1. We have the following properties:

1+ p2 _ 1+3p?

tr (GG'N)= —— | tr (I;N) = L tr (T2N) = —4.
(N = e TON= e wERN =
Moreover,
3p2 42 +1
tr(lGG'N) = ”X‘3”2 , (T NQN) = —H

Proof of Lemma 3.1. Recall that N = I, ® N,, and GG' = a; ® B,, (see Eq. (3.9)).
Also we will use (x*)TN,, = (x*)7 and tr(B,N,,) = ||x*||?. Thus,

1+ p2

I

tr(GG 'N) = tr(a;)tr(B,N,,)
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This proves the first assertion.
The second assertion follows from the definitions of I'; and N. Since tr(y,) = 0 and

1+3p2 .
tr(y,) = o Ve obtain
) 1+ 3p2
tr(T1N) = tr(y,) tr(B,N,) + tr(y)tr(N,,) = = [52 .
In the same manner, if one uses (1 + [~32) = —2f, then the third assertion follows
immediately.
Next, we write GG TNI';N as
GG NI,N = (al ® (BnNn)) (yl ® (BuNy,) + ¥, ® (Nn)) . (3.24)

~2

3B°+1
= we have

Since tr(a;y;) = ”;*1”4 and tr(a;y,) =

a2
tr(I''GG'N) = tr(ary,) tr(B,N,B,,) + tr(a,¥y,) tr(B,N,,) = H%EHQ .

X
Finally, we prove the last assertion. The matrix I'sNQN can be expressed as

I's"NQN =v,® (B,N,) (a®B, +b®1,).

Since tr(ay,) = —‘hﬁ;%‘? and tr(by,) = ”;”47 we have
4p2 +1
t(TsNQ) = tr(y,a)tr(B2N,.) + tr(y,b)tr(B,N,) = _f’xi
This completes the proof of the lemma. (I

The following theorem summarizes the final expression of the MSE of Bl, up to order
o /n?. Tts proof is deferred to the appendix.

Theorem 3.3. Let Bl be the MLE of 3 for the linear model y = &+ Bz and let BQ be
its quadratic approrimation, then
(1+B%)o? | (n+9p%+1)c?

1|2 e L

MSE(Bq) = (3.25)

where bias® ((SQ) = & o

lI==*

3.2. Comparison between 3; and BQ- To theoretically compare 1 and (32 in terms
of their MSEs, we will first find the MSE of 3;. This step involves the expected values
of the product of two quadratic forms of h*, 8%, and y* and it leads to many useful
identities. The identities are summarized in the following lemma while their derivations
are deferred to the appendix.

Lemma 3.2. Define a, = (—B,1)7, v* = ¢* — p8*, and

Also, define 21 = (I, ® a1)V, (& ®1,) = (4,4 ) ® V,, and o =1, ® V,,. Then, the
following identities hold

E[(v'TVaY")?] = n(n —2)(p* + 1)*c* (3:26)

E((v*"Vay")(h"'Qh")) = (n — 2)[[%"|| *B(B* + 1)0*, (3:27)

El(y* T Vay") (v ' Bay*)] = (n - 2) x| *(B® + 1)%0", (3.28)

(3:29)

E[(y" " Vay) (v ' B.8")] = —(n - 2)[x"|? B(l32+1)0,
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E(h*"((a1a1 ") ® B,)h* - h*"2h*) = (n — 2)[| x| 2(B + 1)%c?, (3.30)
E(h*"((a1a1 ") ® B,)h* - h* "3h*) = —(n — 2)[|%*|*B(B* + 1)o?, (3.31)
where Q =a® B, +b®1,.

