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WAVELET ANALYSIS OF A MULTIFRACTIONAL PROCESS

IN AN ARBITRARY WIENER CHAOS
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Abstract. The well-known multifractional Brownian motion (mBm) is the paradigmatic example of

a continuous Gaussian process with non-stationary increments whose local regularity changes from

point to point. In this article, using a wavelet approach, we construct a natural extension of mBm
which belongs to a homogeneous Wiener chaos of an arbitrary order. Then, we study its global and

local behavior.
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1. Introduction

A fractional Brownian motion (fBm) of an arbitrary Hurst parameter H ∈ (0, 1),
denoted by {BH(t) : t ∈ R}, is defined, up to a multiplicative constant, as the unique (in
distribution) Gaussian process with stationary increments which is globally self-similar
of order H. Recall that a stochastic process {F (t) : t ∈ R} is said to have stationary
increments if, for any fixed point t0 ∈ R, one has:{

F (t0 + u)− F (t0) : u ∈ R
} law

=
{
F (u)− F (0) : u ∈ R

}
; (1.1)

and it is said to be globally self-similar of order H if, for each fixed positive real number
ν, one has: {

ν−HF (νt) : t ∈ R
} law

=
{
F (t) : t ∈ R

}
. (1.2)

The representation of an fBm as a well-balanced moving average is given, for every t ∈ R,
by the Wiener integral over R:

BH(t) =

∫

R

[
|t− s|H−1/2 − |s|H−1/2

]
dB(s), (1.3)

with the convention that |t − s|0 − |s|0 = log |t − s| − log |s|. FBm was first introduced
by Kolmogorov in 1940 as a way for generating Gaussian spirals in Hilbert spaces [14].
Later, in 1968, the well-known article [16] by Mandelbrot and Van Ness emphasised
its importance as a model in several areas of application: hydrology, geology, finance,
and so on. Since then many applied and theoretical aspects of this stochastic process
have been extensively explored in the literature and, among many other things, its path
behavior has been well understood. Despite its importance in modeling, fBm does not
always succeed in giving a sufficiently reliable description of real-life signals. Indeed, fBm
suffers from two main limitations:

(a) its Gaussian character,
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(b) local roughness of its paths remains everywhere the same; more precisely, their
local and pointwise Hölder exponents are everywhere equal to the Hurst param-
eter H.

In order to overcome the limitation (b) of fBm, the so-called multifractional Brownian
motion (mBm) was introduced, about twenty years ago, independently by Benassi, Jaf-
fard and Roux [5] and by Lévy Véhel and Peltier [20]. The latter continuous Gaussian
process with non-stationary increments can be obtained by substituting the constant
Hurst parameter H in (1.3) by a deterministic continuous function H(·) depending on t
and with values in the open interval (0, 1). Nowadays mBm has become a quite useful
model in the fields of financial modeling and signal processing (see for instance [6–8]).

In order to overcome the limitations (a) and (b) together, the extensions of mBm
whose Hurst parameter is a stochastic process or more generally a sequence of stochastic
processes were introduced in [2, 3]. Other extensions of mBm to frames of heavy-tailed
stable distributions were proposed in [10, 22, 23]. More recently, [21] constructed a mul-
tifractional generalized Rosenblatt process belonging to the second order homogeneous
Wiener chaos. In our present article, we construct a multifractional process, denoted by
{Z(t) : t ∈ R}, which belongs to a homogeneous Wiener chaos of an arbitrary integer
order d ≥ 2. The latter multifractional process is not a generalization of the Rosenblatt
process but of a process {YH(t) : t ∈ R} consisting in a very natural chaotic extension
of the fBm in (1.3). Namely, it is defined, for all t ∈ R, through the multiple Wiener
integral on Rd:

YH(t) =

∫

Rd

[
‖t∗ − x‖H−

d
2

2 − ‖x‖H−
d
2

2

]
dBx1 . . . dBxd

, (1.4)

where t∗ = (t, . . . , t) ∈ Rd and ‖ · ‖2 denotes the Euclidian norm over Rd. A class
of chaotic self-similar processes with stationary increments, which implicitly includes
{YH(t) : t ∈ R}, had been first introduced and investigated in [18]. Long time later,
{YH(t) : t ∈ R} was explicitly introduced and studied in its own right in [1] through
wavelet methods inspired by the ones in [2, 3].

Recall that a centred non-Gaussian square integrable real-valued random variable, on
the underlying probability space (Ω,F ,P), belongs to the homogeneous Wiener chaos
of an arbitrary integer order d ≥ 2 when it can be represented by a multiple Wiener
integral over Rd. We always denote by Id(·) this stochastic integral, and use the classical

convention that, for every f ∈ L2(Rd), one has Id(f) = Id(f̃); the function f̃ being the
symmetrization of f , defined, for all (t1, . . . , td) ∈ Rd, as

f̃(t1, . . . , td) =
1

d!

