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ABSTRACT. An estimate of the order of approximation in the central limit theorem for strictly sta-
tionary associated random variables with finite moments of order ¢ > 2 is obtained. A moderate
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of approximation obtained here is an improvement over the corresponding result in Wood [12].
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1. INTRODUCTION

A set of random variables (rvs) {X1, Xs,..., Xy} is said to be associated if for each
pair of coordinate-wise nondecreasing functions f, ¢ : RF — R

COV(f(Xl,X27 .. 7Xk)7g(X17X25 v an)) Z 0

whenever the covariance exists.

A sequence {X,,} of rvs is associated if for every n € N the family X7, Xs,..., X, is
associated.

In this paper we consider a strictly stationary sequence of centered square integrable
associated rvs {X,,}. Central limit theorem (CLT) for {X,,} was proved by Newman [7]
and a Berry—Esséen type theorem giving an estimate of the order of approximation in
the CLT was proved by Wood [12]. In the case of finite third absolute moment E|X;[3
Wood’s result gives an estimate of the order O(n~'/%). Birkel [1] obtained a rate of the
order O(n~1/2 log? n) under the strong additional assumption that the Cox—Grimmett
coefficients u(n) decrease exponentially. Birkel also provided an interesting example to
show the reasonableness of the assumptions to obtain the above order of approximation.
In that example he showed that the above rate cannot be obtained if u(n) decreases only
as a power. Thus there is a huge gap between the results of Wood and Birkel. In a
recent paper Cagin et al. [2] obtained another estimate of the order of approximation in
the CLT for associated rvs and also obtained a moderate deviation type result. However
their estimate in the case of finite third absolute moment E|X;|? is quite complicated.

Large deviation probability and moderate deviation probability investigations received
much attention due to their importance in statistical inference and applied probability.
We refer to monographs by Varadhan [10], Dembo and Zeitouni [3] and Hollander [5]
and recent papers by Wang [11] and Cagin et al. [2] for other references. These investi-
gations are also useful in the construction of certain counter examples (see, for example,
Tikhomirov [9] and Birkel [1]).

We give an estimate of the order of approximation in the CLT which is a refined version
of the Theorem 4.2 in Cagin et al. [2] and also prove the corresponding moderate devi-
ation result. In the case of X,, with finite third absolute moment, when Cox-Grimmett
coefficients u(n) are of order n®, the order of approximation in the CLT is proved to go
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to zero as n=3/8 as & — co. The main steps in the proof are the classical decomposition
of the partial sum S, = 377, X into blocks (of size p, = [n'1=%],0 < a < 1), coupling
them (see Section 2) with the blocks variables with the same distributions but indepen-
dent and use the inequality due to Newman [7]. Our approach is similar to that in Cagin
et al. However the estimate of the order of approximation we obtain does not depend on
the value of «. The refinement is in terms of the assumptions, bound and simplification
of the steps. This helps us to get a moderate deviation type result too under assumptions
milder than those in Cagin et al. [2] and also get an order of approximation in the CLT
which is an improvement over the corresponding result in Wood [12].

The paper is organized as follows. In Section 2 we introduce notation and give some
lemmas. In Section 3 we shall have a set of propositions that will be used in later
sections. Order of approximation in the CLT is investigated in Section 4. Finally a
moderate deviation type result is discussed in Section 5.

2. NOTATION

Let {X,} be a strictly stationary sequence of centered square integrable associated
rvs. Set E(X7) = o, ¢; = Cov(X1,Xi145), Sn = X/, Xj, ES, = s;, and 0® =
=02+ 22;‘;1 c¢j > 0. We assume that Z;}il ¢j < 0o. Then (see Theorem 4.1, p. 104,
Oliveira [7])

