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ABSTRACT. We prove the existence and uniqueness of a mild solution for a class of non-autonomous
parabolic mixed stochastic partial differential equations defined on a bounded open subset D C R and
involving standard and fractional L?(D)-valued Brownian motions. We assume that the coefficients are
homogeneous, Lipschitz continuous and the coefficient at the fractional Brownian motion is an affine
function.
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1. INTRODUCTION

Let (2, F,P) be a complete probability space. For a fixed T'> 0 let F = {]:}te[O,T] be
a filtration satisfying the standard assumptions. Let 3 € (0,1) be fixed throughout the
paper. Assume that D C R? is a bounded domain with boundary 0D of class C**8.

We consider the following stochastic partial differential equation with boundary con-
ditions

du(z,t) = (div(k(x,t)Vu(:L‘,t)) + f(u(x,t)))dt + g(u(z, t))W(z, dt)

+ h(u(z, t))WH (2, dt), (z,t) € D x (0,7, (1)
u(z,0) = @(x), x €D, (2)
Ou(x,t)

Here W is an L?(D)-valued Wiener process and W is an L?(D)-valued fractional Brow-
nian motion with the Hurst index H € (1/2,1). Furthermore, k = {k; ;}: D — R4 is
a matrix-valued field, consequently,

d

div(k(z,t)Vu(z, t)) = Z ;%(ki,j(x,t)azju(w,t))

4,J=1

n(k)(x) == k(x,t)n(z) denotes the conormal vector-field, and the relation (3) stands for
conormal derivative of u relative to k, that is

u(z,t)

“on(k) Z.j; k"vj(Lt)”i(ﬂf);CjU(x,t),

where n(z) € R? is an outer normal vector to dD. We are interested in the existence
and uniqueness of a mild solution to (1)—(3). The precise statement of the problem and
the definition of a mild solution will be given in Sections 2 and 3.
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In the pure Wiener case, where h = 0, the problem was investigated by Sanz-Solé
and Vuillermot [11], who introduced three different notions for solutions (namely, vari-
ation solutions of the first and the second kind and mild solutions) and showed their
indistinguishability. Also, they proved the existence, the uniqueness and the pointwise
boundedness of the moments along with the spatial Sobolev regularity of such solu-
tions. Later their results for mild solutions were improved in several directions by Veraar
[15, Sec. 8]. In particular, he proved the existence and uniqueness of a mild solution in
the case of random coefficients, depending also on (z, ).

The pure “fractional” case, where g = 0, was studied in [10, 12]. In [10] the existence,
uniqueness and indistinguishability of two types of variational solutions were proved,
assuming that the coefficients f and h are Lipschitz continuous and the derivative of
h is Holder continuous. In [12] the authors proved the existence of a mild solution
and established its relation with the variational solution of type II from [10] and the
Holder continuity of its sample paths. When h is an affine function, they also proved
the uniqueness of a mild solution and the indistinguishability of mild and variational
solutions.

In this paper we will consider mild formulation of the stochastic heat equation (1)
with white and fractional noises:

u(-,t) = J U(t,s)(f(u(-,s))ds+
+g(u(,$)dB(-, 5) + h(u(:, 5))dB" (-, 5), (4)

where U(t,s) = exp{fst Audu} is the evolution family on L?(D) corresponding to the

elliptic operator A, () = div (k(-,£)V(:)) with Neumann boundary conditions (3);
the precise formulations will be given later. We show that equation (1) has a unique
mild solution. The conditions on the coefficients are similar to those of [11, 12]. In
particular, the functions f and g are assumed to be Lipschitz continuous, and h is
assumed to be an affine function. In order to analyze the equation with two different
noises (and, consequently, with two different types of stochastic integrals), we replace
the fractional Brownian motion by a smooth process, transforming the equation (1) into
a stochastic partial differential equation with random drift driven by a Wiener process.
This approach was developed for ordinary stochastic differential equations involving both
Wiener process and fractional Brownian motion in the article [8]. In [13] it was applied
to mixed stochastic delay equations.

We organize this article in the following way. In Section 2, we formulate the assump-
tions, define L?(D)-valued Wiener and fractional Brownian processes and introduce the
corresponding stochastic integrals. Also, this section contains some properties of Green’s
function associated with our equation. In Section 3 we define a mild solution and prove
its existence and uniqueness. In Appendix, we collect auxiliary estimates for solutions
that are used for the proving of main result.

2. PRELIMINARIES
2.1. Assumptions on the coefficients and on the initial value.

(A1) Assumptions on k and n:
(1)kjfk:“forallzyf1 ,d;
(i) k;; € CPP(D XE,T]) for some B’ € (3,1] and for all 4,j = 1,...,d;
(iil) 72kij € CBB/2(D % [0,T)) for all i,5,1 = 1,...,d;
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(iv) there exists k > 0 such that
d
2
> kig(z t)aig; > Elgl?,
ij=1

forallz € D, t € [0,T], g € R (here |- | denotes the Euclidean norm in R%);
d

v) (,t) = > kij(x,t)ni(z) € CTHEOTRI/2(OD x [0,T1) for each j;
i=1
(vi) the conormal vector-field (x,t) — n(k)(z,t) = k(z,t)n(z) is outward point-
ing, nowhere tangent to 9D for every t.
(A2) The initial condition satisfies @ € C**#(D) and the conormal boundary condi-
tion (3) relative to k.
(A3) f,g9: R — R are Lipschitz continuous functions.
(A4) h: R — R is an affine function.