∑
σ∈Sd

f
(
tσ(1), . . . , tσ(d)

)
,

where Sd refers to the set of all permutations of {1, . . . , d} (observe that d! is the cardi-
nality of Sd). A very important property of multiple Wiener integrals, which somehow
can be viewed as an isometry property, is that, for all function f ∈ L2(Rd), one has

E
(
|Id(f)|2

)
= d! ‖f̃‖2L2(Rd) ≤ d! ‖f‖2L2(Rd) . (1.5)

Before ending these very short recalls on multiple Wiener integrals, it is worth mentioning
that two well-known books on them and related topics are [13, 19].

Roughly speaking, we define Z = {Z(t) : t ∈ R}, the multifractional generalization
of YH = {YH(t) : t ∈ R}, as Z(t) = YH(t)(t), for all t ∈ R, where H(·) is an arbitrary
deterministic continuous function over R with values in the open interval (0, 1). More
precisely, let us consider the chaotic stochastic field X = {X(u, v) : (u, v) ∈ R× (0, 1)},
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such that, for every (u, v) ∈ R× (0, 1), one has

X(u, v) =

∫

Rd

[
‖u∗ − x‖v−

d
2

2 − ‖x‖v−
d
2

2

]
dBx1

. . . dBxd
. (1.6)

We mention in passing that, for each fixed v ∈ (0, 1), the stochastic processes X(·, v) =
= {X(u, v) : u ∈ R} and Yv = {Yv(u) : u ∈ R} have the same law. The multifractional
process Z = {Z(t) : t ∈ R} is defined, for all t ∈ R, as

Z(t) = X(t,H(t)) . (1.7)

By expanding, for each fixed (t,H) ∈ R× (0, 1), the kernel function

x 7→ ‖t∗ − x‖H−
d
2

2 − ‖x‖H−
d
2

2

in (1.4) into a Meyer wavelet basis of L2(Rd) (see e. g. [9, 15, 17]), a random series
representation for the chaotic fractional process {YH(t) : t ∈ R} has been constructed in
[1], which also has shown that this series is almost surely absolutely convergent, for each
fixed (t,H) ∈ R×(0, 1). The main goal of Section 2 of our article is to transpose these two
results into the setting of the chaotic stochastic field {X(u, v) : (u, v) ∈ R× (0, 1)}, and
more importantly to show that the random series representation of this field is almost
surely uniformly convergent in (u, v) on each compact subset of R× (0, 1). Then, thanks
to this nice representation, global and local behavior of {X(u, v) : (u, v) ∈ R × (0, 1)}
and {Z(t) : t ∈ R} are studied in Sections 3 and 4 of our article, by using a wavelet
methodology which is, to a certain extent, inspired by the one introduced in [2, 3].

2. Uniformly convergent random series representation

First, we need to introduce some additional notations. We denote by S(Rd) the
Schwartz class, that is the space of the infinitely differentiable complex-valued functions
over Rd which, as well as all their partial derivatives of any order, vanish at infinity faster
than any power function.

Let E = {0, 1}d \ {(0, . . . , 0)}. A Meyer wavelet basis of L2(Rd) is an orthonormal (or
Hilbertian) basis of L2(Rd) of the form:{

2
jd
2 ψ(ε)(2jx− k) : j ∈ Z,k ∈ Zd, ε ∈ E

}
; (2.1)

for the sake of convenience, one sets:

ψ
(ε)
j,k(x) = 2

jd
2 ψ(ε)(2jx− k). (2.2)

The 2d − 1 real-valued functions ψ(ε), ε ∈ E, which generate the basis are called the
d-variate Meyer mother wavelets. They can be expressed as tensor products of ψ0 and ψ1

which respectively denote a 1-variate Meyer father and mother wavelets. More precisely,
for each ε = (ε1, . . . , εd) ∈ E and x = (x1, . . . , xd) ∈ Rd, one has that:

ψ(ε)(x) =

d∏
l=1

ψεl(xl) . (2.3)

Let us emphasize that the 1-variate Meyer father and mother wavelets belong to S(R).
Moreover, their Fourier transforms F(ψ0) and F(ψ1) are infinitely differentiable com-
pactly supported functions satisfying: suppF(ψ0) ⊆ [− 4π

3 , 4π
3 ], suppF(ψ1) ⊆

{
ξ ∈ R :

2π
3 ≤ |ξ| ≤

8π
3

}
, and F(ψ0)(ξ) = 1, for all ξ ∈ [− 2π

3 , 2π
3 ]. Thus, in view of (2.3), the

d-variate Meyer mother wavelets ψ(ε), ε ∈ E, belong to S(Rd) and have infinitely differ-
entiable compactly supported Fourier transforms which vanish in a neighborhood of 0.
Using these nice properties of the d-variate Meyer mother wavelets, for each ε ∈ E, it
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can be shown (see [2, 3] for instance) that the real-valued function Ψε defined, for all
(u, v) ∈ Rd × [0, 1], as

Ψε(u, v) =

∫

Rd

‖u− s‖v−d/2
2 ψ(ε)(s)ds ,

is infinitely differentiable on Rd × (0, 1) and satisfies, as well as all its partial derivatives
of any order, the following very useful localization property:

∀ (n,p, q) ∈ Z+ × Zd
+ × Z+ ,

sup
{(
α+ ‖u‖2

)n ∣∣(∂p
u∂

q
vΨε)(u, v)

∣∣ : (u, v) ∈ Rd × (0, 1)
}
< +∞ , (2.4)

where α is an arbitrary positive fixed real number.
Before giving the random series representation of the field X derived from the Meyer

wavelet basis (2.1), let us state the following important lemma borrowed from [1].

