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Abstract. This paper is devoted to an in-depth investigation of the first fundamental solution to the

linear multi-dimensional space-time-fractional diffusion-wave equation. This equation is obtained from

the diffusion equation by replacing the first order time-derivative by the Caputo fractional derivative

of order β, 0 < β ≤ 2 and the Laplace operator by the fractional Laplacian (−∆)
α
2 with 0 < α ≤ 2.

First, a representation of the fundamental solution in form of a Mellin–Barnes integral is deduced

by employing the technique of the Mellin integral transform. This representation is then used for
establishing of several subordination formulas that connect the fundamental solutions for different

values of the fractional derivatives α and β. We also discuss some new cases of completely monotone

functions and probability density functions that are expressed in terms of the Mittag-Leffler function,
the Wright function, and the generalized Wright function.
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1. Introduction

A subordination principle for completely positive measures was discussed in detail in
[38] and applied there for constructing new resolvents for the abstract Volterra integral
equations based on the known ones. In [1, 2], this subordination principle was extended
and specialized for the abstract fractional evolution equations in the form

Dβu(t) = Au(t), (1)

subject to the initial conditions

u(0) = x, u(k)(0) = 0, k = 0, . . . , n− 1, (2)

where Dβ is the Caputo fractional derivative of order β that will be defined in the next
section, n − 1 < β ≤ n, n ∈ N, and A is a linear closed unbounded operator densely
defined in a Banach space X, where the initial condition from (2) belongs to, i. e., x ∈ X.

Let Sβ(t) be a solution operator to the abstract initial-value problem (1)–(2),
0 < β < δ ≤ 2, γ = β/δ. Then the subordination formula

Sβ(t)x =

∫ ∞

0

t−γW1−γ,−γ(−st−γ)Sδ(s)x ds, t > 0, x ∈ X (3)

is valid under some conditions on the operator A (see [1, 2] for details). The function
W1−γ,−γ(−τ) from (3) is a special case of the Wright function that will be introduced in
the next section. It is important to mention that this function is non-negative for τ ∈ R+

and can be interpreted as a probability density function.
Very recently, the subordination principle was extended to the case of the multi-term

time-fractional diffusion-wave equations in [4] and to the case of the distributed order
time-fractional evolution equations in the Caputo and Riemann–Liouville sense in [3].
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All publications mentioned above deal with the abstract evolution equations with a
linear closed unbounded operator A subject to some additional conditions. In Fractional
Calculus and its applications, an important particular case of these equations, namely,
fractional differential equations with both time-fractional and space-fractional derivatives
are nowadays subject of very intensive research. Say, in [15], mathematical, physical, and
probabilistic properties of the fundamental solutions to the multi-dimensional space-time-
fractional diffusion-wave equation were considered. Asymptotic behavior of solutions to
the space-time-fractional diffusion-wave equations was investigated in [18, 23]. In [5, 6,
26–30] the method of the Mellin–Barnes integral representations was employed to derive
further properties of solutions to the multi-dimensional space-time-fractional diffusion-
wave equation and its important particular cases as the α-fractional diffusion equation
and the α-fractional wave equation. Still, the scope of the properties, particular cases,
integral and series representations, asymptotic formulas, etc. known for the fundamental
solution to the one-dimensional space-time-fractional diffusion-wave equation (see [34]
for its detailed theory) is essentially more expanded compared to the multi-dimensional
case and thus further investigations of the multi-dimensional case are required.

In this paper, both known and new subordination formulas for the fundamental solu-
tions to the Cauchy problems for the multi-dimensional space-time-fractional diffusion-
wave equation are derived and discussed. The subordination formulas that connect the
fundamental solutions for different orders of the time-fractional derivative of the type
given by (3) are already known, but here we apply a different method for their deriva-
tion. To the best of the authors knowledge, the subordination formulas presented in
this paper that connect the fundamental solution to the Cauchy problem for the multi-
dimensional space-time-fractional diffusion-wave equation with the fundamental solution
of the conventional diffusion equation as well as a subordination formula for the space-
fractional diffusion equation are new. For the subordination formulas for the fundamental
solutions to the one-dimensional space-time fractional diffusion-wave equation we refer
to [34].

The rest of the paper is organized as follows. In the second section, we formulate
the problem we deal with and recall the Mellin–Barnes representations of the funda-
mental solution to the Cauchy problem for the multi-dimensional space-time-fractional
diffusion-wave equation that were derived in the previous publications of the author and
his co-authors. The third section is devoted to a discussion of a special technique for
derivation of new completely monotone functions and new non-negative functions that
can be interpreted as probability density functions. This technique is then applied for
construction of some new completely monotone functions and probability density func-
tions in terms of the Mittag-Leffler function, the Wright function, and the generalized
Wright function that will be used in the further discussions. In the final section of
the paper, the Mellin–Barnes representations of the fundamental solution are employed
for derivation of both known and new subordination formulas for the solutions to the
Cauchy problem for the multi-dimensional space-time-fractional diffusion-wave equation
with different orders of the time- and space-fractional derivatives.

2. Problem formulation and auxiliary results

In this paper, we deal with the linear multi-dimensional space-time-fractional diffusion-
wave equation in the following form:

Dβ
t u(x, t) = −(−∆)

α
2 u(x, t), x ∈ Rn, t > 0, 0 < α ≤ 2, 0 < β ≤ 2. (4)
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In equation (4), Dβ
t denotes the Caputo time-fractional derivative of order β, β > 0,

defined by the formula

Dβ
t u(x, t) =

(
In−βt

∂nu

∂tn

)
(t), n− 1 < β ≤ n, n ∈ N , (5)

where Iγt is the Riemann–Liouville fractional integral:

(Iγt u)(t) =


1

Γ(γ)

∫ t

0

(t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

The fractional Laplacian (−∆)
α
2 from the equation (4) is defined as a pseudo-differential

operator with the symbol |κ|α [39, 40]:(
F (−∆)

α
2 f
)
(κ) = |κ|α(F f)(κ) , (6)

where (F f)(κ) is the Fourier transform of a function f at the point κ ∈ Rn defined by

(F f)(κ) = f̂(κ) =

∫

Rn

eiκ·xf(x) dx . (7)

For 0 < α < m, m ∈ N and x ∈ Rn, the fractional Laplacian can be also represented as
a hypersingular integral [40]:

(−∆)
α
2 f(x) =

1

dn,m(α)

∫

Rn

(∆m
h f)(x)

|h|n+α
dh (8)

with a suitably defined finite differences operator (∆m
h f)(x) and a normalization constant

dn,m(α).
The representation (8) of the fractional Laplacian in form of the hypersingular integral

does not depend on m, m ∈ N provided α < m [40]. For other approaches to the
fractional Laplacian we refer the reader to [22].

In the one-dimensional case, the equation (4) is a particular case of a more general
equation with the Caputo time-fractional derivative and the Riesz–Feller space-fractional
derivative that was discussed in detail in [34]. For α = 2, the fractional Laplacian (−∆)

α
2

is just −∆ and thus the equation (4) is a particular case of the time-fractional diffusion-
wave equation that was considered in many publications including, say, [7, 11, 16, 20, 21,
25, 42]. For α = 2 and β = 1, the equation (4) is reduced to the diffusion equation and
for α = 2 and β = 2 it is the wave equation that justifies its denotation as a fractional
diffusion-wave equation.

