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SCHRÖDINGER EQUATION WITH GAUSSIAN POTENTIAL

Y. HU

Abstract. This paper studies the Schrödinger equation with fractional Gaussian noise potential of the
form ∆u(x) = u(x)�Ẇ (x), x ∈ D, u(x) = φ(x), x ∈ ∂D, where ∆ is the Laplacian on the d-dimensional

Euclidean space Rd, D ⊆ Rd is a given domain with smooth boundary ∂D, φ is a given nice function

on the boundary ∂D, and Ẇ is the fractional Gaussian noise of Hurst parameters (H1, . . . , Hd) and
� denotes the Wick product. We find a family of distribution spaces (Wλ , λ > 0), with the property

Wλ ⊆Wµ when λ ≤ µ, such that under the condition
∑d

i=1 Hi > d− 2, the solution exists uniquely in

Wλ0 when λ0 is sufficiently big and the solution is not in Wλ1 when λ1 is sufficiently small.
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1. Introduction

Let
(
W (x) = WH(x1, . . . , xd) , x = (x1, . . . , xd)T ∈ Rd

)
be a fractional Brownian field

on some probability space (Ω,F ,P). The expectation on (Ω,F ,P) is denoted by E. This
means that W (x) is a mean zero Gaussian field with covariance given by

E[W (x)W (y)] = (1
2 )d

d∏
i=1

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
for all x, y ∈ Rd. (1.1)

In this paper we shall fix the Hurst parameters H = (H1, . . . ,Hd) with Hi > 1/2,
i = 1, 2, . . . , d. For notational simplicity we omit the dependence on H. Consider
the following stochastic Poisson equation with multiplicative fractional Gaussian noise

Ẇ (x) = ∂d

∂x1...∂xd
W (x):{

∆U(x) = u(x) � ẆH(x) , x ∈ D ;

U(x) = φ(x) , x ∈ ∂D ,
(1.2)

where ∆ =
∑d

i=1
∂2

∂x2
i

is the Laplacian, D ⊆ Rd is a given bounded domain in Rd with

smooth boundary ∂D, φ is a nice function defined on the boundary ∂D, and � denotes
the Wick product (see e. g. [13]), which is related to the Skorohod integral (see (3.2)
below for the definition of the solution to (1.2)).

Stochastic partial differential equations driven by fractional noises or general Gaussian
noises have been studied by many researchers. There is enormous amount of references.
Among the investigations published recently there is a well-studied equation relevant to
our equation (1.2) which is the parabolic Anderson model ∂tu(t, x) = ∆u(t, x) + κu � Ẇ .
The moment bounds, various kinds of asymptotic behaviours as t → ∞, intermittency,
and so on are known for this model. We refer the interested readers to [8, 9] and in
particular to the references therein for details.

However, the stationary counterpart (1.2) of the parabolic Anderson model has re-
ceived much less attention. When the noise is additive, namely for the stochastic Poisson
equation ∆U(x) = Ẇ (x) there has been some studies in [11, 12], where it is proved that

when
∑d

i=1 > d−2, the solution exists uniquely in L2 = L2(Ω,F ,P). In [19], a nonlinear
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equation but still with additive noise of the form ∆u + f(u) = Ẇ is studied, and still

under the condition
∑d

i=1 > d− 2. The paper [20] may be considered to be relevant to
more general non additive noise, where the equation of the form ∂ttzt = σ(zt)ẋt, t ∈ [0, 1]
is studied. Here x is a given Hölder continuous function. However, it is in the framework
of rough path theory and is in one dimension.

In this paper we are mainly concerned with the stochastic Poisson equation (1.2) with
multiplicative noise in general dimension (d ≥ 2). Following the terminology of [2] we
call equation (1.2) the Schrödinger equation with fractional Gaussian potential. We shall
construct a family of distribution spaces Wλ satisfying Wλ ⊆ Wµ for 0 < λ ≤ µ < ∞,
such that the solution exists uniquely in Wλ when λ is sufficiently large, and it is not in
Wλ when λ is sufficiently small. As a consequence the solution is not square integrable.

In the proof of our main theorem we use the Hardy–Littlewood type inequality ob-
tained by Memin, Mishura, and Valkeila [16]. The use of this inequality can also simplify
the proofs in [11] and [12].