Lemma 2.1. For each (j,k, ε) ∈ Z×Zd×E, let Id

(
ψ

(ε)
j,k

)
be the multiple Wiener integral

over Rd of the wavelet function defined in (2.2). That is, one has

Id

(
ψ

(ε)
j,k

)
=

∫

Rd

ψ
(ε)
j,k(x)dBx1

. . . dBxd
. (2.5)

Then, there exist an event Ω∗ of probability 1 and a finite positive random variable Cd

such that, for all ω ∈ Ω∗ and for each (j,k, ε) ∈ Z× Zd × E, one has∣∣∣Id(ψ(ε)
j,k

)
(ω)

∣∣∣ ≤ Cd(ω)
(

log(e + |j|+ ‖k‖1)
) d

2 , (2.6)

where ‖ · ‖1 denotes the 1-norm over Rd; that is, ‖k‖1 =
∑d

l=1 |kl|, the kl’s being the
coordinates of k.

The following proposition provides the random series representation of the field X
derived from the Meyer wavelet basis (2.1). The proposition has been obtained in [1]
with YH in place of X (see (1.4) and (1.6)).

Proposition 2.2. For each fixed (u, v,ω) ∈ R× (0, 1)× Ω∗, one has∑
j∈Z

∑
k∈Zd

∑
ε∈E

2−jv
∣∣∣(Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
(ω)

∣∣∣ < +∞ .

This means that the series of real numbers∑
j∈Z

∑
k∈Zd

∑
ε∈E

2−jv
(
Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
(ω)

is absolutely convergent, and consequently that it converges to a finite limit not depending
on the way the terms of the series are ordered. Moreover, for all fixed (u, v) ∈ R× (0, 1),
one has, almost surely,

X(u, v) =
∑
j∈Z

∑
k∈Zd

∑
ε∈E

2−jv
(
Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
. (2.7)

Remark 2.3. From now on and till the end of our article, the chaotic stochastic field
X = {X(u, v) : (u, v) ∈ R× (0, 1)} will be systematically identified with its modification∑

j∈Z

∑
k∈Zd

∑
ε∈E

2−jv
(
Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
: (u, v) ∈ R× (0, 1)

,

which has just been introduced in Proposition 2.2. Also, we will always assume that X
vanishes outside of Ω∗, the event of probability 1 introduced in Lemma 2.1. The low and
high frequency parts of X are the two chaotic stochastic fields, denoted respectively by
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X lf = {X lf (u, v) : (u, v) ∈ R× (0, 1)} and Xhf = {Xhf (u, v) : (u, v) ∈ R× (0, 1)}, which
vanish outside of Ω∗, and are defined, for every (u, v,ω) ∈ R× (0, 1)× Ω∗, as:

X lf (u, v,ω) =

−1∑
j=−∞

∑
k∈Zd

∑
ε∈E

2−jv
(
Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
(ω) (2.8)

and

Xhf (u, v,ω) =

+∞∑
j=0

∑
k∈Zd

∑
ε∈E

2−jv
(
Ψε(2ju∗ − k, v)−Ψε(−k, v)

)
Id

(
ψ

(ε)
j,k

)
(ω). (2.9)

One clearly has, for all (u, v,ω) ∈ R× (0, 1)× Ω, that

X(u, v,ω) = X lf (u, v,ω) + Xhf (u, v,ω). (2.10)

Recall that Ω is the underlying probability space.

Let us now state the main result of the present section.

Theorem 2.4. The random series in the right-hand side of (2.7) is, on the event Ω∗ of
probability 1, uniformly convergent in (u, v), on each compact subset of R× (0, 1).

The following lemma will play a major role in the proof of Theorem 2.4 and in other
important proofs in our article.

Lemma 2.5. For all fixed (p, q) ∈ Zd
+×Z+, there exists a positive finite random variable

Cp,q such that, for all (j,u,ω) ∈ Z× Rd × Ω∗, one has∑
ε∈E

∑
k∈Zd

∣∣∣Id(ψ(ε)
j,k

)
(ω)

∣∣∣ sup
v∈(0,1)

∣∣(∂p
u∂

q
vΨε)(u− k, v)

∣∣ ≤ Cp,q(ω)
(
log(e + |j|+ ‖u‖1)

) d
2 .