Sn

oy/n

B 7, ~ N(0,1) (2.1)

where N(0, 1) denotes the standard normal distribution. The standard proof of this result
involves writing S, as the sum of blocks of fixed size, approximating the distribution of
Sy by the distribution of corresponding sum of coupling block rvs (to be defined shortly)
and appealing to the CLT for the coupling block rvs. We need more notation to explain
this. Define the initial blocks
Jpn
Yin= >  Xi j=12,...my,
i=(—1)pn+1

and

n
Ym"—i-l,n = Z Xi

1=Mppn+1

where m,, = [n/py], pn < n/2 and [r| denotes the largest integer not exceeding r. Clearly

Mn

Sp = ZYJ,TL + Yo, 41,0

j=1
We note that Y ,, j = 1,2,...,m, are identically distributed. Further n — m,p, does
not exceed p,. We next define independent coupling blocks Y . 0=12,...,mp, where
Y, 2 Yjn. Note that since the X}, are strictly stationary, the rvs Y*, are identically
distributed.

Set p, = [n'7%] where 0 < < 1.

In what follows limits are taken as n — oo and statements hold for sufficiently large
values of n. We introduce the following assumptions on the covariances c¢; and moments
of in
Assumption A;: E|Xj|? < oo for some ¢ > 2.

2
Assumption A,: ‘ngz - 1‘ = O(n~?) for some 0 > 0 where s2 = ES2.

Assumption Az: u(n) =350 ¢; < Cin~®, where § > 0.

j=n
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Remark 2.1. (i) If k, — oo such that % — 0 then the assumption As implies
52 sy —
no? T lckg2 = O(kne)

(ii) By the assumption that Z ¢; < oo and the fact that o2 ?‘ =2u(n)+ 2 Z Jc;
i=1 =
it follows that if the assumption As holds for some 6 > 0 then the assurjnptlon
As holds for & = 0 and conversely.
(iii) Under the assumption A; there exist positive constants A and B such that for
all the positive integers n, A n'/? < s, < Bn'/? and A n?/? < E|S,|7 < B n?/2.
(see (2.16) in Birkel [1]).

Here and elsewhere C4y,C5,... are positive constants independent of n. Further
M1,Ms2, ... are constants with absolute values < 1. The following result is known.

Lemma 2.2 (Newman’s inequality [7]). Suppose Uy, Us,...,U, are associated rvs with
finite variances. Then for any real numbers t1,ts, ..., t,

n

n
E(expi Sty Uf) — T E(exp™ ") < > tallty] Cov(U;, Uy).
j=1 i,j=1,j>i
Remark 2.3. If {X,,} is a sequence of associated rvs, the block rvs Y1, Y2, ..., Yo
are associated. Further the characteristic functions satisfy

My

E(ei S Y W) H E( it; Yffn) = H E(e's¥om) (2.2)
j=1

. D
3 * * 2V,
because }/j,n are mdependent and ij,n }/j,n

Before we close this section we give a well known result concerning the expansion of a
characteristic function in terms of its moments. Let f be the characteristic function cor-
responding to a distribution function F and let m®) = [ 2¥dF(z) and u(™ = [ |z|"df (),
k=0,1,...,7 > 0. In the following Lemma we quote from the differentiability properties
discussed on page 212, Loéve [6] the portion that is relevant for our purpose.

Lemma 2.4. If u»*%) < oo for a & >0, then for every k <n
F® (u) = ikJ e gk dF(z), wuER,

and %) is continuous and bounded by u*); moreover

n—1 N
flu) = Zm(k)% +pn(u), ueR,
k=0
where
1 n—1 S \n n
Pn(u) = u™ L <1(n__t)1)' £ (tu) dt = m(”)% +o(u")=¢ u(n)%
with | <1, and if 0 < & < 1, then
|u|n+6

(14+8)(24+68)---(n+96)

pn(u) = (2.3)

mm ) (du)" Loty (n+8)
n
with || < 1.

In the next section we use the notation T} = a,n? and Ty = b,n? where a,, = (logn)®
and b,, = (logn)® with a < b < 0.
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3. SOME PRELIMINARY RESULTS

In this section we discuss some preliminary results that will be used later and these are
of independent interest too. The following result notes that while dealing with asymptotic
properties of S, /(0sy,) it is adequate to consider the sum Z;nz"l Yin.