Now, we turn our attention to derive the MSE of 1, up to order ¢®. For this purpose,
we will derive the explicit formulas for the second- and third-order error terms of 62. If
62 is expanded about the true value (3, then we have

1 ~ N A
6° = > (a2 + 02 + 2a:b; + 2a;c;) (fo + frB1 + frldafy + foA1B2),  (3.32)

n—2 4
where _ -
1 2 1-3
fo=7~2, f1=—%, f2=—7~§3~
1+p (1+B2) (1+p2)
Thus, 62 can be expressed as
62 = Ap6® 4+ Ag6® + A46” 4 Op(0°). (3.33)

The expressions of these terms are summarized in the following lemma, while their deriva-
tions are deferred to the appendix.

Lemma 3.3.
o fo VYY)

AQO' n_2 (334)
~ A 3 * * * *
Age? = D11 (fl(y TV, y*) = 2f08" V¥ ) (3.35)
n—2
~ 1 * * * * P * * * * N
A46% = m(fﬂ/ TV = 2£08" TV Y ) Aoy + (f¥" T Vvt —2£8" TV, Y ) AR
(3.36)
Based on this lemma, we now write
62 -1
MSE(B1) = E([(l - |x*2) P1— B} ) =
P QABI()QBI 6_4 52 6
= MSE(B1) - B =2 |+ E( o) +0(0%). (3.37)
We will start with
Gt . 6.4[32 BQ
E(BQ) =E| = L __E[(Ay6%)2]. (3.38)
) = E| | T et
Substituting A8 (see (3.34)) in (3.38) and using Lemma 3.2 give us
6.4[32 fOQBQE[(,Y*TVn,Y*)Z] B2n
E|— = - == + 0(a?). 3.39
[nx*n‘*] E R it e R CO R
Next we find E((}z‘lfil*ﬁfl )7 which can be decomposed into three terms.
A2A A
E(W) — T4 I+ 111, (3.40)
x

where

IZE(%) HZE(%%) IH:E(W)

(el |2 %]



ESTIMATORS FOR THE SLOPE IN FUNCTIONAL EIV LINEAR MODEL 209

The second-order error term of Bl was expressed in terms of the combined error vector
h* (cf. (3.16) and (3.17)). Therefore,

. E(Bfo(Y*TVnY*)(h*TQh*)> _ B!

(n—2)[Ix* Y
Next, we find
~ R R (ok\T &*
I = %E A6 A By [ AR, — M -
1%l 1%l
fO *T * *T * o * T *
=—F——E B -2 B . 41
Substituting (3.28) and (3.29) into (3.41) leads to
4922
| L ) (3[3*;[ D) (3.42)
x

Lastly, we will prove that III = 0. That is, using (3.35) in Lemma 3.3, we can rewrite
A161A3 6’2 as

R R2
ArAe? = 21P1
n—2

(fl (YT Vay") - 2f05*TVnY*), (3.43)

which is a product of two quadratic forms of h*. Indeed, recall that y* = (4] ® I,,)h*,
then

,Y*TBn,Y* B h*T(élélT ® Bn)h*
B [J%=[|*
Also 5 =11 ® V,,, then v*TV,,¥* = h*TZ1h* and S*TVny* = h*T¥,h*. Thus,
h*T((a,a; ") ® B,)h*
(n—2)[Ix**

AB} =

E(A1B1436%) = E{ (ATEm) - 2fo<h*T22h*))} (3.44)
—2pB
(B2+1)2" .
Now, Substituting Eq. (3.30) and Eq. (3.31) into Eq. (3.44) yields E(A;BA36?%) = 0,
and as such, IIT = 0. Combining I, II, and IIT leads to

E<6231A61> _ (4p? + 1)o?

where f; =

_ + O(0%). 3.45
I3E B (%) (3.45)

Lastly,

Ms(f,) = LB <1 L 2B > (n—Lo*

(%= n—2J |x*
Elementary calculus can, now, helps us proving the following. For all values of n > 3
and 0 > 0, k(B) = MSE(f1) — MSE(f) is an increasing function in |B|. This shows that
post-bias elimination reduces the variation of the new estimator.