Here is the organization of the paper. In Section 2 we briefly present some preliminary
material that is needed in this paper. In particular, we shall recall the chaos expansion;
define the stochastic integral; and introduce some distribution spaces. In Section 3 we
state the main results of the paper in one theorem and in Section 4 we present the proof
of the main results. When the dimension d = 1, the problem becomes simpler. In this
case not only we can consider the the above Dirichlet boundary condition, we can also
study “initial” type condition. We present a brief discussion of one-dimensional case in
Section 5.

2. Preliminaries

Recall that
(
W (x), x = (x1, . . . , xd)T ∈ Rd

)
is a fractional Brownian field of the Hurst

parameter H = (H1, . . . ,Hd) on some probability space (Ω,F ,P). Namely, W is a mean
zero Gaussian random field with covariance given by (1.1). Here and in what follows
we use T to denote the transpose of a vector or matrix. Then, formally the fractional
Gaussian noise Ẇ has the following covariance structure:

E
[
Ẇ (x)Ẇ (y)

]
= φ(x, y) :=

d∏
i=1

φHi
(xi, yi) for all x, y ∈ Rd, (2.1)

where

φHi
(u, v) = Hi(2Hi − 1)|u− v|2Hi−2 , u, v ∈ R . (2.2)

We suppose that F = σ
(
W (x), x ∈ Rd

)
. For simplicity of the presentation, we assume

that Hi > 1/2 for all i = 1, . . . , d. First, we will follow [7] (see also [18]) to define the
stochastic integral with respect to W . For one parameter case (d = 1) there has been
extensive studies on such stochastic integral, see for example, [1, 6, 17].

Let D be a bounded domain in Rd and let S be the set of all smooth functions from
D to R with compact support. For any two functions f and g in S, we define their scalar
product as

〈f, g〉H =

∫

D

f(x)g(y)φ(x, y) dx dy .

LetH denote the Hilbert space obtained by completing S with respect to the above scalar
product. As is well-known H contains genuine distributions (generalized functions).

For any f ∈ S, we can define the stochastic integral
∫

D f(x)dW (x) by the integration
by parts in the following way (since f has compact support in D):

∫

D

f(x) dW (x) = (−1)d
∫

D

W (x)
∂d

∂x1 . . . ∂xd
f(x) dx .
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It is easy to verify that for any f, g ∈ S, we have

E

[
∫

D

f(x) dW (x)

]
= 0 , (2.3)

E

[
∫

D

f(x) dW (x)

∫

D

g(x) dW (x)

]
= 〈f, g〉H , (2.4)

where (2.4) follows from the integration by parts and is called the isometry formula. For
any f ∈ H, there exists a sequence fn ∈ S such that fn → f in H. By the isometry (2.4)
we see that

∫

D fn(x)dW (x) is a Cauchy sequence in L2(Ω,F ,P) and hence has a limit.
It can be shown routinely that this limit is independent of the choice of sequence fn and
is called the stochastic integral of f , denoted by

∫

D f(x)dW (x). This stochastic integral
also satisfies the properties (2.3)–(2.4).

Let Hn(x) = e
x2

2
dn

dxn e
− x2

2 , n = 0, 1, 2, . . . be the Hermite polynomials, which constitute

an orthogonal basis of L2
(
R, 1√

2π
e−

x2

2 dx
)

. Let e1, . . . , en , . . . ∈ S be an orthonormal

basis of H. Denote ẽn =
∫

D en(x)dW (x). Then ẽ1, . . . , ẽn, . . . are iid standard normal

random variables. We define the multiple integral of e⊗nk as

In
(
e⊗nk

)
= Hn(ẽk) .

We can extend In to be a linear mapping from H⊗n, the n-fold tensor product space of
H, to L2(D,F ,P). [This can be achieved by the polarization technique (see [7]). Notice

that we also have In(f) = In
(
f̂
)
, where f̂ denotes the symmetrization of f ∈ H⊗n]. It

is well-known that for any f ∈ H⊗n and g ∈ H⊗m, we have the following Itô isometry
formula:

E
(
In(f)Im(g)

)
=

{
n!〈f̂ , ĝ〉H⊗n if m = n,

0 if m 6= n .
(2.5)

An element f ∈ H⊗n can be viewed as a (generalized) function of n × d variables
f(x1, . . . ,xn), xi ∈ Rd (H⊗n may contain distributions. It is the completion of the
smooth functions of the form f(x1, . . . ,xn) defined on Dn with respect to the scalar prod-
uct of H⊗n). If f ∈ H⊗n we also write In(f) =

∫

Dn f(x1, . . . ,xn)dW (x1) . . . dW (xn).
When fn is a genuine function the above multiple integral can be approximated by using
the Wick product (see e. g. [7, 13]). In the remaining part of the paper, we use x to
represent x so that x1, . . . , xn are d-dimensional vectors.