(2.11)
As a straightforward consequence, for all (j,u, v,ω) ∈ Z× Rd × (0, 1)× Ω∗, the series

Φj(u, v,ω) =
∑
ε∈E

∑
k∈Zd

Id

(
ψ

(ε)
j,k

)
(ω) Ψε(u− k, v) (2.12)

is absolutely convergent, and the real-valued function Φj(·, ·,ω) : (u, v) 7→ Φj(u, v,ω) is
well-defined and infinitely differentiable on Rd × (0, 1). Moreover, for each (j,u, v,ω) ∈
∈ Z× Rd × (0, 1)× Ω∗, one has

(∂p
u∂

q
vΦj)(u, v,ω) =

∑
ε∈E

∑
k∈Zd

Id

(
ψ

(ε)
j,k

)
(ω)(∂p

u∂
q
vΨε)(u− k, v),

and the following inequality holds:

sup
v∈(0,1)

∣∣(∂p
u∂

q
vΦj)(u, v,ω)

∣∣ ≤ Cp,q(ω)
(
log(e + |j|+ ‖u‖1)

) d
2 . (2.13)

Proof of Lemma 2.5. It easily follows from (2.4) and from the finiteness of the set E
that, for all (p, q) fixed in Zd

+ × Z+, there is a positive finite deterministic constant cp,q
for which the following inequality holds for every (u,k, ε) ∈ Rd × Zd × E:

sup
v∈(0,1)

∣∣(∂p
u∂

q
vΨε)(u− k, v)

∣∣ ≤ cp,q

(
√
d + 1 + ‖u− k‖2)2d

.

In the sequel, one sets buc = (bu1c, . . . , budc), where bulc denotes the integer part of
the l-th coordinate ul of the vector u. Then, using Lemma 2.1, the change of variable
m = k + buc, the triangle inequality and the inequality

∀ (x, y) ∈ R2
+,

(
log(e + x + y)

) d
2 ≤

(
log(e + x)

) d
2
(
log(e + y)

) d
2 , (2.14)
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one gets, for some positive finite constant C ′p,q(ω) and for all (j,u,ω) ∈ Z × Rd × Ω∗,
that: ∑

ε∈E

∑
k∈Zd

∣∣∣Id(ψ(ε)
j,k

)
(ω)

∣∣∣ sup
v∈(0,1)

∣∣(∂p
u∂

q
vΨε)(u− k, v)

∣∣ ≤
≤ C ′p,q(ω)

∑
k∈Zd

(log(e + |j|+ ‖k‖1))
d
2

(
√
d + 1 + ‖u− k‖2)2d

≤

≤ C ′p,q(ω)
∑

m∈Zd

(log(e + |j|+ ‖m + buc‖1))
d
2

(
√
d + 1 + ‖u− buc −m‖2)2d

≤

≤ C ′p,q(ω)
∑

m∈Zd

(log(e + |j|+ ‖m‖1 + ‖buc‖1))
d
2

(
√
d + 1− ‖u− buc‖2 + ‖m‖2)2d

≤

≤ C ′p,q(ω)
(
log(e + |j|+ ‖buc‖1)

) d
2
∑

m∈Zd

(log(e + ‖m‖1))
d
2

(1 + ‖m‖2)2d
.

Thus, in view of the fact that∑
m∈Zd

(log(e + ‖m‖1))
d
2

(1 + ‖m‖2)2d
< +∞ ,

it turns out that (2.11) is satisfied. �

Proof of Theorem 2.4. First, observe that, in view of (2.7) and (2.12), X(u, v,ω) can be
expressed, for all (u, v,ω) ∈ R× (0, 1)× Ω∗, as:

X(u, v,ω) =
∑
j∈Z

Aj(u, v,ω) , (2.15)

where, for each j ∈ Z, Aj(·, ·,ω) is the infinitely differentiable function on R × (0, 1)
defined as:

∀ (u, v) ∈ R× (0, 1), Aj(u, v,ω) = 2−jv
(
Φj(2

ju∗, v,ω)− Φj(0, v,ω)
)
. (2.16)

Thus, in order to prove the theorem, one has to show that the convergence of the series
in (2.15) holds uniformly in (u, v) on each compact subset of R × (0, 1). To this end, it
is enough to prove that, for all fixed positive real numbers ν and a < b < 1, one has∑

j∈Z
sup

(u,v)∈[−ν,ν]×[a,b]

|Aj(u, v,ω)| < +∞. (2.17)

Let us set

T1(ω) =

+∞∑
j=0

sup
(u,v)∈[−ν,ν]×[a,b]

|Aj(u, v,ω)|

and

T2(ω) =

−1∑
j=−∞

sup
(u,v)∈[−ν,ν]×[a,b]

|Aj(u, v,ω)|.

One can derive from (2.16) and (2.13) that

T1(ω) ≤ 2C0,0(ω)

+∞∑
j=0

2−ja
(
log(e + j + 2jdν)

) d
2 < +∞ . (2.18)

On the other hand, using the mean value theorem and (2.13), one obtains, for every
(j, u, v,ω) ∈ Z− × [− ν,ν]× [a, b]× Ω∗, that

|Aj(u, v,ω)| ≤ 2−ja|Φj(2
ju∗, v,ω)− Φj(0, v,ω)| ≤
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≤ 2j(1−a)|u|
d∑

i=1

sup
x∈[0∧2ju,0∨2ju]

|∂ui
Φj(x

∗, v,ω)| ≤

≤ dνC1,0(ω)2j(1−a)
(
log(e + |j|+ 2jdν)

) d
2 .