In this paper, we consider the Cauchy problem for the space-time-fractional diffusion-
wave equation (4) with the Dirichlet initial conditions:

u(x, 0) = ϕ(x) , x ∈ Rn (9)

if the order β of the time-fractional derivative satisfies the condition 0 < β ≤ 1 or

u(x, 0) = ϕ(x) ,
∂u

∂t
(x, 0) = 0 , x ∈ Rn (10)

if 1 < β ≤ 2.
Because the initial-value problem (4), (9) or (4), (10), respectively, is a linear one, its

solution can be represented in the form

u(x, t) =

∫

Rn

Gα,β,n(ζ, t)ϕ(x− ζ) dζ, (11)

where Gα,β,n is the so-called first fundamental solution to the fractional diffusion-wave
equation (4) and the function ϕ is given in the initial condition. By Gα,β,n, the solution
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to the equation (4) with the initial condition (0 < β ≤ 1)

u(x, 0) =

n∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

or the initial conditions (1 < β ≤ 2)

u(x, 0) =

n∏
i=1

δ(xi),
∂u

∂t
(x, 0) = 0 , x = (x1, x2, . . . , xn) ∈ Rn,

respectively, is denoted with δ being the Dirac delta function.
Thus the behavior of the solutions to the problem (4), (9) or (4), (10), respectively,

is determined by the fundamental solution Gα,β,n and the focus of this paper is on
derivation of some new properties of the fundamental solution. In particular, we deal
with the subordination formulas for the fundamental solution Gα,β,n in the form

Gα,β,n(x, t) =

∫ ∞

0

Φ(s, t)Gα̂,β̂,n(x, s) ds, (12)

where the kernel function Φ = Φ(s, t) can be interpreted as a probability density function
in s, s ∈ R+ for each value of t, t > 0. Let us note here that any subordination formula
for the solution operator Sα,β,n(t) to the initial-value problem (4), (9) or (4), (10),
respectively, in the form (see e. g. (3))

Sα,β,n(t)ϕ =

∫ ∞

0

Φ(s, t)Sα̂,β̂,n(s)ϕ ds (13)

induces a subordination formula of the type (12) for the fundamental solution Gα,β,n

just by setting ϕ to be the Dirac δ-function. Vice versa, any subordination formula of
type (12) for the fundamental solution Gα,β,n automatically leads to a subordination
formula for the solution operator Sα,β,n(t) of type (13) because of the representation
(11). Indeed, we have the following chain of (formal) transformations:

Sα,β,n(t)ϕ =

∫

Rn

Gα,β,n(ζ, t)ϕ(x− ζ) dζ =

∫

Rn

∫ ∞

0

Φ(s, t)Gα̂,β̂,n(ζ, s) dsϕ(x− ζ) dζ =

=

∫ ∞

0

Φ(s, t)

∫

Rn

Gα̂,β̂,n(ζ, s)ϕ(x− ζ) dζ ds =

∫ ∞

0

Φ(s, t)Sα̂,β̂,n(s)ϕ ds.

Thus a (formal) derivation of the subordination formulas for the solution operator can
be reduced to derivation of the subordination formulas for the fundamental solution.
Of course, afterwards, the subordination formulas for the solution operator Sα,β,n(t)
should be strictly proved. In this paper, we restrict ourselves to the first step of this
procedure, namely, to derivation of some subordination formulas for the fundamental
solution Gα,β,n. Their translation to the solution operator Sα,β,n(t) will be considered
elsewhere.

The subordination formulas for the fundamental solution will be deduced based on
their Mellin–Barnes representations. For the reader’s convenience, a short sketch of
derivation of these representations will be presented in the rest of this section. For the
details we refer to [27, 28] for the case β = α, to [6] for the case β = α/2, and to [5, 30]
for the general case.

Application of the multi-dimensional Fourier transform (7) with respect to the spatial
variable x ∈ Rn to the equation (4) and to the initial conditions (9) or (10), respectively,
with ϕ(x) =

∏n
i=1 δ(xi) leads to the ordinary fractional differential equation in the

Fourier domain

Dβ
t Ĝα,β,n(κ, t) + |κ|αĜα,β,n(κ, t) = 0, (14)
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along with the initial conditions

Ĝα,β,n(κ, 0) = 1 (15)

in the case 0 < β ≤ 1 or with the initial conditions

Ĝα,β,n(κ, 0) = 1,
∂

∂t
Ĝα,β,n(κ, 0) = 0 (16)

in the case 1 < β ≤ 2.
In both cases, the unique solution of (14) with the initial conditions (15) or (16),

respectively, has the following form (see e. g. [24]):

Ĝα,β,n(κ, t) = Eβ

(
−|κ|αtβ

)
(17)

in terms of the Mittag-Leffler function Eβ(z) that is defined by a convergent series

Eβ(z) =

∞∑
n=0

zn

Γ(1 + βn)
, β > 0, z ∈ C. (18)

Under the condition α > 1, one has the inclusion Ĝα,β,n ∈ L1(Rn) because of the
asymptotic formula (see e. g. [9])

Eβ(−x) = −
m∑

k=1

(−x)−k

Γ(1− βk)
+ O(|x|−1−m), m ∈ N, x→ +∞, 0 < β < 2. (19)

Thus the inverse Fourier transform of (17) can be represented as follows

Gα,β,n(x, t) =
1

(2π)n

∫

Rn

e−iκ·xEβ

(
−|κ|αtβ

)
dκ , x ∈ Rn , t > 0 . (20)

Because Eβ

(
−|κ|αtβ

)
is a radial function, the known formula (see e. g. [40])

1

(2π)n

∫

Rn

e−iκ·xϕ(|κ|) dκ =
|x|1−n

2

(2π)
n
2

∫ ∞

0

ϕ(τ)τ
n
2 Jn

2−1(τ|x|) dτ (21)

for the Fourier transform of the radial functions can be applied, where Jν denotes the
Bessel function with the index ν (for the properties of the the Bessel function see e. g.
[8]), and we arrive at the representation

Gα,β,n(x, t) =
|x|1−n

2

(2π)
n
2

∫ ∞

0

Eβ

(
−ταtβ

)
τ

n
2 Jn

2−1(τ|x|) dτ , (22)

whenever the integral in (22) converges absolutely or at least conditionally.
The representation (22) can be transformed to a Mellin–Barnes integral. We start

with the case |x| = 0 (x = (0, . . . , 0)) and get the formula

Gα,β,n(0, t) =
1

(2π)n

∫

Rn

Eβ

(
−|κ|αtβ

)
dκ

that can be represented in the form

Gα,β,n(0, t) =
1

(2π)n
2π

n
2

Γ(n
2 )

∫ ∞

0

Eβ

(
−ταtβ

)
τn−1 dτ (23)

due to the known formula (see e. g. [40])

∫

Rn

f(|x|)dx =
2π

n
2

Γ(n
2 )

∫ ∞

0

τn−1f(τ)dτ. (24)
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The asymptotics of the Mittag-Leffler function ensures convergence of the integral in (23)
under the condition 0 < n < α. Say, for 1 < α ≤ 2 the fundamental solution Gα,β,n is
finite at |x| = 0 only in the one-dimensional case. In this case, we get the formula

Gα,β,1(0, t) =
t−

β
α

απ

∫ ∞

0

Eβ(−u)u
1
α
−1 du =

t−
β
α

απ

Γ
(
1
α

)
Γ
(
1− 1

α

)
Γ
(

1− β
α

)
that is valid for α > 1 if 0 < β < 2 and for α > 2 if β = 2. This formula is nothing else
as an easy consequence from the known Mellin integral transform of the Mittag-Leffler
function (see e. g. [32, 35]):
∫ ∞

0

Eβ(−t) ts−1 dt =
Γ(s)Γ(1− s)

Γ(1− βs)
if

{
0 < <(s) < 1 for 0 < β < 2,

0 < <(s) < 1/2 for β = 2.
(25)

If the dimension n of the equation (4) is greater that one, the fundamental solution
Gα,β,n(x, t) has an integrable singularity at the point |x| = 0.

The Mellin integral transform plays an important role in Fractional Calculus in general
and for derivation of the results of this paper in particular, so let us recall the definitions
of the Mellin transform and the inverse Mellin transform, respectively:

f∗(s) = (Mf(t))(s) =

∫ ∞

0

f(t)ts−1 dt , t > 0 , (26)

f(t) =
(
M−1f∗(s)

)
(t) =

1

2πi

∫ γ+i∞

γ−i∞
f∗(s)t−s ds , γ1 < <(s) = γ < γ2 . (27)

As it is well known, the Mellin integral transform exists for the functions continuous
on the intervals (0, ε] and [E,+∞) and integrable on the interval (ε, E) with any ε, E,
0 < ε < E < +∞ that satisfy the estimates |f(t)| ≤ M1t

−γ1 for 0 < t < ε and
|f(t)| ≤ M2t

−γ2 for t > E with γ1 < γ2 and some constants M1, M2. In this case, the
Mellin integral transform f∗(s) is analytic in the vertical strip γ1 < <(s) = γ < γ2.