From the chaos expansion theorem ([7]) we know that for any square integrable random
variable F ∈ L2(D,F ,P), there are fn ∈ H⊗n, n = 0, 1, 2, . . . such that

F =

∞∑
n=0

In(fn) , (2.6)

and

E
(
F 2
)

=

∞∑
n=0

n!‖fn‖2H⊗n . (2.7)

Motivated by the Hida and Kondratiev distribution spaces for nonlinear Wiener func-
tionals ([5, 14, 15]) we introduce the following distribution spaces.

Definition 2.1. For any α > 0 and λ > 0, we say F ∈ Wα,λ if

F =

∞∑
n=0

In(fn) and ‖F‖2α,λ :=

∞∑
n=0

(n!)1−αλ−n‖fn‖2H⊗n <∞ . (2.8)

Remark 2.2. (1) W0,1 = L2(:= L2(Ω,F ,P)).
(2) For α > 0 and λ > 0, Wα,λ is a space of distributions. It can also be defined as

the dual of the test functional spaceW−α,−λ (which is a subspace of L2(Ω,F ,P)).



112 Y. HU

(3) It is clear that for any positive λ1 and λ2, if α1 < α2, then Wα1,λ1 ⊆ Wα2,λ2 . It
is also clear that for any 0 < α1 ≤ α2 <∞ and 0 < λ1 ≤ λ2 <∞, we have

Wα1,λ1 ⊆ Wα2,λ2 .

(4) Our space Wα,λ is more regular than the Hida distribution spaces or the Kon-
dratiev distribution spaces ([5, 14, 15]), where fn are allowed to be more general
distributions. We require that fn ∈ H⊗n. In particular this means that in the
chaos expansion of F , each chaos In(fn) of F is required to be square integrable.
Our space Wα,λ is less regular than the Meyer–Watanabe distribution space
which requires

∑∞
n=0(n!)n−α‖fn‖2H⊗n <∞ for some α > 0.

The case when α = 1 is given particular attention in this paper. We give the following
definition.

Definition 2.3. We define the distribution spaces

Wλ =W1,λ

and

W =
⋃
λ>0

Wλ .

It is easy to see that L2 = W0,1 ⊂ Wλ for any λ > 0 and L2 is a true subset of Wλ

for any λ > 0.

Definition 2.4. Let F (x) =
∑∞

n=0 In(fn(x)), x ∈ D. Assume that there is a λ > 0 such
that for any x ∈ D, F (x) ∈Wλ (notice that λ is independent of x ∈ D). For any x ∈ D,
fn(x) can be viewed as a (generalized) function fn(x;x1, . . . , xn) on Dn for all x ∈ D.
F (x) is called Skorohod integrable if

(1) f̃(x1, . . . , xn+1) = fn(xn+1;x1, . . . , xn) ∈ H⊗(n+1),

(2)
∑∞

n=1 In+1(f̃n) is in W. Namely,
∑∞

n=1 In+1(f̃n) is convergent in Wλ for some
λ ∈ (0,∞).

We denote
∫

D F (x)dW (x) =
∑∞

n=1 In+1(f̃n).

3. Main Result

Now we return to the equation (1.2). Let the domain D ⊆ Rd be bounded with
boundary ∂D. Let G(x, y) be the associated Green’s function. First we make the follow-
ing assumptions.

Hypothesis 3.1. There is a positive constant C such that

|G(x, y)| ≤

{
C|x− y|2−d ∀ x, y ∈ D, when d ≥ 3 ;

C log |x− y| ∀ x, y ∈ D, when d = 2 .
(3.1)

Hypothesis 3.2. There are another constant c > 0 and a nonempty open subset D0 ⊆ D
such that

G(x, y) ≤

{
−c|x− y|2−d ∀ x, y ∈ D0, when d ≥ 3 ;

c log |x− y| ∀ x, y ∈ D0, when d = 2 .

When D has smooth boundary ∂D, it is know that the hypothesis 3.1 always holds.

Remark 3.3. Hypothesis 3.1 is about the boundedness of the absolute value of G when
x and y are in the whole domain D. Hypothesis 3.2 requires that G is bounded above by
a negative function (so G is negative) when x and y are in a compact subset of G.