Thus, one gets that

T2(ω) ≤ dνC1,0(ω)

∞∑
j=1

2−j(1−a)
(
log(e + j + 2−jdν)

) d
2 < +∞. (2.19)

Finally, combining (2.18) and (2.19), we see that (2.17) is satisfied. �

3. Global behavior

First, we state the main results of the section and then we give their proofs.

Theorem 3.1. Let X lf and Xhf be the low and high frequency parts of the field X which
were introduced in Remark 2.3. The following two results hold, for all ω ∈ Ω∗.

(i) The function X lf (·, ·,ω) : (u, v) 7→ X lf (u, v,ω) is infinitely many times differ-
entiable on R× (0, 1).

(ii) For all fixed u ∈ R, the function Xhf (u, ·,ω) : v 7→ Xhf (u, v,ω) is infinitely
many times differentiable on (0, 1). Moreover, for each fixed q ∈ Z+, the function
(∂q

vX)(·, ·,ω) : (u, v) 7→ (∂q
vX)(u, v,ω) is continuous on R× (0, 1).

Corollary 3.2. For each (ω, q) ∈ Ω∗×Z+, and for all non-degenerate compact intervals
J ⊂ R and H ⊂ (0, 1), one has:

sup
(u,v1,v2)∈J×H2

{
|(∂q

vX)(u, v1,ω)− (∂q
vX)(u, v2,ω)|

|v1 − v2|

}
< +∞. (3.1)

Theorem 3.3. For each (ω, q) ∈ Ω∗×Z+, and for all non-degenerate compact intervals
J ⊂ R and H ⊂ (0, 1), one has:

sup
(u1,u2,v1,v2)∈J 2×H2

 |(∂q
vX)(u1, v1,ω)− (∂q

vX)(u2, v2,ω)|

|u1 − u2|v1∨v2
(
1 +

∣∣ log |u1 − u2|
∣∣)q+ d

2 + |v1 − v2|

 < +∞. (3.2)

Corollary 3.4. Let H(·) be the continuous functional parameter of the chaotic multi-
fractional process {Z(t) : t ∈ R} (see (1.7)). Let L ⊂ R be an arbitrary non-degenerate
compact interval. One sets

H(L) := min{H(t) : t ∈ L} and H(L) := max{H(t) : t ∈ L}. (3.3)

Assuming that

H(·) ∈ CγL(L) for some γL ∈ [H(L), 1), (3.4)

where CγL(L) denotes the global space of Hölder on L of order γL. Then, for all ω ∈ Ω∗,
one has:

sup
(t1,t2)∈L2

 |Z(t1,ω)− Z(t2,ω)|

|t1 − t2|H(L)(
1 +

∣∣log |t1 − t2|
∣∣) d

2

 < +∞ . (3.5)

Proof of Theorem 3.1. First, we point out that one knows from the proof of Theorem 2.4
that, for all ω ∈ Ω∗, one has

X lf (u, v,ω) =

−1∑
j=−∞

Aj(u, v,ω) (3.6)
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and

Xhf (u, v,ω) =

+∞∑
j=0

Aj(u, v,ω) , (3.7)

where the series in (3.6) and (3.7) are uniformly convergent in (u, v) on each compact
subset of R× (0, 1). Moreover, one knows that, for each j ∈ Z, the function Aj(·, ·,ω) is
infinitely differentiable on R × (0, 1). Thus, in order to prove the theorem, it is enough
to show that, for all (m, q,ω) ∈ Z+×Z+×Ω∗, and for each positive real numbers ν and
a < b, one has

−1∑
j=−∞

sup
(u,v)∈[−ν,ν]×[a,b]

∣∣(∂m
u ∂q

vAj)(u, v,ω)
∣∣ < +∞

and
+∞∑
j=0

sup
(u,v)∈[−ν,ν]×[a,b]

∣∣(∂q
vAj)(u, v,ω)

∣∣ < +∞.

This can be done by following the main lines of the proof of (2.18) and (2.19). �

Proof of Corollary 3.2. It follows from Theorem 3.1 that, for all fixed (u,ω) ∈ R × Ω∗,
the function X(u, ·,ω) is infinitely differentiable on (0, 1); and for all q ∈ Z+, the function
(∂q

vX)(·, ·,ω) is continuous. That is enough to prove that (3.1) holds. �

Corollary 3.2 and the following lemma are the two main ingredients of the proof of
Theorem 3.3.

Lemma 3.5. For each (ω, q) ∈ Ω∗ × Z+, and for all non-degenerate compact intervals
J ⊂ R and H ⊂ (0, 1), one has

sup
(u1,u2,v)∈J 2×H

 |(∂q
vX)(u1, v,ω)− (∂q

vX)(u2, v,ω)|

|u1 − u2|v
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2

 < +∞. (3.8)

Proof of Lemma 3.5. First, notice that Theorem 3.1 entails that the lemma holds when
X in (3.8) is replaced by X lf . Thus, one only has to prove that the lemma is true when X
in (3.8) is replaced by Xhf . Using the continuity property of the function (∂q

vX)(·, ·,ω)
(see Theorem 3.1), one has that

sup
(u1,u2,v)∈K′


∣∣(∂q

vX
hf
)
(u1, v,ω)−

(
∂q
vX

hf
)
(u2, v,ω)

∣∣
|u1 − u2|v

(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2

 < +∞, (3.9)

where K′ is a compact subset of R2 × (0, 1) defined as

K′ =
{

(u1, u2, v) ∈ J 2 ×H : |u1 − u2| ≥ 2−1
}
.