If f is piecewise differentiable and tγ−1f(t) ∈ Lc(0,∞), then the inversion formula
(27) holds at all points of continuity of the function f . The integral in the formula (27)
has to be considered in the sense of the Cauchy principal value.

For the general theory of the Mellin integral transform we refer the reader to [35].
Several applications of the Mellin integral transform in fractional calculus are discussed
in [32].

In the further discussions, we employ some of the elementary properties of the Mellin

integral transform that are summarized below. Denoting by
M←→ the juxtaposition of a

function f with its Mellin transform f∗ , the needed rules are:

f(at)
M←→ a−sf∗(s), a > 0, (28)

tαf(t)
M←→ f∗(s + α), (29)

f(tα)
M←→ 1

|α|
f∗(s/α), α 6= 0. (30)

Another important operational relation is the convolution theorem for the Mellin integral
transform that reads as follows:

∫ ∞

0

f1(τ)f2

(y
τ

) dτ

τ

M←→ f∗1 (s)f∗2 (s). (31)

Now we proceed with the case x 6= 0. As to the convergence of the integral in (22),
it follows from the asymptotic formulas for the Mittag-Leffler function and the known
asymptotic behavior of the Bessel function (see e. g. [8]) that it converges conditionally
in the case n < 2α + 1 and absolute in the case n < 2α − 1. Say, for 1 < α ≤ 2 and
n = 1, 2, 3 the integral in (22) is at least conditionally convergent.
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It can be easily seen that for x 6= 0 the integral at the right-hand side of the formula
(22) is nothing else as the Mellin convolution of the functions

f1(τ) = Eβ(−τα tβ) and f2(τ) =
|x|−n

(2π)
n
2
τ−

n
2−1 Jn

2−1

(
1

τ

)
at the point y = 1

|x| .

The Mellin transform of the Mittag-Leffler function (25), the known Mellin integral
transform of the Bessel function [35]

Jν(2
√
τ)

M←→ Γ(ν/2 + s)

Γ(ν/2 + 1− s)
, −<(ν/2) < <(s) < 3/4,

and some elementary properties of the Mellin integral transform (see e. g. [32, 35]) lead
to the Mellin transform formulas:

f∗1 (s) =
t−

β
α

s

α

Γ( s
α

)Γ(1− s
α

)

Γ(1− β
α
s)

, 0 < <(s) < α ,

f∗2 (s) =
|x|−n

(2π)
n
2

(
1

2

)−n
2 +s Γ

(
n
2 −

s
2

)
Γ
(
s
2

) ,
n

2
− 1

2
< <(s) < n .

These two formulas, the convolution theorem (31) for the Mellin transform, and the
inverse Mellin transform formula (27) result in the following Mellin–Barnes integral rep-
resentation of the fundamental solution Gα,β,n:

Gα,β,n(x, t) =
1

α

|x|−n

π
n
2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
n
2 −

s
2

)
Γ
(
s
α

)
Γ
(
1− s

α

)
Γ
(

1− β
α
s
)

Γ
(
s
2

)
(

2t
β
α

|x|

)−s
ds , (32)

where n
2 −

1
2 < γ < min(α, n). Let us note that the Mellin–Barnes integral (32) can be

interpreted as a particular case of the Fox H-function, too. The theory of the H-function,
its properties, and applications were presented in a number of textbooks and papers (see
e. g. [12, 19, 33, 36, 44]) so that here we do not discuss this subject in detail and prefer to
directly deduce the properties of the fundamental solution Gα,β,n from its Mellin–Barnes
representation (32). Starting with this representation and using simple linear variables
substitutions, we can easily derive some other forms of this representation that will be
useful for further discussions. Say, the substitutions s → −s and then s → s− n in the
Mellin–Barnes representation (32) result in two other equivalent representations

Gα,β,n(x, t) =
1

α

|x|−n

π
n
2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
n
2 + s

2

)
Γ
(
− s

α

)
Γ
(
1 + s

α

)
Γ
(

1 + β
α
s
)

Γ
(
− s

2

) (
|x|

2t
β
α

)−s
ds (33)

and

Gα,β,n(x, t) =
1

α

t−
βn
α

(4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
s
2

)
Γ
(
n
α
− s

α

)
Γ
(
1− n

α
+ s

α

)
Γ
(

1− β
α
n + β

α
s
)

Γ
(
n
2 −

s
2

) ( |x|
2t

β
α

)−s
ds (34)

that are valid under the conditions −min(α, n) < γ < 1
2 −

n
2 and max(n−α, 0) < γ < n,

respectively.
It is worth mentioning that the Mellin–Barnes integrals at the right-hand sides of the

representations (32), (33), and (34) are well defined for 0 < α, 0 < β ≤ 2, n ∈ N and
thus the fundamental solution Gα,β,n(x, t) can be represented by these Mellin–Barnes
integrals (at least) for 0 < α ≤ 2, 0 < β ≤ 2, n ∈ N.

Finally, let us demonstrate how these integral representations can be used, say, for
deriving some series representations of Gα,β,n(x, t) and then its representations in terms
of elementary or special functions of the hypergeometric type. To this end, we consider
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a simple example. In the case β = 1 and α = 2 (standard diffusion equation), the
representation (34) takes the following form (two pairs of the Gamma-functions in the
integral at the right-hand side of (34) are canceled):

G2,1,n(x, t) =
t−

n
2

2 (4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞
Γ
(s

2

)(z
2

)−s
ds, z =

|x|√
t
.

Substitution of the variables s→ 2s leads to an even simpler representation

G2,1,n(x, t) =
t−

n
2

(4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞
Γ(s)

(z
2

)−2s
ds, z =

|x|√
t
.

According to the Cauchy theorem, the contour of integration in the integral at the right-
hand side of the last formula can be transformed to the loop L−∞ starting and ending
at −∞ and encircling all poles sk = −k, k = 0, 1, 2, . . . of the function Γ(s). Taking into
account the Jordan lemma, the formula for the residuals of the Gamma function (see
e. g. [35])

ress=−k Γ(s) =
(−1)k

k!
, k = 0, 1, 2, . . .

and the Cauchy residue theorem lead to a series representation of G2,1,n(x, t):

G2,1,n(x, t) =
t−

n
2

(4π)
n
2

∫ γ+i∞

γ−i∞
Γ(s)

(z
2

)−2s
ds =

t−
n
2

(4π)
n
2

∞∑
k=0

(−1)k

k!

(z
2

)2k
, z =

|x|√
t
.

Thus the fundamental solution G2,1,n to the n-dimensional diffusion equation takes its
well-known form:

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
. (35)

3. Completely monotone functions and pdfs

A very essential feature of the subordination formulas of type (12) or (13) is that their
kernel functions Φ = Φ(s, t) can be interpreted as pdfs in s, s ∈ R+ for each value of
t, t > 0, i. e., that for any t, s > 0

Φ(s, t) ≥ 0 and

∫ ∞

0

Φ(s, t) ds = 1. (36)

Verifying the properties (36) for a given special function Φ is often a very difficult
task. In this section, a simple but efficient procedure will be suggested that helps to
check (36) for some special functions given in terms of the Mittag-Leffler function, the
Wright function, and the generalized Wright function. We shell need these functions
as kernels for the subordination formulas in the next section. This procedure uses the
well-known connection between the non-negative functions and the complete monotone
functions, but in the form written in terms of the Mellin integral transform.

To start with, let us first give a definition of the completely monotone functions:

Definition 3.1. A non-negative function φ : (0,∞)→ R is called a completely monotone
function if it is of class C∞(0,∞) and (−1)nφ(n)(λ) ≥ 0 for all n ∈ N and λ > 0.