Proposition 3.1. Suppose the assumption Ay holds. Then for , =n=3%/3 <« <1
P([Yo, 41| > Hnsn) < Con™9%/8,
To see this note that because of stationarity of {X,,}

E|Sn_mnpn‘q
P(|Y7nn+17n| > }J.nsn) < q q .
HUnSn

The result follows now from Remark 2.1 and the assumption Aj;.

Remark 3.2. This is an improvement of the result in Step 3 of the Theorem 3.1 in Cagin
et al. [2] in view of their restrictions on « and q.

Next we approximate the distribution of the sum of the original rvs by that of the
coupling blocks; i.e., the distribution of Z 1 Yjn by that of Zm” Y/,. The method
of approximation is based on the celebrated Berry—Esséen 1nequahty and Newman’s
inequality for associated rvs.

Proposition 3.3. Suppose the assumptions A1 and As hold. Then for © > 0 given in Ay

My mMn

sup|P Yin<axs, | —P n S s <
aplp(Svie zon ) = (v 2o

2 20 0 1 20
n < v ey
= ane—“(1+e)1(3+29 s s 1+e> +C’4b”n“/21(oc< 3+29>‘

Proof. By the Berry—Esséen inequality and (2.2) we have

iggP ZY <zs, | —P Z n < T8y, <

= ity T e ity Ce
< 05 —_ E(6 sn =1 g,n) - H E(@ Sn Jv") dt+ —_— =

o |t T,

Ts 1 o mn Mp C
—C = E( ih ¥; YM) E( n) dt + =5 3.1
5f_T2 ] e H e + T (3.1)

By the Lemma 2.2 with U; =Y, j =1,2,...,m,, we have

Mn

E(eis% i va”) - H E(eiﬁyﬂ\")
j=1

IN

t m
= Y. Cov(Yjn, Yin) =
" G k=1,7>k

2 2
_ Umapn | Sinp, _ Spa
2
2s2

My Pn Pn )
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In view of the Remark 2.1 we then have from (3.1)

My, My, C7 T C6
sup|P ZYJ" <uzs, | —P ZYJ*H <wsp || < —¢ t|dt + — =
TER 1 — ’ pn —T5 T2
j= j=
C; T? O
= 7 9 n + 76.
pn T2

Recalling that p, = [n'1=%] , Ty = b, n*/? we note that the right side above goes to zero
only for o« < 8/(1+ 0). Further (1 — )0 < 3x/2 if and only if « > 20/(3 4 26). Hence

My, Mn
sup|P Zan <uzs,| —P ZYJ*" <zs, || <
j=1 Jj=1

z€R
1 26 b? 26 0
< — T —_— n I < — .
< Co ez (o‘ <37 29) + O S iwo—a (3 20 X1y e)
This completes the proof of the Proposition 3.3. (]

Remark 3.4. In the proof of the Theorem 4.1 in Cagin et al. [2] the above bound was
obtained separately for the odd numbered blocks and the even numbered blocks. Further,
the bound obtained above goes to zero faster than their corresponding bound.

Our next result is concerned with the approximation of the characteristic function
of the sum of coupling blocks by the characteristic function of an appropriate normal
variable.

Proposition 3.5. Denote @;(t) = E(e”yfm). Then under the assumptions A1 and As,
for |t| < T

Sn

My, mpt2s2 q/2 my t2s2
t _ ”252 Pn mn|t|qpn _ ”252 Pn
pjl—|—e 7 < Cyg ———e 7
5 Sn
Jj=1

for 2 < q < 3. The same inequality holds with ¢ = 3 in the case ¢ > 3.

Proof. Let us first consider the case 2 < ¢ < 3. We now apply the Lemma 2.4 to the
characteristic function of Y; ,, and use, in particular, the expansion at (2.3) taking n = 2,

and ¢ = 2+ 0 < 3. Note that since Y*, Zy,

Jim
252 t]7
(¢ —1—_Pn 4ol T EFlY. |9
(p]( /571) 28721 + C q(q—l)S% | ]1n| I
i.e.,
252 t|e
@;(t/sn) =1~ TZ" + m %E|Y},n|q~
sz Sn

For |t| < T} = a,n*/?, with a, = (logn)*, a <0,

2 2
" sp,
2
n

< Chp ai — 0.