Thus, in order to derive the lemma, it is enough to prove that:

sup
(u1,u2,v)∈K


∣∣(∂q

vX
hf
)
(u1, v,ω)−

(
∂q
vX

hf
)
(u2, v,ω)

∣∣
|u1 − u2|v

(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2

 < +∞, (3.10)

where K is a compact subset of R2 × (0, 1) defined as

K =
{

(u1, u2, v) ∈ J 2 ×H : |u1 − u2| ≤ 2−1
}
.

We will show (3.10) for q = 0; the proof can be done in a rather similar way in the general
case where q is an arbitrary nonnegative integer. There is no restriction to assume that
J = [−ν,ν] and H = [a, b] ⊂ (0, 1), where ν and a < b are fixed positive real numbers.
Let (u1, u2, v) ∈ K be arbitrary; there is no restriction to assume that u1 6= u2 since
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(3.10) is clearly satisfied when u1 = u2. Then, denote by j0 the biggest nonnegative
integer satisfying |u1 − u2| ≤ 2−j0 . Observe that j0 ≥ 1 and that one has:

2−(j0+1) < |u1 − u2| ≤ 2−j0 , (3.11)

which means that

j0 =

⌊
log
(
|u1 − u2|−1

)
log 2

⌋
. (3.12)

Notice that one knows from Lemma 2.5 and (2.16) that the function A0(·, ·,ω) is infinitely
many times differentiable on R× (0, 1), which implies that it satisfies (3.10). This allows
to assume that the sum over j in (3.7) starts from j = 1 instead of j = 0. Thus, one has
that ∣∣Xhf (u1, v,ω)−Xhf (u2, v,ω)

∣∣ ≤ S1(u1, u2, v,ω) + S2(u1, u2, v,ω), (3.13)

where

S1(u1, u2, v,ω) =

j0∑
j=1

|Aj(u1, v,ω)−Aj(u2, v,ω)| (3.14)

and

S2(u1, u2, v,ω) =

+∞∑
j=j0+1

|Aj(u1, v,ω)−Aj(u2, v,ω)|. (3.15)

In order to derive appropriate upper bounds for S1(u1, u2, v,ω) and S2(u1, u2, v,ω),
notice that there exists a deterministic positive finite constant c such that:

∀x ≥ 1, log(e + x + 2xdν) ≤ cx. (3.16)

Using (3.15), (2.16), the triangle inequality, Lemma 2.5, (3.16), the inequality

∀ (x, y) ∈ R2
+, (1 + x + y)

d
2 ≤ (1 + x)

d
2 (1 + y)

d
2 ,

(3.11) and (3.12), one gets:

S2(u1, u2, v,ω) ≤ 2

+∞∑
j=j0+1

2−jv sup
(u,v)∈[−ν,ν]×[a,b]

|Φj(2
ju∗, v,ω)| ≤

≤ C2(ω)

+∞∑
j=j0+1

2−jv
(

log(e + j + 2jdν)
) d

2 ≤

≤ C ′2(ω)

+∞∑
j=j0+1

2−jvj
d
2 ≤

≤ C ′2(ω)2−(j0+1)v(1 + j0)
d
2

+∞∑
j=0

2−ja(1 + j)
d
2 ≤

≤ C ′′2 (ω)2−(j0+1)v(1 + j0)
d
2 ≤

≤ C ′′′2 (ω)|u1 − u2|v
(
1 +

∣∣log |u1 − u2|
∣∣) d

2 , (3.17)

where C2 is a positive finite random variable not depending on (u1, u2, v) derived from

Lemma 2.5, C ′2 = C2c
d/2, C ′′2 = C ′2

∑+∞
j=0 2−ja(1 + j)

d
2 < +∞ and C ′′′2 = (log 2)−

d
2C ′′2 .

On the other hand, using (3.14), (2.16), the mean value theorem, the triangle inequal-
ity, Lemma 2.5, (3.16), (3.11) and (3.12), one gets:

S1(u1, u2, v,ω) ≤
j0∑
j=1

2j(1−v)|u1 − u2|
d∑

i=1

sup
(u,v)∈[−ν,ν]×[a,b]

|∂uiΦj(2
ju∗, v,ω)| ≤
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≤ C1(ω)|u1 − u2|
j0∑
j=1

2j(1−v)
(

log(e + j + 2jdν)
) d

2 ≤

≤ C ′1(ω)|u1 − u2|
j0∑
j=1

2j(1−v)(j + 1)
d
2 ≤

≤ C ′′1 (ω)|u1 − u2|(1 + j0)
d
2 2j0(1−v) ≤

≤ C ′′′1 (ω)|u1 − u2|v
(
1 +

∣∣log |u1 − u2|
∣∣) d

2 , (3.18)

where C1 is a positive finite random variable not depending on (u1, u2, v) derived from

Lemma 2.5, C ′1 = C1c
d/2, C ′′1 = 21−a(21−b − 1)−1C ′1 and C ′′′1 = (log 2)−

d
2C ′′1 .