More importantly, the MSEs of both of the estimators $; and Bg are equal, up to
order 6. This means that both estimators differ in their third-order term of their MSEs.
Since our analysis shows that indeed both methods eliminate O(0?) bias, we will track
their higher order terms.

We find the bias of 1, where
%P1 _ 4
ez =P e

Br=P1—

up to order o/n?. Then we will compare the biases of B> and B;. Smaller bias means
a better estimator.
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To find the bias of B, we only need to find E(C), where C' is expressed as
C =C+A1C + AyC + A3C + AC + Op(0°).

Here C' = 0 since 62 ~ Op(0?). The expected values of A;C and AzC equal to zero,
and as such

52p > _ BE(A26%) _ o%B

1|2 S S e

E(AC) = E(
The fourth-order error term of C' is the complicated one. To track our sequel analysis
we present the following lemma that summarizes some needed expressions while their

derivations are deferred to the appendix.

Lemma 3.4. Recall all definitions in Lemma 3.2 and define 3 = (sys{ ) ® L, where
s1 = (1,0)T. Then

E(v TV I8 I7) = ot (n — 2)((B2 + 1)(n — 1) + 282). (3.46)

E((r TVay) (8BS ) = (n— 2% |2(B* + D)o, (3.47)
E((8"TVay (87 Buy")) = (n— 2% |*(B* + 5)o". (3.48)
E((8"TVay )0 TQR)) = (n - 2) %" 72(1 — B)o* (3.49)
E((r VY8 T BaY")) = —0'(n - 2) %7 2B(B% + 1). (3.50)

Now, to simplify our calculations, we write
E(A4C) =T +1I' + 11T,

where
1 o na 2MBRNE) o |82 (x7,87)?
I’:~EA02AB—1~’+B<—~ +42 :
EJR l ’ ( ’ EJE ISR
1 . 2BA;62(x* T 6"
II'= — —E AIBAS(;?_M )
%] %]
,_ B 2
r' = ”i||2E(A4a ).

We start with I'. Here we have

I = o El(yTV.YY) (Azﬁl -

-~ (n—2)[Ix|

%2 [ |

20,B1 (T8 BlSI 46(&**6*)?)]_

(3.51)

After using the definition of AyB1, and as such, Eq. (3.27), the first term becomes

f * * A OAB
WE(W TV,.y )Az(sl) = (3.52)

Thus, we need to find

fO * T * A /% g% a *112 4B<)~(*76*>2
B | (v VL) [ —280B1 (%78 — BISTR + o) | =
ot | J| 2B 87 = RIS+ s
y*TVny* * * N s * * P * * *
= (n — 2f)0|5(*4 { ||)~(*||2 ’ (_27 TBn5 +4p8 TBn5 ) - By TVnY )H5 ||2]

(3.53)
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With the aid of identities (3.29), (3.46), and (3.47), one can show that
fO T oL * ~ %112 4B<)~(*,5*>2
————=——E| (V" VoY) | 24,3, (x",8") = B8 |F+ ——"— || =
CEETEIE ARG ORI e

ot

= —TL~— ~3. .
—“ﬂﬁ(w B - 2/0B*). (354)

X
Substituting (3.52) and (3.54) in (3.51) yields
ot ((8 —n)B - 2/o?)

I = - (3.55)
(x|
Similarly, we will compute II’. Since E(A362A1B1) = 0, we have
I = —2B|%*|| ~*E[A362(x* T §%)].
Substitute (3.35) in II" and use (3.29) and (3.48) to get
—2B A T .
II/ —— " EIA * T *) _ 9 * * * T g% _
e 2B (A TV 208 VL) (T8
_2‘?) * T * * T * * T *
=———FE B -2 =
2B foo!
= —= . 3.56
[ (3:50)

Finally, we compute IIT". From (3.36) and AsB1 =h*TQh* and Al(gf = 1‘|4y*TBn‘y*

[E3

B T *T 5
!’ _ * * *
L P TEE E[(y VY = 2008 T Vay*) Aoy +
+ (2 VY — 2f15*TVn‘Y*)A1f§2} =
= %E[(ﬁv”wv* —2/p8" "V, y*)h* Qb +
(n = 2)[Ix|