Further
|t]7

TE|Yj,n|q < Cll a% — 0.
Sn
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Hence |¢@;(t/s,) — 1| — 0 and therefore @;(t/sy) is bounded away from 0 for |t| < T} so
that we can take its logarithm. Then for each j we have by the Lemma 2.4

2 2 2 2
08 03(t/5,) = ~ 52" +m's—'E|Yn|Q+n Sl m el =
B AL

Then using the fact |e* — 1| < || e|$| we get

2.2 2.2
i _mn i ;pw M |[t|9E| V|0 e n
[[ot/sa) —e 2% | <e = Ml =Rinl g
2 sz

Note that [£|772E[Y; |7 s, 9~ 5,2 < al™? — 0 so that

my || E|Y1 0] 5,7 < (1/4) mntzsin 572

n

and hence
Mn mn t25121 My, t2 52
_ n tleElY; . |7 _ Pn
H ©;(t/sn) —e = | < Ciy M [t]7 E[Y .| P (3.2)

n

for |¢t| < Ty. We shall prove that the relation (3.2) holds for 77 < |t| < Ty also.
Let W;, j =1,2,...,m, be rvs such that for each j, W; is independent of Y/, and
distributed as V", . Then

E(W) — ) =0, EOW, — ¥;,)? =22 and E[W; — Y},,|7 < 29[}, |"
Further

[@;(t/sn)” = E(e L W-Y), >)

1252 24[|9E|Y7 |4
= 1 - 2Pn +n4 q Lt
Sy Sn

Note that for |t| < Ty = b, n®/? by the Lemma 2.2,
29[t 7EY, |1 t2sp, { T r_z

N4 7 13 8% /2
1252 pa—2 3252
< Oy P 5 n < 2p ,
since b, — 0. Hence
1252
(t/sn)|? <1 — —2=.
| (t/sn)l 152

Since tQSf)ns;Q — 0, using the fact 1 —u < e™" for u > 0 we have

|(pj(t/sn)\2 < exp(—(1/4)t2312)n 5;2).
Thus for |t| < T3

mn 12 ?)n mn t2s;2)n
H ©;(t/sn) — 2T <2 E (3.3)

Now to complete the proof of the claim that (3.2) also holds for T} < |t| < T, , consider

mp|t|9E|YF, |9 m,TIES2 19/2
12M > 012"1[8—q?%] > C15n%al — oo.
n n
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Hence for n large
i tEIYE
le———g—— > 2,
Sn

and the claim that (3.2) holds for T} < |t| < T» also follows from (3.3).

The result of the Proposition then follows from (3.2) and the Remark 2.1 in the case
2<q<3.

In the case ¢ > 3 we can expand log ¢ ;(t/s,) using the third moment also and similar
calculations lead to the same bound as above and hence the Proposition holds true for
q>3. O

Remark 3.6. The above proof is similar to that in the Theorem 4.1 in Cagin et al. [2]
but has greater clarity. Further the final bound is a bit different because we use different
values of T's.

Corollary 3.7. Suppose the assumptions A1 and As hold. Then for the choice of « in
the definition of py,

T 1 My ¢ _mn t%%n 1
— S — — 25% < -
j_Tz || 31;[1 i (sn) ‘ dt < Cue ne(a—2)/2

in the case 2 < q < 3. Further the above inequality holds with ¢ = 3 giving the bound
Cien~%2 in the case q > 3.

Note that m,, |t\qp%/2 579 ~ |t|]9 n=*@=2)/2 Here we use the fact that the normal
distribution has finite moments.

The final result of this section is to approximate the normal distribution with the
characteristic function exp(—(1/2) mut*s? s,?) by the standard normal distribution.