SCHRÖDINGER EQUATION 113

Example 3.4. If D = BR(0) is the d-dimensional ball of center 0 and radius R, then the
corresponding Green’s function has the following form (see [4, Proposition 1.22])

G(x, y) =


1

(n−2)ωd

(
−|x− y|2−n +

∣∣∣ R|x|x− |x|R y
∣∣∣2−n) , when d ≥ 3 ;

1
2π

(
log |x− y| − log

∣∣∣ R|x|x− |x|R y
∣∣∣) , when d = 2 ,

where ωd is the volume of the unit ball in Rd. If |x|, |y| ≤ R/2, then∣∣∣∣ R|x|x− |x|R y

∣∣∣∣ ≥ ∣∣∣∣ R|x| |x| − |x|R |y|
∣∣∣∣ ≥ 3R

4
.

Thus when d ≥ 3, we have

G(x, y) ≤ 1

(n− 2)ωd

(
−|x− y|2−n + (3R/4)2−n

)
≤ −c|x− y|2−n

when x, y are in a certain neighbourhood of 0. In the same way we have when d = 2,

G(x, y) ≤ c log |x− y|

in a neighbourhood of 0.

By using the Green’s function the solution to{
∆u(x) = f(x), x ∈ D,

u(x) = φ(x), x ∈ ∂D,

can be represented by

u(x) =

∫

D

G(x, y)f(y)dy +

∫

∂D

∂G

∂ny
(x, y)φ(y)dSy ,

where ∂
∂ny

denotes the gradient along the normal direction and dSy denotes the surface

measure on the boundary ∂D; the presence of y means that we consider x as a fixed
parameter in the above derivation or integration.

Motivated by the above formula, we give the following definition about the solution
to (1.2).

Definition 3.5. We say that a family of random variables (u(x), x ∈ D) is a (mild)
solution to (1.2) if the followings hold.

(1) For any x ∈ D, G(x, ·)u(·) is Skorohod integrable in W.
(2) The following integral equation holds

u(x) =

∫

D

G(x, y)u(y)dW (y) +

∫

∂D

∂G

∂ny
(x, y)φ(y)dSy , ∀ x ∈ D . (3.2)

Denote

u0(x) =

∫

∂D

∂G

∂ny
(x, y)φ(y)dSy , x ∈ D .

Hypothesis 3.6. Assume the boundary condition φ satisfies

|u0(x)| ≤ C

m∑
I=1

|x− ai|−α ∀ x ∈ D (3.3)

for some points a1, . . . , am ∈ D̄ and for some α < d. We also assume that u0(x) has the
same sign for all x ∈ D.
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Example 3.7. If D = BR(0) is the ball of center 0 and radius R, then (see e. g. [4,
Corollary 1.23])

∂G

∂n
(x, y) =

R2 − |x|2

ωdR|x− y|d
∀ x ∈ BR(0) , y ∈ ∂BR(0) .

In this case we can take the boundary condition φ to be the linear combination of the
Dirac point mass measures (with respect to the surface measure dSy):

φ(y) =

m∑
i=1

ρiδ(y − ai) ,

where ρ1, . . . , ρm are real numbers and they have the same sign; a1, . . . , am ∈ ∂BR(0).
Thus

u0(x) =

m∑
i=1

ρi
R2 − |x|2

ωdR|x− ai|d
.

Obviously, if ρi are all positive, then u0(x) is always positive on the ball BR(0). Moreover,
since

|x− ai| ≥
∣∣|ai| − |x|∣∣ = R− |x|

we see

0 ≤ u0(x) =

m∑
i=1

ρi
(R− |x|)(R + |x|)

ωdR|x− ai|d−1|x− ai|
≤ C

m∑
i=1

1

|x− ai|d−1
.

This means that if φ is linear combination of the Dirac point mass measures, then u0(x)
satisfies (3.3) with α = d− 1.

Now we state the main theorem of the paper.

Theorem 3.8. Let
∑d

i=1 Hi > d − 2 and let the hypotheses 3.1 and 3.6 be satisfied.
Then we have the following statements.

(1) There is a unique mild solution in W to the equation (1.2).
(2) There is a λ0 > 0 such that for any x ∈ D, the solution u(x) is in Wλ0 .
(3) If in addition, the hypothesis 3.2 is satisfied and |u0(x)| ≥ c > 0, then there is a

λ1 > 0 such that for any x ∈ D, the solution u(x) is not in Wλ1 .