2.2. Norms and spaces. Let | -|, and [|-||, be the norms in L?(D) and L*(D)
respectively. For a € (0,1) denote by B*? (0, T, L2(D)) the Banach space of Lebesgue-
measurable mappings u: [0,T] — L?(D) endowed with the norm

2w o) [ O =)l N
”uHoc,Q,T = (tE[OPT]” (t)||2> +f0 <Jo (t — s)octl 2d> dt < 0.

)

Denote also for u: [0,7] — L?(D)

o LT(Hu )l Jotnu((t)_ S)cx(ﬁ”zd)dt

For f:]0,7] — R and « € (0,1) define a seminorm

_ ) = F)] (" 1) = F()
7 ”“’Ogt‘ogi‘i‘i«( (v —u)== g (2 —wr= dz)'

2.3. Green’s function. Let G: {(x,t, Y,8):0<s<t<T z,ye E} — R be the par-
abolic Green’s function associated with the principal part of (1). It is known from [3, 4]
that under assumptions (A1) and (A2) G is a continuous function, twice continuously
differentiable in z, once continuously differentiable in ¢. For every (y,s) € D x (0,7T] it
is a classical solution to the linear initial-boundary value problem
WGz, t;y,s) = div(k(x,t)VmG(:E,t;y,s)), (z,t) € D x (0,7,
9G(z,ty, )
on(k)

fD G(-,859,8)0(y)dy == lgfsl fD G(ty,s)o(y)dy = @().

Moreover, G satisfies the heat kernel estimates

=0, (a,t)€dD x (0,T],

2
Y02 G, by, 5)| < C(t — 5)~ 2@ IVI+20) exp{—C'x —yl }

t—s
for Y = ('Ylw"a'Yd)» Ylv"‘vydvé e NU {0}7 and |Y| + 25 <2 with h/| = Z?:le' In

particular, for |y| = & = 0, we have

Gz, t;y,8)| < C(t —s)" 2 exp{—C"x_y}. (5)

t—s

We shall refer to (5) as the Gaussian property of G.
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The evolution family corresponding to the operator Ap(-) = div (k(-,t)V(-)) with
Neumann boundary conditions (3) is defined as

Uw@w@r3£GQJW@m@My (6)

From the Gaussian estimates (5) it can be easily shown that the family U(t,s) is of
contractive type on L?(D). Indeed, denoting by ( a standard Gaussian vector in R%, we
have from (5) for ¥ € L?(D)

[U(t, s)b(z)| < CE(z + eVt — sCQ)1p(z + eVt — sO)|

with some ¢ > 0, whence

UG, )02 < ch (E[b(z + VT s0)|Lp(x + evi—30)) da
< CEJ Wz + VT =50 Lp(x + evT = 50)dz < CE[[]2.
D

In the proposition below we collect other useful estimates for G, see equations (3.4),
(3.5) and (3.36) in [12].
Proposition 2.1 [12]. Under assumption (Al), for all x,y € D and & € (#‘lwl), G
satisfies the following inequalities.
(i) For all0 <r <v<t<T and some t* € (r,v),

2
|Gz, t;y,0) — Gz, t;y,r)] < (E—0) "8 (v —r)8(t —t*)~4/? eXp{—CH}. (7)
(i) For all0 <v < s<t<T and some v* € (s,t),

2
MM¢wwmwwwﬂhwwwww—wmm{@iﬂ}-@
(i1i) For all0 <r <v<s<t<T and some v*,r* € (s,1),

G2, ty,0) = Gz, 579,0) = G, ty,7) = Gz, s39,7)] <
<(t—s)°s—v)Hv—r)%x

X <(v* - v)’d/Q exp{Ci*__yL2 } + (= r)’d/2 exp{0|i*__yf }) (9)

2.4. L*(D)-valued Wiener and fractional Brownian processes. Let {A;,j € N}
and {u;,j € N} be the sequences of positive real numbers and {e;,i € N} be an or-
thonormal basis of L?(D). Assume that

(A5) sup|le;||, < oo, Z)\j < o0, and ZH;/Q < 00.
J j=1 j=1

Let B; = {B,(t),t >0}, j € N, be a sequence of one-dimensional, independent
Brownian motions defined on (2, F,F,P). Let us define L?(D)-valued Wiener process
W ={W(.1),t =0} by

mm=i@%M&w

where the series converges in L?(§2, F,P), see, e.g., [1, Section 4.1] or [2, Section 3.5].
Similarly, let Bf{ = {B]H(t),t > 0}, j € N, be a sequence of one-dimensional, in-
dependent fractional Brownian motions with the Hurst parameter H € (0, 1), defined
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on (9, F,F,P) and starting at the origin. Following [6], define L?(D)-valued fractional
Brownian process W1 = {WH ),t > O} by

Z V2e;()BH (1), (10)

where the series converges a.s. in L? (D)

Remark 2.1. The assumption Z 1 M < oo is sufficient for the series (10) to converge in

Ly(D). The stronger condition ;- =1 ujl/ ? < oo is needed for the definition of a stochastic

integral with respect to this process, see Subsection 2.5.2 below.

2.5. Stochastic integration with respect to L?(D)-valued processes. Let ® =
= {®(t),t € [0,T]} be an adapted stochastic process taking values in the space of linear
operators on L?(D), b = {W(¢),t € [0,T]} be an adapted process in L°°(D).