Proposition 3.8. Suppose the assumptions A; and As hold. Let Gp(z) be the distri-

2.2
bution function with the characteristic function exp(—m";s;”") and ® be the standard
normal distribution function. Then

1 20 1 20
o1 6 (2) =000 < Cor i 1o 155 ) + Con it 1> 1 )

Proof. By the Berry—Esséen inequality

Ts 1
sup|G(z) — B(x)| < Cro f 1
rER 7T2 |t|

Using again the fact that [e® — 1| < |alel®! and recalling that m,, s2 s;2 — 1 we have

pn
for large n
My 242 2 R "Lns2n
o | < o2 | T[S ) |7 57%?71‘
It] - 2 2
2
MnSp t| _e
= 3o 3.4
| s2 2 (3.4)
Since the normal distribution has all the moments finite
My, 1
sup |G(z) — ®(x)| < Chg |4 CQOT <
z€R 2 D
C C 1
< 2100500 + C20 «/2p
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Note that n=(1=®9 — 0 faster than b,'n~*/2 for o < 20/(1 + 20) while for
o >20/(1 +20), b, 'n=*/? — 0 faster than n~(1~%® giving us the stated bound. O

Remark 3.9. The bound obtained here uses a better bound in (3.4) than the bound used
in the line 8 of the page 291 in Cagin et al. [2].

4. ORDER OF APPROXIMATION IN THE CLT

We now obtain an estimate of the order of approximation in the CLT which is a refined
version of the result in Cagin et al. [2]. The refinement is in terms of the assumptions,
bound and simplification of the steps. It also provides a better bound than the bound
of order n=1/% obtained from Wood’s result under the assumption of finiteness of third
absolute moments. See Corollary 4.14 in Oliveira [8].

Theorem 4.1. Let the assumptions A1 and As hold. Then

sup |P(Sp < zsp,) — @(z)| < Can |0~ 6q(qu;g)I(Z <q<8/3) +
TeR

q0 36
+n @m0 [(8/3 < g < 3)+ n 10 [(g > 3)}

In particular when ¢ = 3 the bound becomes Caon ™~ TIEe

—3x/8

Proof. Recall w,, = n . Then by the Proposition 3.1, after making elementary ad-

justments, we get

sup |P(S,, < zs,) — ®(z)| < sup|P ZY <asy, | —P(z)| +
z€R r€R j=1

+ P([Yim,+1,n| > Hnsn) + 2sup [@(z + w,) — @(2)] <
z€R

1 1
< ilé§ P z;Y] n < xsp | —P(x) —l—ngnq(x/g + 024n3a/8' (4.1)
J

Further by the Berry—Esséen inequality

Mo, My,

sup|P Yin <as, | —®(x)| <sup|P Yn<xzs, | —P n < TS +
sl ($331n 2 on ) <000 <l S 200 ) (8505, <o

+ sup|P n S xsy | —P(2)| <

< sup|P Yin<xs, | —P n S TS +
sup Zm " Z "

4 Oy f ‘E(e e Dy Y;n) _
T |t|

1
< sup|P Zanngn - P Z n < TSy, +Cg5([1+[2)+C26?, (4.2)
2

z€R
T, o |mn " _ mnt?s?
b [ e (1)
—Ty |t‘]];[1 J Sn

where
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T, q

.

=T |t|

The bounds for the expressions on the right side of (4.1) and (4.2) are obtained from the

Propositions 3.1, 3.3, 3.8, Corollary 3.7 and the value of T5.
To obtain the final bound we compare

and

mntQS%n

e TR —e

—t*/2| gt

20 0
R, = —qu/8 Ry = b2 (x(l—l—@)—QI <
L= 2= onn 5+r20 %110/

20
Ry=0,"n"*?I{0<a<——), Ry=n3/
T SSTge) T

- 20
Rs n <0<oc< 3 29)’

Rg = n(lo‘)el< <a< 1) and Ry =n-*a-2)/2

1+26

for various values of & and g. We consider the cases 2 < ¢ < 3 and g > 3 separately.