1 * * * * * *
+ W(fzy "V, y* = 2/6" V¥ )y B,y }

Now using (3.27), (3.28), (3.49), and (3.50), one has

! _B(Qfo + 1)
Imr' = ————~=. 3.57
R (3:57)
Combining (3.55)—(3.57) gives us
E(AC) = — PHoP” +I5E:LIIZ gl (3.58)
Hence,
y S o2 2B (2foB3 + (n—T)B)o* = (2foB® + (n—T7)B)c*
E(B) = . - = .
P =P+ e <n@w2 ESR ) N P E

Accordingly, our results can be summarized in the following theorem.

Theorem 3.4. Let B be the MLE of p and B = (1- ﬁ)ﬁ, then

biaS(Bl) = (2f063 "|‘|)~£IL”Z 7)[3)04.
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Figure 1. The contour map of the ratio of the fourth-order bias of B
to the fourth order bias if B2 over the region (n,3) € (15, 200) x (0,10).

MSE(p;) = 1P B)o <1 L2 ) (n— 1o’

%] n—=2) x|

Note that, here, the bias of 3; presented in Theorem 3.4 depends on ||x*||> =
=>"" (z; — %)%, and as such, it is of order n. A simple comparison between the results
in Theorem 3.4 and Equation (2.9) shows that bias(B;) ~ */n while bias(B2) ~ o*/n?.

Therefore, bias(B2) ~ bias(B1)/n. Figure 1 represents the contour map of the ratio of

—~
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the fourth-order bias of 1 to the fourth-order bias of Bg over the region B € (0,10) and
n € (15,200). It is clear that this ratio is always more than 2 and it reaches 71 in some
parts of this region. These observations demonstrate that the bias of [32 is much smaller
than the bias of B1. Accordingly, Bg outperforms the AMLE ;.

Finally, we should emphasize here that these results are valid whenever ¢ is small.

4. APPENDIX

1A
1+3

Proof of Theorem 3.2. At first, we will expand about the true value B to obtain

1 P P P ef ;5
g ot AP iAo+ fo 1B+ O (o) = h(B1) + Op(0%),
i
A n2

where fy = ﬁ, fi= —%, and fy = —(;%E)?’. Keeping only terms of order o*
yields

F(B1) =h(B1) > 2 + Op(0”), (4.1)
where z; = a; +b; foreach i =1,...,n.

The random numbers a; and b; have typical values of order o and o2, respectively.
Their formal expressions are defined by

a; = B8} + & A1p1 — ¢}, (4.2)
by = &} Aoy + 87 A1 By (4.3)
We can find Aspy by setting the derivative 32;1 to zero. Using the fact > a;2f =0
yields
d]: 2 A ~ % 5 *
dAB Y al +20(B1) Y zd; +2h(B1) Y b =
2p1

=f1 Y al +2fol| K7 |PAoBy +4fo Y 585 APy +2f0 Y 85 (RS —€7),

where we omitted the remainder Op(0?) for brevity.

Let us denote r; = % = 112(52. Then, we obtain

2R P AgBr =11 Y af +4> FEABL+2Y 8 (B —¢f) =
=y (<2020 B3 + 5P+ D (RS —€) )+
+2) 8 (BS; —ef) +4) SrETALpy =
EC N | S 4 (4.4)

The variables I, IT, and IIT are defined and simplified below. In matrix notations, each
term in the above expression can be written as a quadratic form of h*as follows.

I=—r|%*?A187 = (h*)TQ:h", (4.5)
=7y Y (o) — )" +2) 81(B5; —¢f) = (h*) T Qoh", (4.6)
I =4 87% Aipy = (h*) T Qsh”, (4.7)
where
—r ~2 r a ~ ~ ~
Q- | B ®EB | o [ (B2 2L (B + DI,
H;l%Bn == Bn ’ —(rp+ DI, ril,
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and

MN?