The functions e−aλ
α

, a ≥ 0, α ≤ 1 and Eα,β(−λ), 0 < α ≤ 1, α ≤ β are well-
known examples of completely monotone functions. Here Eα,β(z) denotes the generalized
Mittag-Leffler function (see e. g. [14, 17] for its theory and applications and [13] for
numerical algorithms) defined by the following convergent series

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ C. (37)



SUBORDINATION PRINCIPLES FOR THE FRACTIONAL DIFFUSION-WAVE EQUATION 129

For more examples, properties, and applications of the completely monotone functions
we refer e. g., to [10, 37, 41].

The basic property of the completely monotone functions that we need in this sec-
tion is the following one (Bernstein theorem): A function ϕ : (0,∞) → R is completely
monotone if and only if it can be represented as the Laplace transform of a non-negative
measure (non-negative function or generalized function). Because the Laplace transform
is a Mellin convolution type integral transform, the technique of the Mellin transform
can be applied for investigation of completely monotone functions.

Let the representation

φ(λ) =

∫ ∞

0

e−λtΦ(t) dt, λ > 0 (38)

hold true for a non-negative function Φ with a known Mellin transform. Then the function
φ is completely monotone and its Mellin transform is given by the formula (see e. g. [32])

φ∗(s) = Γ(s)Φ∗(1− s) (39)

that can be transformed to the form

Φ∗(s) =
φ∗(1− s)

Γ(1− s)
. (40)

If the function Φ(t), t > 0 is non-negative, then the function Φγ,β(t) = tγΦ(t−β) is
non-negative for any γ,β ∈ R, too. Thus the function φγ,β of the form

φγ,β(λ) =

∫ ∞

0

e−λtΦγ,β(t) dt, λ > 0 (41)

is completely monotone and it follows from the relation (39) that

φ∗γ,β(s) = Γ(s)Φ∗γ,β(1− s). (42)

Using the operational rules (29)–(30) for the Mellin integral transform, the Mellin trans-
form of Φγ,β(t) = tγΦ(t−β) can be written in the form

Φ∗γ,β(s) =
1

|β|
Φ∗
(
−γ
β
− s

β

)
.

Thus we get the following formula for φ∗γ,β(s) defined by (42):

φ∗γ,β(s) =
1

|β|
Γ(s)Φ∗

(
s

β
− 1 + γ

β

)
.

The completely monotone function φγ,β given by (41) can be then represented as the
Mellin–Barnes integral (inverse Mellin integral transform of φ∗γ,β(s))

φγ,β(λ) =
1

2πi

∫ γ+i∞

γ−i∞

1

|β|
Γ(s)Φ∗

(
s

β
− 1 + γ

β

)
λ−s ds. (43)

In many cases the function φ (and thus the function Φ) is a particular case of the Fox
H-function and then Φ∗ is represented in form of a quotient of products of the Gamma
functions. This means that the new completely monotone function φγ,β given by (43) is
a particular case of the H-function, too.

Let us consider a simple example. It is known that the exponential function
φ(λ) = exp(−λα), 0 < α ≤ 1 is completely monotone. Its Mellin integral transform
is given by the formula [32, 35]

e−λ
α M←→ 1

α
Γ(s/α), <(s/α) > 0. (44)
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The function Φ∗ from (40) has then the form

Φ∗(s) =
φ∗(1− s)

Γ(1− s)
=

1

α

Γ
(
1
α
− s

α

)
Γ(1− s)

.

It follows from the arguments presented above that the function

φγ,β(λ) =
1

2πi

∫ γ+i∞

γ−i∞

1

α|β|

Γ(s)Γ
(

β+γ+1
αβ

− s
αβ

)
Γ
(

β+γ+1
β
− s

β

) λ−s ds (45)

is completely monotone, too. The function φγ,β given by (45) is evidently a particular
case of the Fox H-function. In particular, in the case β > 1

α
− 1 it can be represented as

the convergent series (see [32] or [35])

φγ,β(λ) =
1

α|β|

∞∑
k=0

Γ
(

β+γ+1
αβ

+ k
αβ

)
k! Γ

(
β+γ+1

β
+ k

β

) (−λ)k. (46)

We can easily recognize the last series as a particular case of the generalized Wright
function defined by the series

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1) . . . (bq, Bq)
; z

]
=

∞∑
k=0

∏p
i=1 Γ(ai + Aik)∏q
i=1 Γ(bi + Bik)

zk

k!
(47)

for the z-values where the series converges, and by the analytic continuation of this series
for other z-values. Thus, we have proved that the generalized Wright function

φγ,β(λ) =
1

α|β| 1Ψ1


(

β+γ+1
αβ

, 1
αβ

)
(

β+γ+1
β

, 1
β

) ;−λ

 (48)

is completely monotone under the conditions 0 < α ≤ 1, 1
α
− 1 < β. In particular, let

us set the following parameter values: β = 1
α
, γ = − 1

α
. Then the series (46) (and thus

the function (48)) takes the form

φγ,β(λ) =

∞∑
k=0

Γ(1 + k)

k! Γ(α+ αk)
(−λ)k =

∞∑
k=0

(−λ)k

Γ(α+ αk)
(49)

that defines the Mittag-Leffler function Eα,α(−λ), known to be completely monotone for
0 < α ≤ 1. Taking the known completely monotone functions and applying the procedure
described above, other new completely monotone functions can be easily derived.

Another simple but important observation from the discussions presented above is that
the Mellin integral transforms of the non-negative and completely monotone functions
are connected by the formulas (39) and (40). Say, if a function φ is completely monotone
then the function Φ with the Mellin integral transform given by the formula

Φ∗(s) =
φ∗(1− s)

Γ(1− s)

is non-negative. Vise versa, if a function Φ is non-negative then the function φ with the
Mellin integral transform given by the formula

φ∗(s) = Γ(s)Φ∗(1− s)

is completely monotone.
Let us illustrate this observation by some examples.
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Example 3.1. We start with a well-known pair of functions, namely, with the generalized
Mittag-Leffler function defined by (37) and the Wright function defined by the convergent
series

Wa,µ(z) =

∞∑
k=0

zk

k!Γ(a + µk)
, µ > −1, a, z ∈ C, (50)

and show that the function pα,β(t) = Γ(β)Wβ−α,−α(−t) can be interpreted as a pdf if
0 < α < 1, α ≤ β.

The Mellin integral transforms of the generalized Mittag-Leffler function and of the
Wright function are well-known (see e. g. [32]):

Eα,β(−t) M←→ Γ(s)Γ(1− s)

Γ(β− αs)
(51)

if 0 < <(s) < 1, 0 < α < 2 or 0 < <(s) < min{1,<(β)/2}, α = 2,

Wa,µ(−t) M←→ Γ(s)

Γ(a− µs)
(52)

if 0 < <(s), µ < 1 or 0 < <(s) < <(a)/2− 1/4, µ = 1.

As already mentioned, the function φ(λ) = Eα,β(−λ) is completely monotone provided
the conditions 0 < α ≤ 1, α ≤ β are fulfilled. The Mellin integral transform of the
function φ is given by (51). Then the function Φ with the Mellin integral transform

Φ∗(s) =
φ∗(1− s)

Γ(1− s)
=

Γ(1− s)Γ(s)

Γ(1− s)Γ(β− α+ αs)
=

Γ(s)

Γ(β− α+ αs)

is non-negative. Comparing this formula with (52), we conclude that the Wright function
Wβ−α,−α(−t) is non-negative under the conditions 0 < α < 1, α ≤ β, i. e.,

Wβ−α,−α(−t) ≥ 0, t > 0, 0 < α < 1, α ≤ β. (53)

Let us now check that the function pα,β(t) = Γ(β)Wβ−α,−α(−t) is a pdf on R+. Indeed,
it is non-negative because of (53). To calculate the integral of pα,β over R+ let us mention
that it can be interpreted as the Mellin integral transform of pα,β at the point s = 1.
The formula (52) leads now to the following chain of equalities:
∫ ∞

0

pα,β(t) dt =

∫ ∞

0

Γ(β)Wβ−α,−α(−t) dt = Γ(β)
Γ(s)

Γ(β− α+ αs)

∣∣∣∣
s=1

= Γ(β)
1

Γ(β)
= 1.