Let us say ¢, > 0 dominates over d,, if d" — 0 as n — oo. The bound contains terms
some of which dominate over others. In the case 2 < ¢ < 3 the domination depends
on the value of ¢ in the ranges 2 < ¢ < 8/3 and 8/3 < ¢ < 3 and the choice of o.
Let us first consider the case 2 < ¢ < 8/3. Then, after some tedious but elementary
analysis, we find that R; dominates over all the other R; for the value of o« in the

intervals (O and ( i} while Ry dominates over all the other R; for the

20
’ q+20 140 g—2+20

20 0
q+20° 1+0

20
Thus for 2 < ¢ < 8/3 we get the bound

C! L I[0<a< 20 U 0 << 20 +
2T (a=2)/2 =~ q+20 1+6 ~q—2+20
b2 20 0 1 20
+ Cag o= “(1+9)I(q+26<a§1+9>+029 o(i—w) (q2+26<06<1).

This can be simplified further. Since n=*(4=2)/2 decreases as « increases the best rate

contributed by the first term is for the maximum value of «. So we compare for & = qige

values of o € and Re dominates over all the other R; for the values of

(a=2)
and —5 55 and get the best rate n~ St On the other hand for the same value of

q— 2+2
0(a=2)
q, the second term gives the rate b2 n~ i , which is dominated by the previously

0(g—2)
obtained rate because 62 — 0 while the third term gives the rate n~ «=2¥20 which too is
8(q—2) 0(q—2)
dominated by n~ S . Thus for 2 < ¢ < 8/3 we get the best rate n™ e
In the case 8/3 < ¢ < 3 the bound for the expression on the right side of (4.1) turns

out to be

b 80 0 1 86
ngne"‘(He)I(Q+8+86 ses 1+e> *Coo e oc)I<q+89 <“<1> *

to—1((0cac—0 Yu( a8
0 gars =~ q+8+30 1+6 q+80))
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0
Thus in the case 8/3 < ¢ < 3 the best rate is n~ 574759 . In the case g > 3 the bound for
the expression on the right side of (4.1) turns out to be

C—IIO<<86U9<<89+
32 a8 *= 11+ 30 1+0 ~%>35g0

2 86 0 1 86
n
< —_ | —— .
+029n6—cx(1+6) I<11—|—89 << 1+9) +C30n(1—oc)9 <3+89 << 1>

Thus in the case ¢ > 3 the best rate is C33 n™ T¥50
The best bound turns out to be

30
Cog n™~ 11480,

This completes the proof of the Theorem 4.1. O

0(a—2)

Remark 4.2. 1. In the border case of ¢ = 8/3 both the bounds n™ «+2¢ and n~ TrETsD
coincide.

2. The bound in the Theorem 4.1 is independent of «. However in Cagin et al. [2] the
bound depends on «.

3. For ¢ = 3 the rate is nillsfse, which as @ — oo, goes to n~3/8 and this is far better
rate than the rate n~'/® given in Oliveira’s book [8].

4. As is to be expected the rate of convergence in the CLT improves as ¢ increases in
the interval (2, 3). Further as in the case of independent and identically distributed rvs
the rate remains the same with finiteness of the moments of order > 3.

5. If w, is chosen as e ** 0 < p < 1/2 instead of the above choice of w, with
u = 3/8, the calculations become more complicated and we have to consider three cases;
viz, 2 < g < 1/p, (1/n) < g < (2u/(1 —2u)) and (2p/(1 — 2u)) < ¢ < 3 instead of
2 < g<8/3and 8/3 < g < 3 when g < 3. Further, in each case the interval (0,1) to
which « belongs has to be split into subintervals depending on the value of u. The best

0
rate turns out to be n” 7179 for any choice of ¢ € [(2n/(1 — 2u)), 3]. Interestingly the
above interval collapses to the single point set consisting of 3 when p = 3/8.
5. A MODERATE DEVIATION RESULT

Cagin et al. [2] recently obtained a moderate deviation result for associated rvs under
strong conditions. Before we state and prove the moderate deviation result, we shall
recall a result of Frolov [4] and apply it to the coupling block rvs introduced earlier.