2.5.1. Integration with respect to W. Define the stochastic integral with respect to
Lo(D)-valued Wiener process W by

| o aw e = A | o)) b ),

where the integrals with respect to B;, j € N, are It6 integrals, see [1, 2, 16]. The Ito
isometry of the form

[ et awes

i
0

—EZA [NECIOHE

holds if the right-hand side is finite [16, Sectlon 4]. Moreover, one has the following version
of the Burkholder-Davis—-Gundy inequality from [1, Theorem 4.36] (see also [2, Lemma
3.24]): for all p > 2 there exists Cp, > 0 such that for all ¢ € [0, T,

p/2
E su < CpE E Aj J d(s e ds
03521& ” J)”z

f:w Y () dW (v

This result can be generalized to the case of stochastic convolutions (see [5, 14]). For
simplicity we formulate it for the evolution family U(¢, s) defined by (6). Define

S(-1) =J U(t, s)(s) dW (s) = 27\;/2 L JD Gy, s)W(y, s)e;j(y)dy dB;(s).

0

Then for every p > 2 there exists C}, > 0 such that for all ¢ € [0, T7,

t p/2
e sup 15C. )5 < CE[ [ sl as] (1)
0<s<t 0

2.5.2. Integration with respect to WH. In order to introduce the integral with respect
to Lo(D)-valued fractional Brownian process W with H > 1/2, we need to recall the
definition of generalized Lebesgue—Stieltjes integral. Let f, g: [a,b] — R be two functions
and « € (0,1). Then the Riemann-Liouville left- and right-sided fractional derivatives
are defined by

P2 A0) = g (g | R ).

11— 1 x ’ x)—
i) = 1 (s + 1= | W‘@

x
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Assume that DX, f € Lq[a,b], D}~ “gs— € Loola, b], where g, (x ) = g(b—) —g(z). Under
these assumptions, the generalized Lebesgue—Stieltjes integral f x)dg(x) is defined by

f f(@)dg( f DE, f() DI ~%g,_ (x) dx, (12)

see, e.g., [7, Section 2.1] for details. It is not hard to see that this integral admits the

bound
Do) < Calllans | (L + O ) 1y

Fix H € (1/2, 1), x € (1 — H,1/2), and let &, be as above. Assume that
SUp|[@(s)((s)ej)lo 1y < 00, b5 € R
J€

Following [6], we introduce the integral with respect to L?(D)-valued fractional Brownian
process by

b
f B(s)b(s) B (s Z 1/2 J (W(s)e;) dBH (s),

a

where the integrals with respect to B;{ , j € N, are pathwise generalized Lebesgue—
Stieltjes integrals defined by (12). One can easily derive from (13) the following inequality
(see [6, Equation (2.16)])

b b
‘j ®(s)(s)dB(s)|| < chicx,H,bsupj <||<I>( )(w(S)?)”Q
a 2 JEN (s —a)
*(@(s)(b(s)es) — P(v)(W(v)e;) I,
+ L EnED dv) ds, (14)
where
&, Hb = Z 1/2HB;IH(X,0;1;' (15)
Note that the value E||BH || 1s ﬁmte by [9, Lemma 7.5], moreover, it does not depend

on j, since BJH ’s are equally dlbtrlbuted. Hence, using the monotone convergence theorem
and assumption (A5), we get

EZ 1518 0 = > 3 PE[B g < o

=1
Therefore the random variable & mp is finite a.s.
3. EXISTENCE AND UNIQUENESS OF MILD SOLUTION

In this section, we consider unique solvability of the problem (1)—(3). We understand
its solution in a mild sense. Recall that we consider H € (1/2,1).

Definition 3.1. L?(D)-valued random field {u(-,t),t € [0,7]} is a mild solution to the
problem (1)—(3) if the following two conditions are satisfied:

(1) uw € B*?(0,T; L*(D)) a.s. for some « € (1 — H,1/2),
(2) the relation (4), equivalently,

0= [ GCtn0em i+ | [ Gty ) dys+
SN [ Gttty es ) dyany o) +
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+ Z '? f JD G( iy, s)h(uly, s))e; (y) dy dB}! (s) (16)

holds a.s. for every t € [0,T] as an equality in L?(D).
Here the integrals w.r.t. B;, j € N, are It6 integrals, and the integrals w.r. t. Bf, JjeN,
are path-wise generalized Lebesgue—Stieltjes integrals.

For clarity, in the following we will write the integrals with respect to W and W# in
their full form, as in (16).

Theorem 3.1. Assume that Hypotheses (A1)-(Ab) hold, H € (di 1). Then the prob-

lem (1)—(3) has a unique mild solution.
The proof will be divided into several logical steps. First fix some o € (1 — H, ﬁ)

3.1. Construction of approximations. Fix N > 1. Let
TN = inf{t : E-oc,H,t > N} AT,

where &y ¢ is defined in (15). Put Bf’N(t) = BI'(t Atn), t €[0,T], j € N. For each
H,N
b

n,j € N define a smooth approximation of B; y
t
H,N,n o H,N
BN (1) = nf BTN (s) ds, (17)
(t—1/n)VO0
see [8]. Consider the equation
UNn (-t f G(t;9,0)0(y dy+j f Gy, 8) f(unn(y, s)) dy ds +

+Z7‘1/QJ J G( t;y, 8)g(unn(y, s))e; (y) dy dB;(s) +

j=1

+Z ’ f fDG<~7t;y,s)h(uN,n@,s))ej(y)dyd%Bf’N’"(s)dSv (18)

or
unn ('t f G(ty,0)0(y dy+f f Gty )b (unn(y, ), y, w, 8) dy ds +
LYo jo fD G+ 159, )9 (. (3, 5))es (9) dy dB; (5),
j=1
where -
Non B 12 4 o HNnR
b ™M (u, w, x, 8) = f(u) —l—h(u);uj eJ(x)gBj (s)

is a random drift depending also on (y, ). In other words, uy , is a mild solution of the
equation

du(z,t) = (div(k(sc, t)Vu(x,t)) + N (u(x,t)mc, w,t))dt + g(u(x,t))W(a:,dt),

(x,t) € D x[0,T], with initial-boundary conditions (2)—(3). Such equations were studied
in [15, Section 8§].
By assumption (A5),

i 1/2 _ BHan <CZH1/2

BHNn(s) _




MILD SOLUTION TO STOCHASTIC HEAT EQUATION 149
1/2| pH, N H,N 1
—an ‘B — B, ((s—;)\/O)’S

< Cn® Z w2|BY| < cneN.