Example 3.2. In this example, we verify that the following function defined in terms of
the Mellin–Barnes integral

Φα,β(t) =
2

α

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
2
α
− 2

α
s
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
t−s ds (54)

can be interpreted as a pdf on R+ for 0 < β ≤ 1 and 0 < α ≤ 2 when α+ 2β < 4.

According the the general theory of the Mellin–Barnes integrals (see e. g. [35]), the
Mellin–Barnes integral (54) exists for 2

α
− 1 < <(s) < 2

α
under the conditions 0 < β,

0 < α, and α+ 2β < 4 and its Mellin transform can be calculated as follows:

Φ∗α,β(s) =
2

α

Γ
(
2
α
− 2

α
s
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
. (55)

Now we construct the function φ∗(s) given by the formula (39):

φ∗(s) = Γ(s)Φ∗α,β(1− s) = Γ(s)
2

α

Γ
(
2
α
s
)
Γ
(
1− 2

α
s
)

Γ
(

1− 2β
α
s
)

Γ(s)
=

2

α

Γ
(
2
α
s
)
Γ
(
1− 2

α
s
)

Γ
(

1− 2β
α
s
) . (56)
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The function φ = φ(λ) can be then represented as the following Mellin–Barnes integral:

φ(λ) =
1

2πi

∫ γ+i∞

γ−i∞

2

α

Γ
(
2
α
s
)
Γ
(
1− 2

α
s
)

Γ
(

1− 2β
α
s
) λ−s ds.

The variables substitution 2
α
s→ s leads to the formula

φ(λ) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1− s)

Γ(1− βs)
(
λ

α
2

)−s
ds.

Comparing this formula with the Mellin transform (25) of the Mittag-Leffler function,
we arrive at the representation

φ(λ) = Eβ

(
−λα

2

)
. (57)

The Mittag-Leffler function f(λ) = Eβ(−λ) is known to be completely monotone for
0 < β ≤ 1. Thus for α = 2 the function φ(λ) defined by (57) is completely monotone.
Now let α satisfy the inequalities 0 < α < 2. Then the function g(λ) = λ

α
2 is a

Bernstein function because its derivative g′(λ) = α
2 λ

α
2 −1 is completely monotone. But a

composition of a completely monotone function and a Bernstein function is completely
monotone (see e. g. [41]). Thus the function φ(λ) = f(g(λ)) is completely monotone for
0 < α < 2, too. Because φ∗(s) and Φ∗α,β(s) are connected by the formula (39) and the

function φ is completely monotone, it follows now that Φα,β(t) is non-negative, i. e.,

Φα,β(t) ≥ 0, t > 0, 0 < β ≤ 1, 0 < α ≤ 2, α+ 2β < 4.

To evaluate the integral of Φα,β(t) over R+ we again use the technique of the Mellin
integral transform:
∫ ∞

0

Φα,β(t) dt = lim
s→1

2

α

Γ
(
2
α

(1− s)
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
=

2

α
lim
s→1

Γ
(
2
α

(1− s)
)

Γ(1− s)
= 1.

4. Subordination formulas for the fundamental solution

To demonstrate our method, we open this section with derivation of some known
subordination formulas of type (3) for the fundamental solution Gα,β,n. The starting
point is the Mellin–Barnes representation (34) that we rewrite in the form

Gα,β,n(x, t) =
1

α

t−
βn
α

(4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞
Kα,β,n(s)z−sds , z =

|x|
2t

β
α

, (58)

with

Kα,β,n(s) =
Γ
(
s
2

)
Γ
(
n
α
− s

α

)
Γ
(
1− n

α
+ s

α

)
Γ
(

1− β
α
n + β

α
s
)

Γ
(
n
2 −

s
2

) . (59)

By setting β = 1 in the formulas above we get the fundamental solution of the space-
fractional diffusion equation in the form:

Gα,1,n(x, t) =
1

α

t−
n
α

(4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞
Kα,1,n(s)z−sds , z =

|x|
2t

1
α

, (60)

with

Kα,1,n(s) =
Γ
(
s
2

)
Γ
(
n
α
− s

α

)
Γ
(
n
2 −

s
2

) . (61)

The key point for derivation of a subordination formula for Gα,β,n with 0 < β < 1 is
in observation that the kernel function Kα,β,n in the Mellin–Barnes integral (58) can be
represented as product of two factors:

Kα,β,n(s) = Kα,1,n(s)× Φ∗α,β,n(s), (62)
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where Kα,1,n(s) is the kernel function in the Mellin–Barnes integral (60) for the funda-
mental solution Gα,1,n and

Φ∗α,β,n(s) =
Γ
(
1− n

α
+ s

α

)
Γ
(

1− β
α
n + β

α
s
) . (63)

Due to the convolution formula (31) for the Mellin transform, the product formula (62)
in the Mellin domain leads to an integral representation of Gα,β,n in the form

Gα,β,n(x, t) =
1

α

t−
βn
α

(4π)
n
2

∫ ∞

0

Φα,β,n(τ)G̃α,1,n

(z
τ

) dτ

τ
, z =

|x|
2t

β
α

, (64)

where Φα,β,n(τ) is the inverse Mellin integral transform of Φ∗α,β,n(s) given by (63) and

G̃α,1,n(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Kα,1,n(s) τ−sds (65)

is a slightly modified fundamental solution Gα,1,n:

Gα,1,n(x, t) =
1

α

t−
n
α

(4π)
n
2
G̃α,1,n(z), z =

|x|
2t

1
α

. (66)

The formula (64) is a subordination formula for the fundamental solution Gα,β,n and
now we put it into the standard form. To do this, let us derive an explicit representation
for the kernel function Φα,β,n(τ) that is defined as the Mellin–Barnes integral (under the
condition 0 < β < 1)

Φα,β,n(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Φ∗α,β,n(s) τ−s ds =

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− n

α
+ s

α

)
Γ
(

1− β
α
n + β

α
s
) τ−s ds. (67)

The general theory of the Mellin–Barnes integrals (see e. g. [35]) says that the contour of
integration in the integral at the right-hand side of (60) can be transformed to the loop
L−∞ starting and ending at −∞ and encircling all poles of the function Γ

(
1− n

α
+ s

α

)
.

Taking into account the Jordan lemma and the formula for the residuals of the gamma
function, the Cauchy residue theorem leads to the following series representation of Φα,β,n

(for details we refer the reader to [5] or [30]):

Φα,β,n(τ) =

∞∑
k=0

α(−1)k

k!

1

Γ(1− β− βk)
(τα)k+1− n

α (68)

that can be recognized to be a special case of the Wright function:

Φα,β,n(τ) = ατα−nW1−β,−β(−τα), 0 < β < 1. (69)

Putting now the formulas (66) and (69) into the integral representation (64) and substi-
tuting the variables τα → τ, we first get the formula

Gα,β,n(x, t) =

∫ ∞

0

W1−β,−β(−τ)Gα,1,n

(
x, tβτ

)
dτ, (70)

that can be transformed into the known subordination formula (see (3) with δ = 1)

Gα,β,n(x, t) =

∫ ∞

0

t−βW1−β,−β
(
−st−β

)
Gα,1,n(x, s) ds, 0 < β < 1 (71)

by the variables substitution tβτ→ s.
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Let us note here that we can express the fundamental solution Gα,1,n in terms of
the generalized Wright function 1Ψ1. Indeed, applying the same technique as for the
Mellin–Barnes integral (67), we first get a series representation of Gα,1,n:

Gα,1,n(x, t) =
1

α

t−
n
α

(4π)
n
2

∞∑
k=0

2(−1)k

k!