_ 4 B 2B
QS[ B ==z Bn
% Bn 0

Combining (4.4)—(4.7) gives
Az =h*'Qh* =h N QN,h,

where Q = 5z (Q1 + Q2+ Qs)
Next, we find Asp; by expandmg

62 about the true value B, i.e.,

1 X ) . of L
T = ot fiaBi+ 2 0BT+ fa BT+ Op (o) = h(B1) + O (o),
1
where ARy = ARy + AgBy + APy + Op(o) and f = L5B) while fy, f1, and f
are defined earlier. The random variable 2(B;) can be clearly rewritten as h(Bl) =
= h 4+ A1h 4+ Agh + Agh where h fo, A1h = flAlﬁly Ash = flAQBl + nglf)l, and
Ash = filsB1 +2fo01B18281 + f3A,B3. Thus,

F(B1) =h(B1) D 2+ Op(c), (4.8)

where
= BST + AT APy — &F +ETAoBy + 58I AP+ ETAgBy + 8T AoBy + 87 APy (4.9)

Therefore, it is more appropriate to write z; = a; + b; + ¢; + d;, where a; and b; are
defined in (4.2), while

¢i = T D3Py + 85 M0By  and  d; = 8FAsf,

represent the cubic and the quadric forms of e}, respectively. Note that ;Z(%) =fi+
3P1

+ 2f2A1B1 + Op(02), hence differentiating F(B1) with respect to Asf; yields
dF(B)
dAsPq

= (f1 +2/201B1) Y _ 27 +2h(B) Y z(i} +8]) + Op(07) =

=2£0181 ) al + f1 > _(a] +2a:b;) + 20> [(a;i + b + ¢)F; + (a; + b;)8; |+
+2A1hz (a; + b;)T; + a;6 ]+2A2hZazm +(’)p( )

contains terms of order Op(0), Op(0?), and Op(0?). Predictably, terms of

the first and the second leading orders vanish. This follows from > a;@F =0 and

21> biEi +2h Y @i+ f1 Y _a =0,

which follows (4.4). Thus A7 (B1) hecomes

’ dAspy
d‘F(Bl) _ A 2 A ~ % *
A B = 2f2A1 Bl Z a; —|—2f1 Z aibi—|—2f0 Z(Cﬂ? +b; 5F )+2f1A1 Bl Z(ble +ai6i )
31
Equating }-([?51) to zero, substituting the value of ¢;, and solving for Agﬁl yield

A3Bl = —W(T‘QAlBl Za? +7r Zalbz +Zbl5? +

—|—7‘1A1[§1 Z(bl’ —|—az Z 5:A2B1) )
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where we set 7y = fo/fo = —(1 — 3p2)/(1 4+ B2)2. Next, we substitute the values of a;
and b; in the previous equation to get

~ 1 ~ ~ - -
Aspy = —W(Aﬂsl Z[(mﬁ“‘ +2r1B +1)(87)% — 2(raB + 1)) e +ra(e])?] —
= rol% 220 + 3ry (3 8187 ) A1 + %21 B12 Ry +2( Y 8737 ) Ao
and further
1

Asfy = —W(GTh* -(h*)TAh* — 75| %*]|?(h*) "GG "Th* - G Th* +
+r1[|%*|?G h* - (h*)"Qh* + 37 E"h* - (h*)'GG "h* + 2E"h* . (h*)TQh*),
where E= (x7,0")T and A =y, ® I, with
4, = { (r2B +2rB +1) —(rap +71)
' —(raB +11) T2

(recall that A;B; = GTh*, Asfy = (h*)TQh* and B, = x*  (x*)7). This completes
the proof of the theorem. O
Proof of Theorem 3.3. To derive the MSE of 1, we need to compute E(AlfglAg[gl),
we start first with defining