0,x,s

Therefore, the function b"'" satisfies the following conditions: for all y € D, w € Q,
s €[0,T] and u,v € R,

o (u,y, w, 5) = 0" (v, y, w, )] < Clu—vl, (19)
o™ (u,y, w, 5)| < C(1 + Jul). (20)

Then, by [15, Example 8.2], there exists a unique mild solution un, with paths in
C([0,T]; L*(D)) a.s. Moreover, uy,, belongs to CP1-P2(D x [0,T]) for all B; € (0,1),
B2 € (0,1/2).

3.2. Convergence of approximations. Let us prove that, for a fixed N > 1, the
sequence {un,,n > 1} is fandamental in probability in the norm || - ||, 5 . For all € >0,
R > 1 and n,m € N, we have

Pl = unmllq o > €) <

< P(llunn = vl > & lunall o < B luwmll oz < B) +

+P(lunall oz > B) +P(lunmlor > R)- (21)
By [8, Proposition 2.1], for any j € N, — BJH’NH or — 0, n — o0, a.s. Then,
«,0;
in view of the boundedness,
EHBHN" BHNH =0, n-— . (22)

o,0;T

Since Bf Ao _ Bf[ N j €N, are identically distributed, we see that

EZ 1/2HBHN" BHNH 0 oo,
x,

y (A5). Then, by the Cauchy—Schwarz inequality,
2

Z ul/ZHB]H,N,n _ BJHWH <
«,0;T

2
o P R W [ ot EUREECY
o, U3

Therefore, using Lemma A.3 and Markov’s inequality, we see that for all ¢ > 0, R > 1,

< R, [|un.ml| g@—m,n%m,

Pl = unmll o, > & lrvnll . waT

and
lim sup P(HuN,n —unnllg o > e) <2sup P(||uN,n||“72,T > R),
ne

n,M—00

by (21).
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< o0.
«,0;T

Moreover, it follows from the convergence (22) that sup,cy EHB;{’N’"
Hence, Lemma A.2 and Markov’s inequality imply that
supP (lluwnllypz > R) =0, R 0.
neN -
Therefore, |unn — unmll, 7 — 0, n,m — oo, in probability. Consequently, there
exists a random process ux such that ||ux, —un|, 5, — 0, n — 00, in probability.
Then there exists an a.s. convergent subsequence, and without loss of generality we can

assume that
lun,n — uNHzx,Q,T —0, mn— oo, a.s. (24)

3.3. The limit provides a solution. We have
. 2 - 2 .
ot sty <€t ot 0, + st ),
where

jAf(x7t> = JO JD G(Z’,t, Y, S) (f(uN,n(y’ S)) - f(uN(y7 S))) dy dS,

Tag(et) = 3N | Glont ) atuatyr ) = st (D) es) dy B0
Ian(z,t) Z WJ f G(x,t1y,8) (h(unn(y, s) — hlun (Y, s)))e; (y) dy dBN"(s),

Inz(x,t) Zumf fD G(x, by, s)h(un (v, 5))e; (y) dy (B;™" — B"Y) (ds).

Consequently, in order to prove that uy satisfies (16) with BH replaced by JH N, we

need to show that these four integrals converge to zero. Note that they can be bounded
exactly in the same way as the corresponding integrals in Lemma A.3 of Appendix A.
Denoting

b2 = Lun g <Rl o <R}

we will obtain

. 2 T
[isrt D < 0 [ s = w2 s
0

- 2 T
[fant D" < O [l = x5,
0

oo
Inz(,T)|1r < CRY W)/ BIN = BIY||
H AZ( ) T ;H] j b 00T

and
- 2 T 5
E{HIAg(~,T)H2]lT} < CJ E[||uN7n fuN||a’2’S]ls}ds.
0
Taking into account (23) and (24), we get that E|unn(-,T) —uN(-,T)||§ILT — 0 as
n — oo, and, consequently, |[unn(-,T)—un(-,T)||,1r — 0 in probability. Thanks

to the convergence [|un, — un||, 5 — 0, n = 00, the event {||uN||(x,2,T < R} implies

{

in probability on {HuNHoc,2,T < R} and arbitrary R > 1, therefore on ().

w2 < R} for n large enough, therefore we have the convergence of the integrals
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3.4. Letting N — oo and uniqueness. From Lemma A.3 and Remark A.1 after it, it
is obvious that the processes uy and wps with M > N coincide almost surely on the set
An 1 = {&x,ur < N}. Therefore, there exists a process u such that for each N > 1,
uy = u a.s. on Ay . Consequently, u satisfies (16) on each of the sets Ay r, N > 1,
hence, almost surely.

Finally, the uniqueness also follows from Lemma A.3: each solution to (16) must
coincide with u on each of the sets Ay 7, hence, almost surely.

APPENDIX A. AUXILIARY RESULTS

Let u be a mild solution, defined by (16). Introduce the following notation:

I, 1) = jD Gz, 1:9,0)0(y) dy,
#o,t) = j jD Gz, t:y,5)(u(y, 5)) dy ds,

X = N 1/2 ' T, U, S u S))e; S
I,(w.1) ZAJ | | ctativstatutn e ) dyas o).

Iz, 1) = WHGscty, h(uy. s))e; (y) dy dBY (s).