Theorem 5.1 (Theorem 1.1 in Frolov [4]). Let {Yin, bk = 1,2,...,ky,n = 1,2,...}
be an array of column-wise independent centered rvs with EY;?, = 03, < co. Denote

T, = Z]le Yin and B, = Z]Z"Zl sz, Assume for some q > 2, E[Y]fmlI(Yk’n > 0)] =
= Br,n <00, By, — o0 and set

k"l
Mn = Z Bk,na Ln = W?
k=1 n

kn
An(t,s,8) = Bi 3 E(Y,jnf(—oo < Yin < —6\/Bn/s)).
" k=1

Assume that L,, — 0, and that for each & > 0, A, (z*, 2°,8) — 0. If x,, — oo such that
72— 2log(1/L,) — (g — 1) loglog(1/L,) — —oo, (5.1)

then
P(T, < xpspn) = (1 —@(zp))(1+ 0(1)).
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Let the assumption A; hold for the original rvs X,,. Recall that the block rvs Yo
k=1,2,...,m, are independent and identically distributed for each n with E|Y} ,|? < co
where ¢ > 2. With Yy ,, = Y)7,, kn = my,

B, =m,, sf,n ~no?, M, <m, ElY; |7~ pot=-ee/2 - px2-0/2 4

as n — o0o. Further
ot

Ap(zt,2°,8) < Py

E(Y?2,1(Dn)), (5.2)

. 5 . D .. . . .
where D,, is the event |V | > 8y/no/z° since Yy, = Yjn. By the Hélder’s inequality
and finiteness of moment of order ¢ for Yy ,,, we get

E(V2,1(D.) < (E(2,1(D)" 2)2/q(E([(Dn))q/<qu)><‘*2>/q _

. E[Yy 220 172
< (EY3,0[)9(P(D,)) =2/ Spn( i |

which results in the following bound from (5.2)

a/2,.5q )(q—2)/q

A (2, 25,8) < w4< Pn <

8909nd/2
5q—6

T

< —_—
= 034na(q—2>/2

If 2 = 2, ~ (logn)* and k > 0 then A, (2% 25, 8) — 0 as n — oo, so that all the

conditions of the Theorem 5.1 hold and we then get the following moderate deviation
result for the coupling block rvs Yo,

Theorem 5.2. If {X,,} is a sequence of centered associate rvs satisfying the assumption
Ay then for the coupling block rvs Y},

P Zij*n > Xnsn | = (1= ®(x,))(1+0(1))

whenever x,, satisfies
72
limsup —— = A < «(q — 2).
n—oo logn
Remark 5.3. In the Theorem 4.2 of Cagin et al. [2] the Assumption (B2) states the
condition differently but a close look at the proof reveals that they indeed use

limsup 22 (logn)™* < 1

n—oo

which is similar to our assumption.

Corollary 5.4. Recall w, = n=3%/8, If z,, satisfies the relation (5.1) then so will x, £,
and we have

P iy;;n > (20 £ tn)sn | = (1= ®(2n))(1+ o(1))

because W, = o(1 — ®(x,)). Here we use the fact |®(x + €) — ®(z)| < €.

Now we state and prove the moderate deviation result for S,,.
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Theorem 5.5. Let {X,,} be a sequence of centered stationary associated rvs satisfying

the assumptions Ay and A2 Assume further

2
(i) limsup,,_, . 7 e = A < =
(ii) © in the assumption Ag is such that

0>1+A
Then
P(Sn > pn $n) = (1 — @(z,))(1 + 0o(1)).
Proof. Choose « in the definition of p,, such that
1 20 — A

2 < %*<3%912

This is possible because of the assumption at (5.3). Let €, = n~¢ where

qx — A

0<ex<
€ or

(5.3)

(5.4)

(5.5)

(5.6)

This is possible because A < (¢ — 2)/2 and « > 1/2. The stated result follows from the

Corollary 5.4 and the assumption (i) above if we prove

(a) P(Sn > zpn sn) — Zij > (xpt€n) sy || =01 —P(z,))

Jj=1

mMn Mn

(b) > Yin > (@ £ €n) sn Z > (20 £ €n) sn

Jj=1

To prove (a) recall from the Proposition 3.1

=o(1l — ®(xy)).