T =A—7n|x*|°GGT +3rGE" =y, ®B, +v, ®1,,

I, =2GE" +r||x*|’GG" =y, ®B,.

with
v, = 1 |: —1"2[32—37:1[3 %rl +TQB :|
e O I | (4.10)
1 [ rp?-2B 1-7ip '
V2T REL 1-mp on |

Multiplying AgBl by Alfgl yields

AB1Asp =

_ ||~*H2 ((h*)TGGTh* . (h*)TAh* . 7‘2||)2*||2((h*)TGGTh*)2 +

X
+ 7% I*(h*)TGG Th* - (h*) TQh* + 371 (h*) "GE'h* - (h*)"GG "h* +
+2(h*)TGE h* - (h*)TQh*).

Then, after simple algebra, we get

N - 1
AsprAipr = —W((h*)TGGTh* -h*T;h* + (h*)TQh* ~h*I‘2h*> .11
X
Based on the previous argument, one gets
4

E(A1B1AsR1) = — o [tr(FlN)tr(GGTN) + tr(T2N)tr(QN) +
Sl (4.12)
+2tr(INGGTN) + 2tr(1‘2NQN)} ,
which simply becomes
s oA 143p2
E(A1B1A3B1) = LH3B7 (4.13)

[eSaliy
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Also it is easy to verify that

5 n+3p%—1
E((A2B)%) = ”5{[?”4 4 (4.14)
Finally, if Egs. (3.8), (4.14), and (4.13) are substituted into
MSE(B1) = E(A1B?) + E(A2B3) + 2E(A1B1A3B1) + 0(0%), (4.15)
then the theorem will be established. O

Proof of Lemma 3.2. The proofs for all these identities go straightforward by using
Theorems 3.1. Starting with (3.26), we notice that bo‘Eh V, and N,, are idempotent
matrices with tr(V,N,) =n — 2, and y* ~ N(On, (1+ BQ)UQNR) then

E[(v' VY] = o (B + 1)* ([r(Va N, + 2tr(V,N,)]) = n(n —2)(B* + 1)%c™.

The second identity in (3.27) can be obtained after y* is expressed in terms of h* (i.e.,
v* = (4] ®IL,,)h*). Therefore,

After simple calculations
tr(ElN) = tr(a;a) )tr(V,,N,,) = (B2 4+ 1)(n — 2),

and tr(QN) = . Besides,

H”‘H

tr(X;NQN) = tr((alal )a )tr(V N,B,) + tr(( )b) r(V,N,)=0.
This follows immediately from tr((a;a; )b) = 0, tr((a;a])
=V,B, =0,. As an immediate consequence,

E((v'TV,y")(h*TQhY)) = o*(B? + 1) (tr(Z1N)tr(QN) + 2tr(X;NQN)) =
= (n = 2)|%"(|7*B(B* + 1)o™
Next, we compute (3.28). Again, since V,N,,B,, = V,,B,, = 0,,
E[(y* TV y) (v TBuy")] = o'trfara])] *tr(V,uN, (B, N,,) = (n—2)||%°|2(B%+1)20*
In the same way, (3.29) follows by expressing both of y* and 8" in terms of h*
E[(v"Voy) (v "B,8")] = E[(h*TSh*)(h* T (r; @ B,)h*)| =
= o’tr(Z;N)tr((r; ® B,)N),
where other terms equal zero because of V,,B,, = 0,,. Thus,
E[(y*TVn‘y*)(‘y*TBnS*)] = o*tr(aa] )tr(r)tr(V,N,)tr(B,N,,) =

=E[(b*"Z;h*)(h*" (r; ® B,)h*)| =
= —B(B* + 1)(n - 2)Ix"|*0™.