Also, let

Ta(t) = f;(f 'I“((’S)_v)“il Oz 4, ) ds, ac{0,fg,h}. (25)

0
Then
Halloe = sup [ITa(,9)ll3 + Jalt), a€{0,f g h}.

s€[0,t]

Lemma A.1. Let N > 1. Define
AN,t = {Escx,H,t é N}7 te [OaT}a

where £ gy is given by (15). Then under assumptions of Theorem 8.1,
t
[ull3 0, < Cn |1 +j 30,45 + sup [1(-, )15 + Jo(2)
0 s€[0,t]
forallw € Ay .

Proof. Fix w € Ay It follows from (16) that

)15 < C (Mol O3 + MG O3 + L GOl + 1T 015)-— (26)
Evidently,

o= [ ([ cwsino <>dy) dr < C, (27)

since @ is bounded and the Gaussian property (5) holds. Using the Schwarz inequality
and (5), we also get

1,82 = j(”mw <<,s>>|dyds)2dxg
<of ( [ | 6ty ds) ( j [ 66ttty ) Pa ds) iz <
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| 16t b)) Py ds d <

<o, J
f f U Gz, t;y, )|dx>(1+|u(y’ 9| )dydsé
MK

1 + Ju(y, s )dyds < C(l + L ||u(,8)||gds> (28)

\ /\

/\

Define
0 0(u) (. 5) = jD Gz, t:y, )h(uly, 5))e; (y) dy. (29)
Then applying (14), we obtain

1/2
170Dl = Z 2 asut ) an )| <
2
llaje(w) (s 8)ll, JS llaji(u) (- s) — aji(u)(v)lly

<C : : : dv |ds.

< Ea,H,t?engO( e + . (s — o)t v |ds
Taking into account that sup,cylle; ||, < 0o, one can derive the following bound similarly
o (28):

suplas () )l  C(L+ ful 5)l) (30)

Further, by the assumption (A4),
a30(0)(2.8) = a3 (0) 2, 0)] < C [ Gty )l s) = o) dy +

+ CJD|G(x7t; y,8) — G(x,t;y,v)|(1 + |u(y,v)|) dy.
Applying the Schwarz inequality, we obtain

Jaje(w) (2, 8) = aje(u)(z,0)]* < CJDIG(% tiy. s)l[uly, s) — uly, v)|” dy +

e f Gla,tiy, ) — Gla, by, )1+ [uly, )])? dy,
D

since the integrals [,|G(z,t;y,s)|dy and [,|G(z,t;y,s) — G(z,t;y,v)|dy are bounded
uniformly in s,v due to the Gaussian property (5). Then applying the bounds (5) and
(7) and integrating the preceding estimate w.r.t. x € D, we get

supl|a;+(u) (-, 8) = aj (u) (-, 0)|5 < C(Ilu(-, s) = ul-v)ll3 +
JEN

(=) (s =) (1+ JuC-v)]3)).
whence

suplla; ¢ (u) (-, 8) = aje(u) (-, v}y < C(IIU(-, s) —u(,v)lly +
jeN

+(t=9) Fs—0) 1+ (o)) B1)

for any 6 € (d;iw 1). Therefore,

Juen] fu(.5) ~ut- )
||Ih<-,t)||2scaa,H7t(1+j I, )l +ff 2 duds +

(s—v

t —5)%/ s — p)d/2—a-1 u(-. v vds
[ )“j0< o2 <1+||<,>|2>dd), (32)
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where § € (d+2’
the order of integration, the last term can be calculated as follows

(-5 (s - ) Wk uw)ly) dods =
0 . tO
= ([t o220 = 0t ) 1 el o=
- t(tv)“( f:uz)wzzé/“ldz)(lﬂu( o)) dv =

0

1) is arbitrary. Since o < 1/2, we can choose d > 2. Then by changing

=B(§—a1-3) fo (t = 0)"* (1 + [lu(-, v)l) dv. (33)

We arrive at

ol < ON (14 [ (S s e lads +

* .fOt fOs ||u<(,88)__v;t£+71v)”2 @ ds)

Applying the Schwarz inequality relative to the measure ds on [0, ] to both integrals, we
deduce that

||Ih<-,t>||§<0N2<1+ [ nutas ([Tt o)) ds). (34)

Combining (26)—(28) and (34), we obtain

Ju I < ON? (1 [tz ([ ) ) :

+ O3 <

S CN2 1 +Jt sup ||U(,U)||§dS+Jt<fs ||u(73) _u('7lv)||2 dv>2d8 +
0 ve0,s] 0o \Jo (8 —v)*t

+ CllL (1)l
By definition of the norm || - ||

: 2 t sup |lu(-,v)||? ds YO Tulss) = u )l v ? s
[uC DI, < CN ( ] s e+ [ ([T r0le ) d>+
+C sup 1)1 -
Obviously,
0 luts) = ul )l
J.o (Jo (s — v)otl dv) ds < C(JO( )+ J(t) + Jy(t )+Jh(t))’ (36)

where the terms in the right-hand side are defined in (25).

Using the boundedness of @ and (8), we get for any & € (7%, 1) and some v* € (v, s),

d+2°

2
1o(s) — I )2 < C j ( f |G<x,s;y,o>G(x,v;y,o>|dy) de <
D D

) 2
< CJD ((3 —)%p7?® JD(U*)fd/Q exp{—C'mv_*m} dy) dzx <
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< C(S o v)25v—26

)

¢ 2
Jo(t) < CJ (J (5 — )3~ %" 1y=® dv) ds < C,
0

since we can choose § > «.
In order to estimate J( f , we write

If(z,s) — If(z,v) = fmesy, fluly,2))dydz +

whence

J J (z,89,2) — Gz, 05y, 2)) f(u(y, 2)) dy dz =
= K}(z,s,v) —I—Kf(m,s,v).