Finally, puting together (3.13), (3.17) and (3.18), one obtains (3.10). �

Proof of Theorem 3.3. For all (u1, u2, v1, v2) ∈ J 2 ×H2, one sets:

f(u1, u2, v1, v2) =
|(∂q

vX)(u1, v1,ω)− (∂q
vX)(u2, v2,ω)|

|u1 − u2|v1∨v2
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2 + |v1 − v2|
,

with the convention that 0
0 = 0. Observe that one has:

f(u1, u2, v1, v2) = f(u2, u1, v2, v1).

Thus, one gets that:

sup
(u1,u2,v1,v2)∈J 2×H2

f(u1, u2, v1, v2) = sup
(u1,u2,v1,v2)∈J 2×H2

f(u1, u2, v1∨v2, v1∧v2). (3.19)

Moreover, using the triangle inequality, one obtains that:

sup
(u1,u2,v1,v2)∈J 2×H2

f(u1, u2, v1 ∨ v2, v1 ∧ v2) ≤

≤ sup
(u1,u2,v1,v2)∈J 2×H2

 |(∂q
vX)(u1, v1 ∨ v2,ω)− (∂q

vX)(u2, v1 ∨ v2,ω)|

|u1 − u2|v1∨v2
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2 + |v1 − v2|

+

+ sup
(u1,u2,v1,v2)∈J 2×H2

 |(∂q
vX)(u2, v1 ∨ v2,ω)− (∂q

vX)(u2, v1 ∧ v2,ω)|

|u1 − u2|v1∨v2
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2 + |v1 − v2|

 ≤
≤ sup

(u1,u2,v1,v2)∈J 2×H2

 |(∂q
vX)(u1, v1 ∨ v2,ω)− (∂q

vX)(u2, v1 ∨ v2,ω)|

|u1 − u2|v1∨v2
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2

+

+ sup
(u1,u2,v1,v2)∈J 2×H2

{
|(∂q

vX)(u2, v1 ∨ v2,ω)− (∂q
vX)(u2, v1 ∧ v2,ω)|

|v1 − v2|

}
≤

≤ sup
(u1,u2,v)∈J 2×H

 |(∂q
vX)(u1, v,ω)− (∂q

vX)(u2, v,ω)|

|u1 − u2|v
(
1 +

∣∣log |u1 − u2|
∣∣)q+ d

2

+

+ sup
(u,v1,v2)∈J×H2

{
|(∂q

vX)(u, v1,ω)− (∂q
vX)(u, v2,ω)|

|v1 − v2|

}
. (3.20)

Finally, putting together (3.19), (3.20), Corollary 3.2 and Lemma 3.5, one gets that

sup
(u1,u2,v1,v2)∈J 2×H2

f(u1, u2, v1, v2) < +∞,

which shows that (3.2) holds. �
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Proof of Corollary 3.4. Using (1.7) and Theorem 3.3, in the case where q = 0, J = L
and H =

[
H(L), H(L)

]
(see (3.3)), one obtains, for all ω ∈ Ω∗, that:

sup
(t1,t2)∈L2

 |Z(t1,ω)− Z(t2,ω)|

|t1 − t2|H(t1)∨H(t2)(
1 +

∣∣log |t1 − t2|
∣∣) d

2 + |H(t1)−H(t2)|

 < +∞. (3.21)

Then, (3.4) and (3.21) imply that (3.5) holds. �

4. Local behavior

First, we state the main results of the section and then we give their proofs.

Theorem 4.1. Let u0 ∈ R be an arbitrary fixed point. Then, one has, almost surely, for
every q ∈ Z+ and a non-degenerate compact interval H ⊂ (0, 1), that:

sup
(u,v)∈[u0−1,u0+1]×H

 |(∂q
vX)(u, v)− (∂q

vX)(u0, v)|

|u− u0|v
(
1 +

∣∣log |u− u0|
∣∣)q(log

(
e +

∣∣log |u− u0|
∣∣)) d

2

 < +∞.

(4.1)

Corollary 4.2. Let t0 ∈ R be an arbitrary fixed point. Assume that there exists a
constant γt0 ∈ (H(t0), 1) such that the continuous function H(·) satisfies

sup
t∈R

{
|H(t)−H(t0)|
|t− t0|γt0

}
< +∞. (4.2)

Then, one has, almost surely:

sup
t∈[t0−1,t0+1]

 |Z(t)− Z(t0)|

|t− t0|H(t0)
(

log
(
e +

∣∣log |t− t0|
∣∣)) d

2

 < +∞. (4.3)

The following theorem shows that the chaotic multifractional process {Z(t) : t ∈ R}
has a local asymptotic self-similarity property rather similar to the one satisfied by the
classical Gaussian multifractional Brownian motion (see [4, 11, 12]).