Γ
(
n
α

+ 2
α
k
)

Γ
(
n
2 + k

) ( |x|2
4t

2
α

)k

. (72)

Comparing this series with (47), we can represent Gα,1,n in terms of the generalized
Wright function:

Gα,1,n(x, t) =
2

α

t−
n
α

(4π)
n
2

1Ψ1

[(
n
α
, 2
α

)(
n
2 , 1
) ;− |x|

2

4t
2
α

]
. (73)

It is worth mentioning that the generalized Wright function from the right-hand side of
the formula (73) is a particular case of the function (48) and thus completely monotone

with respect to the variable z = |x|2

4t
2
α

. Because the function W1−β,−β(−t) is non-negative

if 0 < β < 1 (see Example 1 of the previous section), the subordination formula (71)
along with the representation (73) means that the fundamental solution Gα,β,n is non-
negative for 0 < β < 1, 0 < α ≤ 2 and it is a pdf in x for each t > 0 that can be easily
shown by the technique of the Mellin integral transform.

Now we consider the two-dimensional α-fractional diffusion equation that is obtained
from (4) for the parameter values n = 2 and β = α/2 (for derivation of this equation
and analysis of its mathematical, physical, and probabilistic properties see [29]).

Specializing the formulas (58) and (59) for this case, we obtain the representations:

Gα,α/2,2(x, t) =
1

α

t−1

4π

1

2πi

∫ γ+i∞

γ−i∞
Kα,α/2,2(s)z−sds , z =

|x|
2t

1
2

, (74)

with

Kα,α/2,2(s) =
Γ
(
2
α
− s

α

)
Γ
(
1− 2

α
+ s

α

)
Γ
(
1− s

2

) . (75)

Now we consider the kernel function Kα,β,2(s) (the function (59) with n = 2) under the
condition β < α

2 and represent it as follows:

Kα,β,2(s) = Kα,α/2,2(s)× Φ∗α,β(s), (76)

where Kα,α/2,2(s) is the kernel function in the Mellin–Barnes integral (74) for the fun-
damental solution Gα,α/2,2 and

Φ∗α,β(s) =
Γ
(
s
2

)
Γ
(

1− 2β
α

+ β
α
s
) . (77)

Once again, the product formula (76) in the Mellin domain leads to an integral repre-
sentation of Gα,β,2 in the form

Gα,β,2(x, t) =
1

α

t−
2β
α

4π

∫ ∞

0

Φα,β(τ)G̃α,α/2,2

(z
τ

) dτ

τ
, z =

|x|
2t

β
α

, (78)

where Φα,β(τ) is the inverse Mellin integral transform of Φ∗α,β(s) given by (77) and

G̃α,α/2,2(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Kα,α/2,2(s) τ−sds (79)

is connected with Gα,α/2,2 by the relation

Gα,α/2,2(x, t) =
1

α

t−1

4π
G̃α,α/2,2(z̃), z̃ =

|x|
2t

1
2

. (80)
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The formula (78) is a subordination formula for the fundamental solution Gα,β,2. To
put it into the standard form, we first derive an explicit representation for the kernel
function Φα,β(τ) that is defined as the Mellin–Barnes integral

Φα,β(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Φ∗α,β(s) τ−s ds =

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
s
2

)
Γ
(

1− 2β
α

+ β
α
s
) τ−s ds. (81)

Proceeding as above, for β < α
2 we get (for details we refer the reader to [29]):

Φα,β(τ) =

∞∑
k=0

2(−1)k

k!

1

Γ
(

1− 2β
α
− 2β

α
k
)(τ2)k (82)

that can be recognized to be a special case of the Wright function:

Φα,β(τ) = 2W1− 2β
α

,− 2β
α

(
−τ2

)
. (83)

Putting now the formulas (80) and (83) into the integral representation (78) and after
some elementary transformations, we get the subordination formula

Gα,β,2(x, t) =

∫ ∞

0

t−
2β
α W1− 2β

α
,− 2β

α

(
−st−

2β
α

)
Gα,α/2,2(x, s) ds, β <

α

2
. (84)

This formula is evidently a particular case of the subordination formula (3) with n = 2
and δ = α/2. An advantage of our approach is that we can deduce a nice closed form
formula for the fundamental solution Gα,α/2,2 being a part of the formula (84).

Again, we start with the Mellin–Barnes integral (74) with the kernel (75) and first
obtain its series representation:

Gα,α/2,2(x, t) =
1

α

t−1

4π

∞∑
k=0

α(−1)k

k!

Γ(1 + k)

Γ
(
α
2 + α

2 k
)( |x|

2t
1
2

)αk+α−2

(85)

that can be rewritten in terms of the generalized Mittag-Leffler function:

Gα,α/2,2(x, t) =
1

4πt

(
|x|

2
√
t

)α−2

Eα
2 ,α2

(
−
(
|x|

2
√
t

)α)
. (86)

The generalized Mittag-Leffler function from the right-hand side of the formula (86) is

completely monotone with respect to the variable z =
(
|x|
2
√
t

)α
and thus non-negative.

Moreover, for each t > 0 the fundamental solution Gα,α/2,2(x, t) is a pdf in x (see [29]
for details).

To obtain the subordination formula of type (3), we compare the kernel functions
Kα,β,n(s) and Kα,δ,n(s) defined by the formula (59) with 0 < β < δ ≤ 2. Evidently, we
can represent Kα,β,n(s) as product of two factors:

Kα,β,n(s) = Kα,δ,n(s)× Φ∗α,β,n(s), (87)

where

Φ∗α,β,n(s) =
Γ
(
1− δn

α
+ δ

α
s
)

Γ
(

1− βn
α

+ β
α
s
) . (88)

The function Φα,β,n(τ) can be determined as the inverse Mellin integral transform of
Φ∗α,β,n(s) and then represented as a series

Φα,β,n(τ) =

∞∑
k=0

α

δ

(−1)k

k!

1

Γ
(

1− β
δ
− β

δ
k
) (τ)

α
δ
k+α

δ
−n (89)
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that can be recognized to be a special case of the Wright function:

Φα,β,n(τ) =
α

δ
τ

α
δ
−nW1−β

δ
,−β

δ

(
−τα

δ

)
. (90)

Repeating the argumentation that was employed for derivation of the subordination
formulas (71) and (84), we arrive at the subordination formula of type (3).

Now let us apply the method described above with respect to both the order α of
the space-fractional derivative and the order β of the time-fractional derivative. In our
derivations, the four parameters Wright function in the form

W(a,µ),(b,ν)(z) =

∞∑
k=0

zk

Γ(a + µk)Γ(b + νk)
, µ,ν ∈ R, a, b, z ∈ C, (91)

will be used. This function was introduced in [43] for the positive values of the parameters
µ and ν > 0. When a = µ = 1 or b = ν = 1, respectively, the four parameters Wright
function is reduced to the Wright function (50). In [31], the four parameters Wright
function was investigated in the case when one of the parameters µ or ν is negative.
In particular, it was proved there that the function W(a,µ),(b,ν)(z) is an entire function
provided that 0 < µ+ ν, a, b ∈ C.

In the case µ + ν = 0, the four parameters Wright function is not en entire function
anymore. The convergence radius of the series from (91) with µ+ ν = 0 is equal to one,
not to infinity, as can be seen from the asymptotics of the series terms as k →∞:∣∣∣∣ 1

Γ(a− νk)Γ(b + νk)

∣∣∣∣ =

∣∣∣∣ sin(π(a− νk))

π

Γ(1− a + νk)

Γ(b + νk)

∣∣∣∣ =

=

∣∣∣∣cosh(π=(a))

π
(νk)1−a−b

[
1 + O(k−1)

]∣∣∣∣, k → +∞.

Now we formulate and prove the main result of this paper.