Jr(t) < Jot (J:(HK;«(, s, v)”2 + HK}'(, s,v)||2) (s —v)~ 7t dv) 2ds.

It is not hard to show that

Il < ot =02 [ (14 |u<.,z>§)dz>”2,
Il < Cte =0 [ o—7¢(14 ||u<-,z)||§)dz)1/27

Then,

for every 6 € (fiw

(38)

(39)

1). Indeed, (38) follows by applying the Schwarz inequality w.r.t.

the finite measure |G(z, s;y, z)|dy dz on D X [v, s] and using the Gaussian property along
with assumption (A3). Inequality (39) is derived by applying the Schwarz inequality
w.r.t. the measure |G(z, s;y, 2) — G(z,v;y, z)|dy dz on D x [0,v] and then (8). Further,

(38) implies

Lt <f08’|K}(.757v)"2(3 — )7t dv>2ds <
<CJ (j (s — ) W-"‘U:(H||u(-,z)||§)dz)1/2dv>2ds<
<0, (1= s ) ([omma) o
<c j <1+ sup >||§>ds,
z€[0,5]

since o < 1/2. Applying the bound (39) and the Schwarz inequality, we obtain

[ ([ 1p sl 0yt as <
<cj (J 0)?/2e 1(fov(v_2’)8(1-1—||u(-,z)||§)dz)1/2dv>2d8S

<cj (J (s — )%/~ 1dv)
« (L (5 — v)¥/2- “—1f0v(v—z)—5(1+ u(~7z)|§)dzdv>ds <
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<CJ j v)3/2—o= 1f0 (vfz)*é(lJrHu(-7z)|\§)dzdvds§

< Cj (1—1— sup |ju(-, )||§>J- (s — )27 1yl=8 gy ds <
0

z€(0,s]

< cf (1 + sup [u(-, )||§> ds
z€[0,s]
where the last inequality follows from
J (s — )27 1yl =8 gy = B(§/2 — a,2 — 8)s* /27X < B(§/2 — «,2 — §)T'8/2~
0
since §/2 + o < 1. Combining the above estimates, we arrive at
¢
10 (14 [l ts). (40)

It remains to estimate J,. We start by writing

In(z,8) — In(z,v) Zulmf a;s(u )(x,z)dBjH(z)Jr

v

+Z”1/2 _fo a;.s(u)(z, 2) — a;(u)(z, 2))dB] (2) =

= Kh(x,s,v) + K/ (z, s,v),
where a; s(u)(z, z) is defined by (29). Then

In(t) < JO <f05(|K2('757U)||2 KR 5,0) o) (s —v) 7> dv) ds. (41)

Applying (14), (30) and (31), we get
I3 o0l < Ctnasup [ (100
+ fz llaj,s(u) (-, 2) — ajs(u) (-, 7)

(z —r)otl

1 srz
S CE.(X,H,t Sup(f + HU’ sz +J J ||’LL ) Z )H2 deZ+

JEN (z —v)* (z—r

- fI(S — )72z = )2 (1 () ) dz)

_|_

”2 dr) dz <

for any o € <d+27 ) The last term is computed similarly to (33) (recall that 6 > 2w):
[[ =252 = n®emias futen) ) dz =
~B( - 1=$) [ (=0t )l dr
Thus,

1K (5 s,0) 1, < caa,H,tUS<(Z _10) TG _12)a>(1 + Ju(-, 2)|l,) dz +

[ el g ), )




156 YU. MISHURA, K. RALCHENKO, G. SHEVCHENKO

Denoting a} ; ,(u)(, 2) = a; s(u)(, 2) — a;j,(u)(z, 2), we can write by (14),

170l < Ot [ (1200
0

JEN
zlla¥, (u)(2) —al s, (uw)(,r
[ a6 G0 ),
0 (z =)ot
Similarly to (30) and (31), we can prove the inequalities
X H _s
a5 50 (@ (2|, < Cls —v)7 (0 = 2) 72 (L + [Ju(, 2) ), (43)

and

@ e () 2) = @5, (@), < Cls = 0)F (0 = 2)7Fflul, 2) = wl )l +
(0= 275 =)D fu( ) (44)

for any 6 € <i 1). For (43) the key estimate is (8). For (44) one should apply (8)

a+2
along with (9).
Then
180l < Ctmanals =02 ( [ 027 (L + 20 )0 ute 2l dst
e [P )l
# [o-ame [ ), )

Thus, combining (41), (42) and (45), we get

Jn(t) < CN? Jt [(L1(5))? + (La(5))* + (Ls(s))* + (La(s))?] ds,

0
where
nie) = [0 [ (s + e ) 1 Tt 2l dsas
[

Lafo) = [ (s = 2ot [ Loz e (1 + 1“) (1+ (-, 2)lly) dz do,

z%  (v—2)

L4(s):fs(s—v)f’/QﬂX—lJ:(v—z)_f’/QJZ lut, =) = wC, r)lly drdz dv.

0 v (o)t

Similarly to Equations (3.42)—(3.45) of [12], one can estimate the integrals fg(l)z(s))2 ds,
i1 =1,2,3,4. This leads to the inequality

ity < o2 + [l o ) (146)

Finally, combining (36), (37), (40) and (46), we get

Jot <fos ||u((8)_v)“(+1 Wz > ds < ON2(1+f lull? , ds ) LI, (0).