Remark 3.9. Let us emphasize that from part (3) of the above theorem we see that for
any x ∈ D, the solution u(x) is not square integrable.

4. Proof

In this section we give proof to the main theorem presented at the end of previous
section. We only deal with the case d ≥ 3. The case d = 2 is completely analogous.

Without loss of generality we may assume that 0 ≤ u0(x) ≤ C|x|−α for some α < d. In
fact, for the upper bound we shall bound u0(x) by |u0(x)|, which satisfies 0 ≤ |u0(x)| ≤
≤ C|x|−α by hypothesis 3.6. The assumption that u0(x) ≥ 0 for some α < d is for the
lower bound and we make this assumption at the beginning of the proof to simplify the
presentation.

If u is a mild solution to (1.2), namely, if u satisfies

u(x) = u0(x) +

∫

D

G(x, y)u(y)dW (y) ,

where

u0(x) =

∫

∂D

∂G

∂ny
(x, y)φ(y)dSy ,
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then we can use u(y) = u0(y) +
∫

D G(y, z)u(z)dW (z) to substitute the above u(y) to
obtain

u(x) = u0(x) +

∫

D

G(x, y)u(y)dW (y) =

= u0(x) +

∫

D

G(x, y)u0(y)dW (y) +

∫

D2

G(x, y)G(y, z)u(z)dW (y)dW (z) .

Continuing this way we obtain the chaos expansion of u(x) as

u(x) = u0(x) +

∞∑
n=1

un = u0(x) +

∞∑
n=1

un , (4.1)

where un = In(fn(x)) = In
(
f̂n(x)

)
and

fn(x; y1, . . . , yn) = G(x− y1)G(y1 − y2) . . . G(yn−1 − yn)u0(yn) (4.2)

or its symmetrization [7]:

f̂n(x; y1, . . . , yn) =
1

n!

∑
σ

fn
(
x; yσ(1), . . . , yσ(n)

)
,

where σ is a permutation of {1, 2, . . . , n}.
To prove the theorem it suffices to prove parts (2) and (3) of the theorem. This can be

achieved once we obtain the precise bound of E(u2
n). Now we are going to compute E(u2

n).
Recalling the definition of φ(y, z) := φH(y, z) defined by (2.1) and the Itô isometry (2.5)
we have

E
(
u2
n

)
= n!

∫

D2n

f̂n(x; y1, . . . , yn)f̂n(x; z1, . . . , zn)

n∏
i=1

φ(yi, zi)dydz .

Since φ is positive definite, we have

E
(
u2
n

)
≤ n!

∫

D2n

fn(x; y1, . . . , yn)fn(x; z1, . . . , zn)

n∏
i=1

φ(yi, zi)dydz ≤

≤ n!

∫

D2n

|fn(x; y1, . . . , yn)||fn(x; z1, . . . , zn)|
n∏

i=1

φ(yi, zi)dydz .

Now using hypothesis 3.1 and denoting y0 = x we have

E
(
u2
n

)
≤ n!Cn
∫

D2n

n∏
i=1

|yi−1 − yi|2−d|u0(yn)| ×

×
n∏

i=1

|zi−1 − zi|2−d|u0(zn)|
n∏

i=1

φ(yi, zi)dydz ≤

≤ n!Cn
∫

D2n

n∏
i=1

|yi−1 − yi|2−d|yn|−α
n∏

i=1

|zi−1 − zi|2−d|zn|−α
n∏

i=1

φ(yi, zi)dydz .

Using a1+a2+. . .+ad ≥ aα1
1 . . .ααd

d for any positive a1, . . . , ad and any positive α1, . . . ,αd

such that α1 + . . . + αd = 1, we have

E
(
u2
n

)
≤ n!Cn
∫

D2n

d∏
j=1

n∏
i=1

∣∣yji−1 − yji
∣∣(2−d)αj

∣∣yjn∣∣−α/d ×
×

n∏
i=1

∣∣zji−1 − zji
∣∣(2−d)αj

∣∣zjn∣∣−α/d n∏
i=1

φ(yi, zi)dydz .
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Let R > 0 be a positive number such that D ⊆ [−R,R]d. Then

E(u2
n) ≤ n!Cn
∫

[−R,R]2nd

d∏
j=1

n∏
i=1

∣∣yji−1 − yji
∣∣(2−d)αj

∣∣yjn∣∣−α/d ×
×

n∏
i=1

∣∣zji−1 − zji
∣∣(2−d)αj

∣∣zjn∣∣−α/d n∏
i=1

φ(yi, zi)dydz ≤

≤ n!Cn
d∏

j=1

Θj , (4.3)

where

Θj =

∫

[−R,R]2n

n∏
i=1

∣∣yji−1 − yji
∣∣(2−d)αj

∣∣yjn∣∣−α/d ×
×

n∏
i=1

∣∣zji−1 − zji
∣∣(2−d)αj

∣∣zjn∣∣−α/d n∏
i=1

φHj

(
yji , z

j
i

)
dyjdzj .