P(Sy, > 2 $n) — P Zan > (zp, £ €n) 8n || S PV, 41,0 > €n sn) <

Jj=1
pil” (a—2¢)/2
—q (x—2¢
< (35 W < C3n 1 .

We get the result (a) if
Vlogn

a2~z Y

which follows from (5.5).
Next to prove (b) recall from the Proposition 3.3

ZYJ"> (xn, L €n) Z >(xpten)sn || <

j=1

b2 20 6 1 20
<G nG“(1+9)I<3—|—29 s 1+e> +C bnna/2l<°‘< 3+29>' (58)

The first term on the right side above is o(1—®(x,,)) because (5.5) implies 0—o(14-6) > 3.
The second term on the right side of (5.8) is o(1 — ®(x,,)) because A < «. This completes

the proof of the theorem.

]
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Remark 5.6. Cagin et al. [2] proved the Theorem 5.1 making complicated assumptions
of the type A, as well as A3 in their paper along with the conditions that 8 > 4 and
q > 3. Further our proof does not require dealing with odd numbered and even numbered
blocks separately nor does it need introduction of Gaussian centered variables similar to
odd and even block sums.

Acknowledgment The author thanks the referee for making suggestions leading to
improved readability and Professor B. L. S. Prakasa Rao for bringing the paper by Cagin
et al. [2] to his notice.
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MOPSAJOK ATIPOKCUMAIIII B IIEHTPAJIBHIN TPAHUYHIN TEOPEMI
JIJISI ACOIIIMOBAHUX BUIIAJKOBUX BEJUYUH TA PE3VJILTAT
PO ITOMIPHI BIJXWJIEHHS

M. CPII'API

AHoTAIlsl. OnepKaHO ONMIHKY MOPSAKY AIPOKCHMAIl B MEHTPAJbHIN IDAaHUYHIA TeopeMi sl CTpPOro
CTAIiOHAPHUX ACONiHOBAHUX BHUIAIKOBHX BEJIHYIHH 3] CKIHYCHHHMMH MOMEHTAMH HOPAAKY ¢ > 2. Takox
OTPUMAHO PEe3yJIbTAT PO MOMIpHI BiaxuieHHsA. YTOUHEHO ocTaHHi pedysabrary i3 [2]. Oxep:kanuil mopsi-
[IOK aIpOKCHMAaNil € BAOCKOHAIEHHSIM BiANOBIAHOTO pesynbrary i3 [12].

MOPAJOK ANIIPOKCUMAIINM B NEHTPAJILHOI NPEJEJIHbHOM
TEOPEME /1JISI ACCOIIMUPOBAHHBIX CJIVUAMHBIX BEJINYNH
1 PE3VJIBTAT OB YMEPEHHBIX VKJIOHEHUSX

M. CPUXAPI

AnHoTAanus. Iloxydena oumeHka mOpsaka ANOPOKCHMANWK B IEHTPAJILHON IpenebHON TeopeMe mjs
CTPOroO CTAIIMOHAPHBIX ACCONUAPOBAHHBIX CIyJYalHBIX BeJINIHNH C KOHEYHBIME MOMEHTAMH HOPAOKa q¢ > 2.
Takzke IOIy9eH Pe3yabTaT 06 yMEPEHHBIX yKJIOHEHHSX. Y TOYHEHBl HeJaBHUE pe3ynbraTsl u3 [2]. Ilomy-
YEHHBIH MOPSIO0K AINPOKCUMAIMH SIBJIAETCS YIIyIlleHneM COOTBETCTBYIOINEro pesyapraTa u3 [12].