Inserting this bound into (35), we conclude the proof. O

Lemma A.2. Let N > 1. Define a stopping time
TN = mf{t : E»oc,H,t > N} AT
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and a stopped process u™ (-,t) = u(-,t Atn). Then

e[ fonir] < O
Proof. By Lemma A.1,

sup [[157(,5)]],

N ! N2
e [ N PR

where

) +E[J;V<t>]>7

N, t) = ZA}/ ’ j jD Gz, t;y, 5)g(u™ (1, 3))e; (v) dy dB; (3),

JU HIN - “H H2d> n

Using the inequality (11) and then the assumption (A3), we get

t t
sup 1I¥ ¢, >H§ < CEL Hg(uzv(.,s))ﬂzds < CEL (1 + [ (-, 9)]], ) ds <

€[0,¢]
§C<1+EJ sup ||u )||;d5> <
0 z€[0,s]

< 0(1 ; jo E[HUNHW}ds). (48)

By the Schwarz inequality, we have

EJN () < Eft <j8||IN(~, ) — IN(.,U)Hj(s — v)3/2°‘dv) (j:(s - v)l/z"‘dv> ds <

CJ J E||IN H (s —v) ™3/ *duds <

SCJJ EHK;(~,5,U)H2+EHK;’(-,S,U)’E)(S—v)_3/2_“dvds,
0 Jo

where

Ko nn) = L [ ] 6@ sv2a(w.2)es0) dyasio),

K// £L' S, U ZA1/2J J QC SY, 2 G(x,v,y,z))g(uN(y,z))ej(y) dydBJ(Z)

By Ito’s isometry,

2
EHK;("va)||§ = EL) (i 7\;/2 LS JD Gz, s3y,2)g(u™ (y,2))e;(y) dydBj(z)) dr =
= EJ.D i:}\j LS (JD G(z, s;v, z)g(uN(y, z))ej(y) dy)gdz dr <

< (jij:l Aj ej||oo) E Jj fD <JD|G(x, 83, z)g(uN(y, z)) ’ dy)de dz.

(49)
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Then using the assumption (A5) and bounding the inner integrals similarly to (28), we
arrive at

[l K5 (.05 < Cls = o) (14 ][ ).

«,2,s

Therefore,
t rs

J J. EHK;(',S,U)HQ(S—’U)ig/Qiad’UdSS
0 Jo

t S t
<o | (1+ElN] f — 1/2“dd<0<1+JE N2 d>.
<[ (1+El,,,) | Gmn e aas < o1 e[, Jos

Similarly to (49),

EHK;)/(, 5,1})“3 < CE JOU JD (JD|G($, $3y,2) — G(z,v; y,z)||g(uN(y, z))‘ dy)Zdz dz.

One can bound the integral in the right-hand side in the same way as K}’ in (39):
E||K& (-, s,v)”i < CE(s —v)® f (v—2)"° (1 + |, z)”;)dz
0

Further,

EHK;’(~,$,U)||§ <C(s— v)‘SE<1 + sup HuN(,z)H;) J (v—2)"%dz <
z€][0,s] 0

< C(s—v)* (1+E[]2 ).

x,2,s

Hence, choosing 6 > % + o, we obtain
t s
f f EHK;’(',s,v)||2(s—0)73/2*“dvdsS
o Jo

t ) s L ¢ ,
< CJ-O (1 + EHuNH“,ZJ Jo (s —v)® i *dvds < C’(l + Jo E{HuNHa,z’st).
Thus
t
EJ," (1) SC(H | E[HuNHings)- (50)
0 2,

Combining (47), (48), and (50), we get

E[HUNHiZt} <Cyn <1+JOtE[HuN||iw]ds>,

and the proof follows from Gronwall’s lemma. O

Lemma A.3. Let the assumptions of Theorem 3.1 hold. Then

[eS)
2 1/2 H,N,n H,N,m
EHquniqumHoc,ZT]]‘Ag’R S CN,RE E uj HBJ 7Bj H

o, 0;T

where AN = {unnllgor < Bollwmll g < B, BIPY™ and unn are defined by

(17)-(18).
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Proof. The proof will be similar to that of Lemmas A.1-A.2, so we omit some details.
Denote 1 = 1 yn.n, 4 = Un,p, & = UNm, =B Z; _BHN*” AZ; = Z; — 7,

Mo Ht = Y goq L 1/2HAZ | 057 We have
Ju =50 <€ sup (Hars)l+ Mag(e o)l + WanCo 9l + a2, 9)lz) +
s€|0,
+ Jap(t) + Jag(t) + Jan(t) + Jaz(t),

where

Injp(z,t) = f fDGu,t;y,s)(f(u(y,s)) f(ay, 5))) dy ds,

€T = 3 172 ‘ x,t:y, s u(y, s)) — g(u(y, s)))e; (s
Tng(,1) ZAJ | [ Gt atuts ) ~ atitws))es ) duas o)
Ian(a,t) =3 /2 j j Gz, t;,5) (h(u(y, )) — h(@(y, 5)))e; () dy dZ;(s),

Ing(et) =3 w2 j j Gla, t;y, $)h(ay, 5))e; (y) dy d(AZ;(s)),

Ta(t) == t(fos”l"((s) La(,v Qd)ds, a € {Af, Ag, Ah, AZ}.