Now by the famous Hardy–Littlewood type inequality obtained in Memin, Mishura and
Valkeila [16] (we use in fact the multi dimensional version [10, Inequality (2.4)]) we have

Θj ≤ Cn

{
∫

[−R,R]n

n∏
i=1

∣∣yji−1 − yji
∣∣ (2−d)αj

Hj

∣∣yjn∣∣− α
dHj dyj

}2Hj

.

For any β1,β2 ∈ (−1,∞) we have

∫ 1

−1
|y|β1 |x− y|β2 = x1+β1+β2

∫ x

−x
|u|β1 |1− u|β2 ≤

≤ |x|1+β1+β2

∫ 1

−1
|u|β1 |1− u|β2du ≤ C|x|1+β1+β2 ∀x ∈ (0, 1]. (4.4)

Let
(2− d)αj

Hj
> −1 , or Hj ≥ (d− 2)αj . (4.5)

The above inequality (4.4) is also true when x is [−1, 0). If (4.5) is satisfied, then (4.4)
yields

Θj ≤ Cn
D

for some constant CD depending on the domain D. Therefore we have from (4.3)

E(u2
n) ≤ n!Cn

D . (4.6)

If
∑d

i=1 Hi > d− 2 we can find αi ∈ (0, 1), i = 1, . . . , d such that (4.5) holds true, which
implies the part (2) of the theorem.

Now we turn to prove part (3) of the theorem. We use

E
(
u2
n

)
= n!

∫

D2n

f̂n(x; y1, . . . , yn)f̂n(x; z1, . . . , zn)

n∏
i=1

φ(yi, zi)dydz =

=
∑
σ

∫

D2n

fn(x; y1, . . . , yn)fn
(
x; zσ(1), . . . , zσ(n)

) n∏
i=1

φ(yi, zi)dydz . (4.7)

Since the Green’s function is negative (see e. g. [4, Proposition 1.21]) fn(x, y1, . . . , yn)
and fn(x; zσ(1), . . . , zσ(n)) have the same sign. Moreover, we also know from its explicit
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expression that φH(yi, zi) are also positive. This means that the integrand in (4.7):

fn(x; y1, . . . , yn)fn
(
x; zσ(1), . . . , zσ(n)

) n∏
i=1

φ(yi, zi)

is always positive. Thus

E
(
u2
n

)
≥ n! min

σ

∫

D2n

fn(x; y1, . . . , yn)fn
(
x; zσ(1), . . . , zσ(n)

) n∏
i=1

φ(yi, zi)dydz ≥

≥ n! min
σ

∫

D2n
0

fn(x; y1, . . . , yn)fn
(
x; zσ(1), . . . , zσ(n)

) n∏
i=1

φ(yi, zi)dydz ≥

≥ n!Cn min
σ

∫

D2n
0

n∏
i=1

|yi−1 − yi|2−d
∣∣zσ(i−1) − zσ(i)

∣∣2−d n∏
i=1

φ(yi, zi)dydz . (4.8)

Since D0 is a nonempty open set, it must contain a square {x ; max1≤i≤d |xi − ai| ≤ ρ}
for some a = (a1, . . . , ad) ∈ Rd and ρ > 0.

Denote the square

Dρ =

{
x ; max

1≤i≤d
|xi − ai| ≤ ρ

}
.

If ρ is sufficiently small, then for yi ∈ Dρ,

|yi−1 − yi| = |yi−1 − a− (yi − a)| ≤ |yi−1 − a|+ |yi − a| ≤ 2
√
dρ ≤ 1 .

In the same way we see that if both yi and zi are in Dρ, then

φ(yi, zi) ≥ Cn
H .

Then we have from (4.8)

E
(
u2
n

)
≥ n!Cn min

σ

∫

D2n
ρ

n∏
i=1

|yi−1 − yi|2−d
∣∣zσ(i−1) − zσ(i)

∣∣2−d n∏
i=1

φ(yi, zi)dydz ≥

≥ n!Cn min
σ

∫

D2n
ρ

dydz = n!Cn
ρ , (4.9)

where Cρ is a strictly positive constant. This proves part (3) of Theorem 3.8.