Theorem 4.1. For the fundamental solution Gα,β,n(x, t) to the multi-dimensional space-
time-fractional diffusion-wave equation (4) with 0 < β ≤ 1, 0 < α ≤ 2, and 2β+ α < 4
the following subordination formula is valid:

Gα,β,n(x, t) =

∫ ∞

0

t−
2β
α Φα,β

(
st−

2β
α

)
G2,1,n(x, s) ds, (92)

where the fundamental solution to the conventional diffusion equation is given by

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
and the kernel function Φα,β(τ) is a probability density function that is defined as follows:

Φα,β(τ) =



τ
α
2 −1 W(1−β,−β),(α

2 ,α2 )

(
−τα

2

)
if β

α
< 1

2 ,

τ−1 W(1,β),(0,−α
2 )

(
−τ−α

2

)
if β

α
> 1

2 ,
τ

α
2 −1

π

∞∑
k=0

sin
(πα

2
(k + 1)

)(
−τα

2

)k
if 0 < τ < 1,

−τ
−1

π

∞∑
k=0

sin
(πα

2
k
)(
−τ−α

2

)k
if τ > 1,

if β
α

= 1
2 .

(93)

The method of derivation of the formula (92) is the same as above. We start by
putting α = 2 and β = 1 into the the formulas (58) and (59) and obtain a Mellin–Barnes
representation for the fundamental solution to the conventional diffusion equation:

G2,1,n(x, t) =
1

2

t−
n
2

(4π)
n
2

1

2πi

∫ γ+i∞

γ−i∞
K2,1,n(s)z−sds , z =

|x|
2t

1
2

, (94)
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with

K2,1,n(s) = Γ
(s

2

)
. (95)

The kernel function Kα,β,n(s) defined by (59) can be then represented as follows:

Kα,β,n(s) = K2,1,n(s)×Ψ∗α,β,n(s), (96)

where K2,1,n(s) is the kernel function in the Mellin–Barnes integral (94) for the funda-
mental solution G2,1,n and

Ψ∗α,β(s) =
Γ
(
n
α
− s

α

)
Γ
(
1− n

α
+ s

α

)
Γ
(

1− β
α
n + β

α
s
)

Γ
(
n
2 −

s
2

) . (97)

Because of the Mellin convolution theorem, the Mellin–Barnes integral (58) and the
product formula (96) in the Mellin domain lead to the integral representation

Gα,β,n(x, t) =
1

α

t−
βn
α

(4π)
n
2

∫ ∞

0

Ψα,β,n(τ)G̃2,1,n

(z
τ

) dτ

τ
, z =

|x|
2t

β
α

, (98)

where Ψα,β,n(τ) is the inverse Mellin integral transform of Ψ∗α,β(s) given by (97) and

G̃2,1,n(τ) =
1

2πi

∫ γ+i∞

γ−i∞
K2,1,n(s) τ−sds. (99)

Comparing (94) and (99), we first get the relation

G2,1,n(x, t) =
1

2

t−
n
2

(4π)
n
2
G̃2,1,n(z̃), z̃ =

|x|
2t

1
2

, (100)

and then the formula

G̃2,1,n

(z
τ

)
= 2(4π)

n
2 t

βn
α τnG2,1,n

(
x, t

2β
α τ2

)
, z =

|x|
2t

β
α

, (101)

that connects the function G̃2,1,n from (98) and the fundamental solution G2,1,n. Now
we put (101) into (98) and get the integral representation

Gα,β,n(x, t) =
2

α

∫ ∞

0

τn−1 Ψα,β,n(τ)G2,1,n

(
x, t

2β
α τ2

)
dτ (102)

that can be rewritten in the form (see (92))

Gα,β,n(x, t) =

∫ ∞

0

t−
2β
α Φα,β

(
st−

2β
α

)
G2,1,n(x, s) ds

with

Φα,β(τ) =
1

α
τ

n
2−1Ψα,β,n

(
τ

1
2

)
(103)

after the variables substitution s = t
2β
α τ2.

To determine the kernel function Φα,β defined by (103), we first calculate its Mellin
integral transform based on the known Mellin integral transform (97) of the function
Ψα,β,n and the operational relations (29)–(30):

Φ∗α,β(s) =
2

α

Γ
(
2
α
− 2

α
s
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
. (104)

Thus the function Φα,β does not depend on the dimension n and can be represented as
the Mellin–Barnes integral (inverse Mellin transform of Φ∗α,β(s)) as follows:

Φα,β(τ) =
2

α

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
2
α
− 2

α
s
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
τ−s ds. (105)



138 YU. LUCHKO

Now we see that it is the same Mellin–Barnes integral that we dealt with in Example 2
of the previous section (see the formula (54)) and thus the kernel function Φα,β(τ) is a
probability density function.

To complete the proof of the theorem, let us now deduce the representation (93) of
the probability density function Φα,β(τ) defined by the Mellin–Barnes integral (105).

The general theory of the Mellin–Barnes integrals (see e. g. [35]) says that the integral
(105) has three different series representations depending on the relation between the
parameters α and β and one has to distinguish between three cases:

(i) β <
α

2
, (ii) β >

α

2
, and (iii) β =

α

2
.

The reason for this situation is that the integration contour in the Mellin–Barnes inte-
gral (105) can be transformed either to the loop L−∞ starting and ending at −∞ and
encircling all poles of the function Γ

(
1− 2

α
+ 2

α
s
)

(case (i)) or to the loop L+∞ starting

and ending at +∞ and encircling all poles of the function Γ
(
2
α
− 2

α
s
)

(case (ii)) or to
the loop L−∞ for 0 < τ < 1 and to the loop L+∞ for τ > 1 (case (iii)). Then the
integrals with the integration contours L−∞ or L+∞ can be represented as some series
of the hypergeometric type by using the Jordan lemma and the Cauchy residue theorem
(see examples already presented above). Now let us shorty discuss the cases (i)–(iii).

Case (i): β < α
2 .

The poles of Γ
(
1− 2

α
+ 2

α
s
)

are at the points sk = 1 − α
2 −

α
2 k, k ∈ N0. The series

representation of the Mellin–Barnes integral (105) thus takes the form:

Φα,β(τ) =
2

α

∞∑
k=0

α

2

(−1)k

k!

Γ(k + 1)

Γ(1− β− βk)Γ
(
α
2 + α

2 k
) τα

2 −1+
α
2 k. (106)

Because Γ(k + 1) = k!, the series (106) can be expressed in terms of the four parameters
Wright function (91)

Φα,β(τ) = τ
α
2 −1 W(1−β,−β),(α

2 ,α2 )

(
−τα

2

)
(107)

and we obtained the first part of the formula (93).

Case (ii): β > α
2 .

Now we have to take into consideration the poles of Γ
(
2
α
− 2

α
s
)

that are located at
the points sk = 1 + α

2 k, k ∈ N0. The series representation of the Mellin–Barnes integral
(105) is as follows:

Φα,β(τ) =
2

α

∞∑
k=0

α

2

(−1)k

k!

Γ(k + 1)

Γ(1 + βk)Γ
(
−α

2 k
) τ−1−α

2 k. (108)

Because Γ(k + 1) = k!, the series (108) can be expressed in terms of the four parameters
Wright function (91)

Φα,β(τ) = τ−1 W(1,β),(0,−α
2 )

(
−τ−α

2

)
(109)

and we obtained the second part of the formula (93).

Case (iii): β = α
2 .

In this case, we repeat the calculations made for the case (i) when 0 < τ < 1 and for
the case (ii) when τ > 1 and apply the reflection formula for the gamma function

1

Γ(z)Γ(1− z)
=

sin(πz)

π
, z ∈ C

to get the last part of the formula (93).
In the rest of the paper, we collect some remarks regarding the subordination formula

presented in Theorem 4.1 that in our opinion are worth mentioning.
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Remark 4.1. The kernel function Φα,β given by (93) can be represented as the following
Mellin–Barnes integral (see the formula (105) in the proof of Theorem 4.1) for all values
of α and β under the conditions stated in Theorem 4.1:

Φα,β(τ) =
2

α

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
2
α
− 2

α
s
)
Γ
(
1− 2

α
+ 2

α
s
)

Γ
(

1− 2β
α

+ 2β
α
s
)

Γ(1− s)
τ−s ds.

Remark 4.2. The second line of the formula (93) can be rewritten in the form

τ−1 W(1,β),(0,−α
2 )

(
−τ−α

2

)
= −τ−1−α

2 W(1−β,β),(−α
2 ,−α

2 )

(
−τ−α

2

)
because the first term of the series in (108) or (109) is equal to zero due to the fact that
the Gamma-function has a pole at the point zero. Thus we can move the summation
index k → k + 1 in (108) and get the representation above. In particular, it is now clear
that the kernel function Φα,β is integrable at +∞.