(Here we used tr(a;a] ) = 2+ 1, tr(r;) = —p, and V,,B,, = 0,,.
No, we derive (3.30), which becomes

E(h*"((a1a1 ") ® B,)h* - h* "% h*) = o*[tr(ara; ) [*tr(B,)tr(V,N,) =
— (B2 4+ 1)%(n — 2)|%°|%0".
Lastly, we prove (3.31), which can be expressed as
E(h*T((a1a1 ") ® B,,)h* - h*T3,h*) = o'tr((ara; | ))tr(re)tr(By)tr(V,N,).
Thus,

a) = BEB2HD 04 V,N,B, =

[ES R

E(h*T((a1a1 ") ® By)h' - h*T2ph") = —B(B* + 1)(n — 2)[x"|*o*.
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This completes the proof of the lemma. (I

Proof of Lemma 3.3. Using (3.32), we write Ay62 = f°2 ", a?, where

doai =y IP =20y TR AR + %77 A7
=1

The identity [|%*||2A:f = y*Tx* and V,, = I,, leads to > i, a? = ¥y* TV, ¥,

HX”‘H2
and as such,
A26'2 _ f()(Y*TVny*)
n—2
The third order error term of 62 is
N 1 A
A36? = — zi:(flAlﬁaf + 2foaib;),
but
n n *T *
* * * * 5(Y Bné * *
Z Z AlBXT5 —‘YT5)—A15(”}~(*”2—YT5>-
i=1 i=1

Therefore, >, a;b; = =-8"TV,y".

838 = 10 S (Rl + 2fu0ib) = 18 (R TV - 208 VLY.

In the same approach we get

A6 = Za (1228 + foA1B?) + 2 f1a:b: A1 B + 2 foaici. (4.16)

n—2

Using the fact >, a;Z; = 0 reduces this expression to

A46* = 2(100B + f2A1B?) +2f1a;87 A1B% + 2foa;8; Ao =

- > (107 +2f0a;:87) Aof + (foaf +2f1a:87) A1 B,

n—2

g

~ * T *
From the previous expressions and A2 = % we get,

8% = (1Y VY =208 Vay ) BB 4 (oy TV - 2118 TV, AR
This completes the proof of the lemma. O
Proof of Lemma 3.4. Equation (3.46) follows immediately from

E((y " Vay")[I87]*) = E((h*"=1h") - (h*7 Z5h)) =
=0 (tr(élé]—)t (s18] )tr(V, N )tr(N,) + 2tr(a,a] s8] )tr(V,N n)) =
=o' (B2 + D)(n—2)(n—1)+2B3(n - 2)) =
—o'(n—2) (((32 F1)n—1)+ 2(32).

Next, we verify (3.47). Since y*'V,¥* = h*T2;h* and 5" 'B,6 = h*"(s;s{ ® B, )h*,
we have

E[(y*Tvny*)(a*TBna*)} =E[(h*TE,h*)(h* (sy8] ® B,,)h")]
=o' (tr(ElN)tr((slsir @ B,)N) 4 2tr(2; (s8] ® B,)N))
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= o (tr(ara] )tr(V,N,)tr(B,N,,) + 2tr(a;4] s1s{ )tr(V,B,N,,)) =
(n —2)|I%"[I*(B* + 1)o*

Now, we verify (3.48). Since 8" V,¥* = h*"(r; ® V,)h* and y*'B,8" =
=h*T(r; ® B,,)h*, we have

E[(8 Vv ) (v TB8")| = E[(0TSh) (0T (1 @ B,)b)] =
H(tr(BoN)tr((r1 @ Bp)N) + 2 tr(S2(r1 @ B,)N))
4 (tr(r)tr (VN )tr(B,N,) + 2 tr(r})tr(V,,B,N,)) =
= (B% + .5)(n — 2)[|x"||*0".
Next, we verify (3.49). Note that
(6" "V,y)(*"Qh*) = h* T (r; ® V,,)h* -h* " (a® B,, + b® I,,)h*

o
o

Thus
E((é*TVny*)(h*TQh*)) = tr(ry)tr(V,N,) (tr(a)tr(By) + tr(b)tr(N,,)) +
+ 2tr(r;b)tr(V,N,,)
(n—2)(1 - p*)o*
- FE
which follows from tr(r1b) = w, tr(r;) = —B, tr(a) = Hfﬁl\“ tr(b) = 0, and