5. One-dimensional case

In this section we shall discuss one-dimensional case d = 1. In this case the Schrödinger
equation becomes {

u′′(x) = u � Ẇ (x) , a < x < b,

u(a) = λ , u(b) = µ ,
(5.1)

where a, b, λ,µ are given constants and W is a one parameter fractional Brownian motion
of the Hurst parameter H > 1/2. A direct integration yields that the mild solution
satisfies

u(x) =

∫ b

a

G(x, y)u(y)dW (y) + u0(x) ,

where {
G(x, y) = (x− y)I(a,x)(y)− x−a

b−a (b− y) ,

u0(x) = λ+ x−a
b−a (µ− λ) .

It is easy to verify that the hypotheses 3.1, 3.2 and 3.6 are satisfied. Thus Theorem 3.8
holds true for one-dimensional case as well. We can state

Theorem 5.1. (1) There is a λ0 > 0 such that for any x ∈ (a, b), the solution u(x)
to (5.1) is in Wλ0 .
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(2) If one of λ or µ is nonzero, then there is a λ1 > 0 such that for any x ∈ D, the
solution u(x) to (5.1) is not in Wλ1 .

On the other hand, we may replace the boundary conditions u(a) = λ and u(b) = µ
by initial conditions. Thus we are led to consider{

u′′(x) = u � Ẇ (x) , a < x <∞ ,

u(a) = λ , u′(a) = ν .
(5.2)

The mild solution is now given by

u(x) =

∫ x

a

G(x, y)u(y)dW (y) + u0(x) , (5.3)

where
G(x, y) = x− y , u0(x) = ν(x− a) + λ . (5.4)

Thus the unique mild solution to (5.2) is given by

u(x) =

∞∑
n=0

In
(
fn(x)

)
,

where fn(x) is given by (denoting x0 = x)

fn(x, x1, . . . , xn) =

n∏
i=1

G(xi−1, xi)u0(xn) ,

and

In
(
fn(x)

)
=

∫

a<xn...<x1<x

G(x−x1)G(x1, x2) . . . G(xn−1, xn)u0(xn)dW (xn) . . . dW (x1) .

Before computing E
[
In(fn(x))2

]
, let us state an elementary lemma from [8].

Lemma 5.2. For any integer n ≥ 1 let αi ∈ (−1,∞), i = 1, 2, . . . , n, and denote
|α| =

∑n
i=1 αi. Then there is a constant c > 0, independent of n, such that
∫

a<x1<...<xn<b

n∏
i=1

(xi − xi−1)αidx1 . . . xn ≤
cn(b− a)|α|+n

Γ(|α|+ n + 1)
, (5.5)

where by convention, we set x0 = a.

In fact, in [8] the above lemma is stated for αi ∈ (−1, 1). But it is easy to see that
the inequality holds true for all αi ∈ (−1,∞) which we shall need in the following.

From the inequality (4.3) we see

E
[
In(fn(x))2

]
≤ n!

(
∫

a<xn...<x1<x

|fn(x, x1, . . . , xn)| 1H dxn . . . dx1

)2H

≤

≤ n!
[
|ν|(b− a) + |λ|

]2∫
a<xn...<x1<x

∣∣∣∣∣
n∏

i=1

G(xi−1, xi)

∣∣∣∣∣
1
H

dxn . . . dx1

2H

=

= n!
[
|ν|(b− a) + |λ|

]2(∫
a<xn...<x1<x

n∏
i=1

|xi−1 − xi|
1
H dxn . . . dx1

)2H

≤

≤ n!Cn
[
|ν|(b− a) + |λ|

]2( (x− a)
1+H
H n

Γ((1 + 1
H )n + 1

)2H

≤

≤
Cn(x− a)(2+2H)n

[
|ν|(b− a) + |λ|

]2
Γ
(
(1 + 2H)n + 1

) , (5.6)
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where the last inequality follows from the Stirling formula. From the hypercontractivity
[7], we have for any p > 2,

‖u(x)‖p := (E|u(x)|p)
1/p ≤

≤
∞∑

n=0

‖In(fn(x))‖p ≤

≤
∞∑

n=0

(p− 1)n/2‖In(fn(x))‖2 ≤

≤
∞∑

n=0

pn/2
[
|ν|(b− a) + |λ|

] Cn(x− a)(1+H)n

Γ
(
( 1
2 + H)n + 1

) ≤
≤ C

[
|ν|(b− a) + |λ|

]
exp
[
c(x− a)