0 _U)OC+1
Similarly to (32),
*la ||2 *Jlad, )||2
[az(, )||2<CnocHt(1+f ds +f f (s—v dvds +

+ fot(t — s)_5/2 J;) (s — v)5/2—“—1(1 + |a(-,v),) dv ds),

for any 6 € (d+2, ) Arguing as in the proof of Lemma A.1 for the term I, we obtain

a2 013 < Cn (1 # [ asngass ([ 1Ml dv)2d5> <

2
< Ongc,H,t<1 + ||uHoc2t)

Therefore
Haz( )31 < CR*NZ
The term Jaz can be bounded analogously to (46):

t
Jaz(OLs < Oy, (1 +f ||a|i,2,sds) 1, < CR™% 1,

The terms Ia¢ and Ja¢ can be estimated in the same way as the terms Iy and J¢ in
the proof of Lemma A.1, using the Lipschitz condition (A3) instead of the inequality
|f(u)] < C(1+ |u]). This leads to the bounds

sup a1 < C [[ el s amd Jas0) < [l
s€|0,t

In order to estimate Iap, we can use the same arguments as for I in the proof of
Lemma A.1, using the bounds

Eggllaj,t(u)(v s) = aji(@)( )l < C(llul, s) —al-;5)lly)
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and

ztelpllaa, (W) 8) = ap(@)(8) = aje(u)(0) + @ (@) 0), <

<CO(t=9)"(s = v)°flulv) —al- o), +
+ Cllu(,s) —al,s) —ul0) +al,v)ll, (51)
instead of (30) and (31) respectively. These bounds can be established similarly to

(30) and (31), see [12, Lemma 3.3] for their proofs. Mention that for (51) we need the
assumption that h is an affine function. We will obtain

t
sup [Tan( O3 < O [ flu =il 5,5
s€0,t] 0

Finally, the bound

JAh( < CNJ‘ ||u |oc2 st

can be proved similarly to (46), inequalities (43) and (44) are replaced by (3 37) and (3.38)
21— 2cx), this
leads to the restriction & < 5. We refer to the proof of part (b) of Theorem 2.3 in [12]

d+2
for the details on the estimation of Ia, and Jay,.

Thus, we see that

from [12] respectively. Note that for this term we need to choose & €

llu — ﬁ\li,gﬂt <Cnr

t
Mot + f lu — @5 5, Lods + Sl[lp]IIIAg(', t)ll31¢ + JAg(t)lt]-
0 s€[0,t

Similarly to (48) (using the Lipschitz continuity of g instead of the linear growth
condition), we get

E[wpwm<>m ]<Cf =l o, L] ds,

s€[0,t]

ElJag 01 < © [ E[Ju 5,1 as.

Then

t
€l a1201.] < Oncn(Entme + [ E[lu - a1 as)

and the result follows from Gronwall’s lemma. O

Remark A.1. Tt follows from the above proof that the statement of Lemma A.3 remains

true, if we replace the sequences {BH’N’",j € N} and {BJH’N’m,j € N} by other two

sequences {Z;,j € N} and { ] € N} of independent identically distributed Hoélder

continuous processes, satisfying the assumptions

1/2 1/2
Z Y2 2o SN and Z /HZH“OT N.

More precisely, if u and @ are two processes, satisfying (16) with B]H replaced by Z; and
Zj respectively, then we have
2

b

1/2 ~
Ellw — @l 5 714z < Cy rE Z /HZJ'—ZJ'H(XO,T
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where AR = {||u||“,27T <SR |iflgor < R}. For example, we may consider the processes

Z; =

BJH’N’" and Zj = BJH’N from the proof of Theorem 3.1 and the corresponding

solutions u = un,, and @ = uy.
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ICHYBAHHA TA € JUHICTb M’KOTI'O PO3B’A3KY
CTOXACTHUYHOI'O PIBHAHHS TEILJIOITPOBIAHOCTI
3 BIJIMM TA AJPOBOBUM INIYMAMMNA

0. MILITYPA, K. PAJIBYEHKO, I IIEBYEHKO

AnoTa1ys. [oBemeHo iCHyBaHHS Ta €IMHICTH M’SKOTO PO3B’S3KY AJs KJIACy HEABTOHOMHUX Iapabosi-
YHUX 3MIMAHUX CTOXACTHIHUX JudEpEeHITiaJbHUX PIBHAHD 13 YJACTHHHUMH HOX1JHUMHU, AKi BU3HAYEHI HA
obMerkeniit BigxpuTiit miamuoxuEl D C RY T8 MicTsaTs crasgapranit i gpoGoeuit L2(D)-3xausi 6poyHis-
cbKi pyxu. llpunyckaerbcst, mo KoedillieHTH € OHOPITHUMY, JINIINIIEBUMH, a KoedillleHT npu 1poboBOMY
OpoyHiBCbKOMY pyci € adinHo0 QyHKIiEH.

CYIIIECTBOBAHUE N EJ/MHCTBEHHOCTDb MATKOI'O PEIITEHN A
CTOXACTUYECKOI'O YPABHEHUNA TEILJIOITPOBOJHOCTN
C BEJIBIM 1 APOBHBIM IIIYMAMMNI

I0. MUIITYPA, K. PAJIBYEHKO, I HIEBYEHKO

AnHOTAIMSA. J/[OKa3aHBI CYIECTBOBAHNE U €JMHCTBEHHOCTh MITKOTO DEIeHUs JJIsl KJIACCa HEaBTOHOM-
HBIX TaPabOJMIECKUX CMEIIaHHBIX CTOXAaCTUYeCKuX AudPepeHIHaAIbHBIX YPABHEHUE B YaCTHBIX IIPO-
H3BOIHBIX, KOTOPEIE OIpEAeNeHbl Ha OrPAHMYEHHOM OTKPHITOM moamuoxkectse D C RY u comepskar
crangaprroe n apobuoe L2(D)-3maunsie 6poyHoBCKHE qBErKeHus. [Ipeamonaraercs, 9To K0sduImen-
ThI — OJHOPOJIHBIE U JINIIIUIIEBBIE, a KO3hpdunuerT npu ApoOGHOM OGPOYHOBCKOM IBUXKEHUHU — aUHHAS
GyHKIMS.