Remark 4.3. In the case β
α

= 1
2 , 0 < β < 1, the kernel function Φα,β(τ) defined by the

3rd line of (93) has an integrable singularity at the point τ = 1.

Remark 4.4. The relation (56) between the Mellin integral transform of the kernel func-
tion Φα,β(τ) and the Mittag-Leffler function (57) can be rewritten in terms of the Laplace
integral transform (see the formulas (38), (39)) and thus Φα,β(τ) can be also interpreted
as the inverse Laplace transform of the Mittag-Leffler function Eβ(−λα

2 ):

Eβ(−λα
2 ) =

∫ ∞

0

Φα,β(τ) e−λτ dτ. (110)

Remark 4.5. For the time-fractional diffusion equation (α = 2, 0 < β ≤ 1 in the equation
(4)) the subordination formula (92) with the kernel function Φα,β(τ) given by the 1st
line of (93) is valid. In this case, the four parameters Wright function is reduced to the
conventional Wright function and we arrive at the known formula (see (71))

G2,β,n(x, t) =

∫ ∞

0

t−βW1−β,−β(−st−β)G2,1,n(x, s) ds, 0 < β < 1. (111)

Remark 4.6. For the space-fractional diffusion equation (β = 1, 0 < α ≤ 2 in the equation
(4)) the subordination formula (92) has to be applied with the kernel function Φα,β(τ)
given by the 2nd line of (93). The four parameters Wright function from (93) is reduced
to the conventional Wright function and we arrive at the subordination formula

Gα,1,n(x, t) =

∫ ∞

0

s−1W0,−α
2

(−s−α
2 t)G2,1,n(x, s) ds, 0 < α < 2. (112)

It is worth mentioning that the fractional Laplacian can be also defined by means of a
fractional power of the positive definite operator −∆ (see e. g. [22]). Some preliminary re-
sults regarding subordination principles for the space-fractional diffusion-wave equations
with the fractional Laplacian defined in this sense can be found in [45].
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ÏÐÈÍÖÈÏÈ ÑÓÁÎÐÄÈÍÀÖI� ÄËß ÁÀÃÀÒÎÂÈÌIÐÍÎÃÎ ÄÐÎÁÎÂÎÃÎ
ÇÀ ÏÐÎÑÒÎÐÎÌ I ×ÀÑÎÌ ÄÈÔÓÇIÉÍÎ-ÕÂÈËÜÎÂÎÃÎ ÐIÂÍßÍÍß

Þ. ËÓ×ÊÎ

Àíîòàöiÿ. Ñòàòòþ ïðèñâÿ÷åíî ïîãëèáëåíîìó âèâ÷åííþ ïåðøîãî ôóíäàìåíòàëüíîãî ðîçâ'ÿçêó ëi-
íiéíîãî áàãàòîâèìiðíîãî äðîáîâîãî çà ïðîñòîðîì i ÷àñîì äèôóçiéíî-õâèëüîâîãî ðiâíÿííÿ. Öå ðiâ-
íÿííÿ îäåðæó¹òüñÿ ç ðiâíÿííÿ äèôóçi¨ øëÿõîì çàìiíè ÷àñîâî¨ ïîõiäíî¨ ïåðøîãî ïîðÿäêó äðîáîâîþ

ïîõiäíîþ Êàïóòî ïîðÿäêó β, 0 < β ≤ 2, òà îïåðàòîðà Ëàïëàñà äðîáîâèì Ëàïëàñiàíîì (−∆)
α
2 çà

óìîâè 0 < α ≤ 2. Íà ïî÷àòêó ñòàòòi çà äîïîìîãîþ òåõíiêè iíòåãðàëüíîãî ïåðåòâîðåííÿ Ìåëëiíà
âèâîäèòüñÿ çîáðàæåííÿ ôóíäàìåíòàëüíîãî ðîçâ'ÿçêó ó ôîðìi iíòåãðàëà Ìåëëiíà �Áàðíñà. Öå çî-
áðàæåííÿ ïîòiì âèêîðèñòîâó¹òüñÿ äëÿ âèâåäåííÿ äåêiëüêîõ ôîðìóë ñóáîðäèíàöi¨, ÿêi ïîâ'ÿçóþòü
ôóíäàìåíòàëüíi ðîçâ'ÿçêè äëÿ ðiçíèõ ïîêàçíèêiâ äðîáîâèõ ïîõiäíèõ α i β. Ìè òàêîæ îáãîâîðþ¹ìî
äåÿêi íîâi âèïàäêè öiëêîì ìîíîòîííèõ ôóíêöié i ùiëüíîñòåé iìîâiðíîñòåé âèïàäêîâèõ âåëè÷èí, ÿêi
âèðàæàþòüñÿ ÷åðåç ôóíêöiþ Ìiòòàã-Ëåôôëåðà, ôóíêöiþ Ðàéòà òà óçàãàëüíåíó ôóíêöiþ Ðàéòà.

ÏÐÈÍÖÈÏÛ ÑÓÁÎÐÄÈÍÀÖÈÈ ÄËß ÌÍÎÃÎÌÅÐÍÎÃÎ ÄÐÎÁÍÎÃÎ
ÏÎ ÏÐÎÑÒÐÀÍÑÒÂÓ È ÂÐÅÌÅÍÈ ÄÈÔÔÓÇÈÎÍÍÎ-ÂÎËÍÎÂÎÃÎ

ÓÐÀÂÍÅÍÈß

Þ. ËÓ×ÊÎ

Àííîòàöèÿ. Ñòàòüÿ ïîñâÿùåíà óãëóáëåííîìó èçó÷åíèþ ïåðâîãî ôóíäàìåíòàëüíîãî ðåøåíèÿ ëè-
íåéíîãî ìíîãîìåðíîãî äðîáíîãî ïî ïðîñòðàíñòâó è âðåìåíè äèôôóçèîííî-âîëíîâîãî óðàâíåíèÿ.
Ýòî óðàâíåíèå ïîëó÷àåòñÿ èç óðàâíåíèÿ äèôôóçèè ïóòåì çàìåíû âðåìåííîé ïðîèçâîäíîé ïåðâî-
ãî ïîðÿäêà äðîáíîé ïðîèçâîäíîé Êàïóòî ïîðÿäêà β, 0 < β ≤ 2, è îïåðàòîðà Ëàïëàñà äðîáíûì

Ëàïëàñèàíîì (−∆)
α
2 ïðè óñëîâèè 0 < α ≤ 2. Âíà÷àëå ñòàòüè ïîñðåäñòâîì òåõíèêè èíòåãðàëüíîãî

ïðåîáðàçîâàíèÿ Ìåëëèíà âûâîäèòñÿ ïðåäñòàâëåíèå ôóíäàìåíòàëüíîãî ðåøåíèÿ â ôîðìå èíòåãðàëà
Ìåëëèíà �Áàðíñà. Ýòî ïðåäñòàâëåíèå çàòåì èñïîëüçóåòñÿ äëÿ âûâîäà íåñêîëüêèõ ôîðìóë ñóáîð-
äèíàöèè, êîòîðûå ñâÿçûâàþò ôóíäàìåíòàëüíûå ðåøåíèÿ äëÿ ðàçíûõ ïîêàçàòåëåé äðîáíûõ ïðîèç-
âîäíûõ α è β. Ìû òàêæå îáñóæäàåì íåêîòîðûå íîâûå ñëó÷àè âïîëíå ìîíîòîííûõ ôóíêöèé è ïëîò-
íîñòåé âåðîÿòíîñòåé ñëó÷àéíûõ âåëè÷èí, êîòîðûå âûðàæàþòñÿ ÷åðåç ôóíêöèþ Ìèòòàã-Ëåôôëåðà,
ôóíêöèþ Ðàéòà è îáîáùåííóþ ôóíêöèþ Ðàéòà.