2+2H
1+2H p

1
1+2H

]
,

where the last inequality follows from the asymptotic property of the Mittag-Leffler
function. Summarizing we have

Theorem 5.3. The mild solution to (5.2) is in Lp for any p ≥ 1 and there are universal
positive constants c and C, independent of x, a, b and p such that

E|u(x)|p ≤ C
[
|ν|(b− a) + |λ|

]p
exp
[
c(x− a)

2+2H
1+2H p

2+2H
1+2H

]
, ∀ p ≥ 1 . (5.7)
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ÐIÂÍßÍÍß ØÐÅÄIÍÃÅÐÀ Ç ÃÀÓÑÑIÂÑÜÊÈÌ ÏÎÒÅÍÖIÀËÎÌ

ß. ÕÓ

Àíîòàöiÿ. Ó ðîáîòi äîñëiäæó¹òüñÿ ðiâíÿííÿ Øðåäiíãåðà iç äðîáîâèì ãàóññiâñüêèì øóìîâèì ïî-
òåíöiàëîì âèãëÿäó ∆u(x) = u(x)�Ẇ (x), x ∈ D, u(x) = φ(x), x ∈ ∂D, äå ∆�Ëàïëàñiàí ó d-âèìiðíîìó
åâêëiäîâîìó ïðîñòîði Rd, D ⊆ Rd � çàäàíà îáëàñòü iç ãëàäêîþ ìåæåþ ∂D, φ� çàäàíà ôóíêöiÿ íà
ìåæi ∂D, Ẇ �äðîáîâèé ãàóññiâñüêèé øóì iç ïàðàìåòðàìè Õþðñòà (H1, . . . , Hd), � ïîçíà÷à¹ äîáóòîê
Âiêà. Çíàéäåíî ñiì'þ ïðîñòîðiâ ðîçïîäiëiâ (Wλ , λ > 0), iç âëàñòèâiñòþ Wλ ⊆Wµ ïðè λ ≤ µ, òàêó, ùî
çà óìîâè

∑d
i=1 Hi > d− 2, iñíó¹ ¹äèíèé ðîçâ'ÿçîê ó Wλ0 , êîëè λ0 �äîñòàòíüî âåëèêå, òà ðîçâ'ÿçîê

íå íàëåæèòü äî Wλ1 , êîëè λ1 �äîñòàòíüî ìàëå.

ÓÐÀÂÍÅÍÈÅ ØÐÅÄÈÍÃÅÐÀ Ñ ÃÀÓÑÑÎÂÑÊÈÌ ÏÎÒÅÍÖÈÀËÎÌ

ß. ÕÓ

Àííîòàöèÿ. Â ðàáîòå èññëåäóåòñÿ óðàâíåíèå Øðåäèíãåðà ñ äðîáíûì ãàóññîâñêèì øóìîâûì ïî-
òåíöèàëîì âèäà ∆u(x) = u(x) � Ẇ (x), x ∈ D, u(x) = φ(x), x ∈ ∂D, ãäå ∆�Ëàïëàñèàí â d-ìåðíîì
åâêëèäîâîì ïðîñòðàíñòâå Rd, D ⊆ Rd � çàäàííàÿ îáëàñòü ç ãëàäêîé ãðàíèöåé ∂D, φ� çàäàííàÿ
ôóíêöèÿ íà ãðàíèöå ∂D, Ẇ �äðîáíûé ãàóññîâñêèé øóì ñ ïàðàìåòðàìè Õþðñòà (H1, . . . , Hd), � îáî-
çíà÷àåò ïðîèçâåäåíèå Âèêà. Íàéäåíî ñåìåéñòâî ïðîñòðàíñòâ ðàñïðåäåëåíèé (Wλ , λ > 0), ñî ñâîé-

ñòâîì Wλ ⊆ Wµ ïðè λ ≤ µ, òàêîå, ÷òî ïðè óñëîâèè
∑d

i=1 Hi > d − 2, ñóùåñòâóåò åäèíñòâåííîå
ðåøåíèå â Wλ0 , êîãäà λ0 �äîñòàòî÷íî áîëüøîå, è ðåøåíèå íå ïðèíàäëåæèò Wλ1 , êîãäà λ1 �äîñòà-
òî÷íî ìàëî.