V,.B,, =0, (see (3.11)—(3.15)).
Lastly, we prove (3.50). Since

E((y*TVny*)(é*TBny*)> = o (tr(aya] )tr(r) )tr(V,N,,)tr(B,))

= —o*(n = 2)[|X7|*B(R* +1).
This completes the proof of the lemma. (|

The author would like to thank the reviewers and the editor for providing many
suggestions that resulted in improving this paper.
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MMOPIBHSIJIBHE JOCJIIXKEHHSI IBOX HEIIOJABHO PO3POBJIEHUX
OITHOK JJISd KOE®IIIEHTA HAXWJIY ¥ ®YHKIIIOHAJIbHIN
JIHINHIN MOJAEJII 3 IOXNBKAMMW Y 3MIHHIUX

A. A. AJIb-IITAPAJIKAX

Anoraupsa. Hemonasuo B [1] 6ysnn pospobueni asi oniuku s xoedinienTa maxuiay Jinii y dbyHKio-
HaJBHIH MOmeni 3 moxubkamu y 3MiHHEX. BoHE 061181 € He3MimennMu 10 TOpEAKy 0%, me 0 — cTammapTHe
BigxustenHs noxubxu. OnHa 3 OUiHOK Oyia nmobyoBaHa K MYHKINS OIMIHKH MAaKCUMAJBHOI BiporigHOCTI
(OMB). Towmy ii mazsano nokpamenoro OMB. JIpyry oniaky no0yLoBaHO 33 AOMOMOTON 30BCIiM iHmOTO
migxomy. Xo4da oO6uABI OIIHKK € HEe3MIIeHUMH JI0 MOPIJIKY 0%, ocraHHs OmiHKA € HAbGAraTO TOYHINION,
uizk nmokpamena OMB. Tyt mMu BuB4uaemo 11i aBi orinku GijibII CTPOTO i TOKA3YEMO, YOMY OJHA OI[IHKA
[epeBepIIye IHILY.

CPABHUTEJIbHOE MCCJIEJOBAHUE JBYX HEJABHO
PA3BPABOTAHHBIX OILIEHOK [JJISI KOD®PUIMEHTA HAKJIOHA
B ®YHKIIMOHAJIbHOM JIMHEMHOMN MOJEJIN
C OIIIMBKAMM B IIEPEMEHHBIX

A. A, AJIB-IITAPATKAX

Anvortanusi. Hegasro B [1] Oblm paspaGoTaner gBe OnmeHkm ajst k03(g(UuueHTa HAKJIOHA JIMHAA B
GbYHKIIMOHAJIBHON MO/ ¢ OMUOKAMHU B epeMeHHBIX. OHM 06e SIBISIOTCSA HeCMeITEHHBIMU JI0 TIOPSIKA
o, re 0 —cramgapTHOe oTKioHeHWe omubkH. OHA W3 OMEHOK GHIIA MOCTPOEHA KAk (DyHKIIHS OIeH-
KU MakcuMasbHOro npasaononobus (OMII). Tostomy eé massanu ynyqmennod OMII. Bropas onenka
OBLIA TOCTPOEHA C MIOMOLIBIO COBCEM APYTOT0 MOAX0ma. XOTsi 00€ OIEHKH SIBJISIIOTCS HECMEIEHHBIME 10
mopsaKa 04, MOCTeHSIS OIEHKA — HAMHOTO TO4Hee, deM yayumennas OMII. 31ech MBI m3ydaeM 3TH gBe
oueHKH 60jiee CTPOro K IIOKa3bIBaeM, [I0UEMY OJHA OIHKA IIPEBOCXOAUT APYTYIO.