Theorem 4.3. Let t0 ∈ R be an arbitrary fixed point such that the condition (4.2) holds.
Then, the stochastic process {Z(t) : t ∈ R} is at t0, strongly locally asymptotically self-
similar of order H(t0) and the tangent process is

{
X(s,H(t0)) : s ∈ R

}
. More precisely,

let (νn)n∈N be an arbitrary sequence of positive real numbers which converges to 0. For
each n ∈ N, let Tt0,νn

Z =
{

(Tt0,νn
Z)(s) : s ∈ R

}
be a stochastic process with continuous

paths, defined, for all s ∈ R, as

(Tt0,νnZ)(s) =
Z(t0 + νns)− Z(t0)

ν
H(t0)
n

. (4.4)

Then, when n goes to +∞, the probability measure induced on C(J ) by
{

(Tt0,νn
Z)(s) :

s ∈ R
}

converges to the one induced on C(J ) by
{
X(s,H(t0)) : s ∈ R

}
, where C(J )

denotes the usual Banach space of the real-valued continuous functions over an arbitrary
non-degenerate compact interval J of the real line equipped with the uniform norm.

Remark 4.4. One can derive from Theorem 4.3 and the zero-one law that, for any fixed
arbitrarily small positive real number η, one has, almost surely,

sup
t∈[t0−1,t0+1]

{
|Z(t)− Z(t0)|
|t− t0|H(t0)+η

}
= +∞ ,
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which means that the exponent H(t0) in (4.3) is optimal. Moreover, when γL in (3.3)
belongs to

[
H(L), 1

)
, then, using similar arguments, it can be shown that the exponent

H(L) in (3.5) is optimal: one has, almost surely,

sup
(t1,t2)∈L2

{
|Z(t1)− Z(t2)|
|t1 − t2|H(L)+η

}
= +∞ .

Theorem 4.5. Let δ ∈ (0,+∞) be arbitrary and fixed. One sets R+
δ = {u ∈ R; |u| ≥ δ}.

Then, for all ω ∈ Ω∗ and non-degenerate compact interval H ⊂ (0, 1), one has:

sup
(u,v)∈R+

δ
×H


∣∣X lf (u, v,ω)

∣∣
|u|v

(
log
(
e +

∣∣log |u|
∣∣)) d

2

 < +∞ (4.5)

and

sup
(u,v)∈R+

δ
×H


∣∣Xhf (u, v,ω)

∣∣(
log(e + |u|)

) d
2

 < +∞. (4.6)

Notice that a straightforward consequence of (4.5), (4.6) and (2.10) is that:

sup
(u,v)∈R+

δ
×H

 |X(u, v,ω)|

|u|v
(

log
(
e +

∣∣log |u|
∣∣)) d

2

 < +∞.

Corollary 4.6. Assume that the continuous function H(·) is with values in a compact
interval included in (0, 1) (this means that inft∈R H(t) > 0 and supt∈R H(t) < 1). Then,
for each fixed ω ∈ Ω∗ and δ > 0, one has:

sup
|t|≥δ

 |Z(t,ω)|

|t|H(t)
(

log
(
e +

∣∣log |t|
∣∣)) d

2

 < +∞. (4.7)

The following lemma will play a crucial role in the proof of Theorem 4.1.

Lemma 4.7. For a fixed integer j ≥ 1 and (u, θ) ∈ Rd× [1,+∞), let Dj(u, θ) be a finite
non-empty set defined as:

Dj(u, θ) =
{

(ε,k) ∈ E × Zd : ‖u− 2−jk‖1 ≤ d jθ2−j
}
. (4.8)

Then, for each fixed (u, θ) ∈ Rd× [1,+∞) there is a deterministic positive finite constant
c∗, only depending on (u, θ, d), such that one has, almost surely:

lim sup
j→+∞

max(ε,k)∈Dj(u,θ)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣(
log(2 + j)

) d
2

 ≤ c∗ . (4.9)

Proof of Lemma 4.7. The lemma can be derived from the Borel–Cantelli Lemma by
showing that for some fixed well-chosen deterministic positive finite constant a ≥ 2,
one has

+∞∑
j=1

P

(
max

(ε,k)∈Dj(u,θ)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣ > a
√
d!
(

log(2 + j)
) d

2

)
< +∞. (4.10)

It can easily be seen that, for all j ≥ 1, the following inequality holds:

P

(
max

(ε,k)∈Dj(u,θ)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣ > a
√
d!
(
log(2 + j)

) d
2

)
≤

≤
∑

(ε,k)∈Dj(u,θ)

P
(∣∣∣Id(ψ(ε)

j,k

)∣∣∣ > a
√
d!
(

log(2 + j)
) d

2

)
. (4.11)
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Let us conveniently bound from above the probabilities in the right-hand side of (4.11).

Observe that (1.5) and the equality
∥∥∥ψ(ε)

j,k

∥∥∥
L2(Rd)

= 1 imply, for all (j,k, ε) ∈ Z×Zd×E,

that

E

(∣∣∣Id(ψ(ε)
j,k

)∣∣∣2) = d!
∥∥∥ψ̃(ε)

j,k

∥∥∥2

L2(Rd)
≤ d!

∥∥∥ψ(ε)
j,k

∥∥∥2

L2(Rd)
= d! . (4.12)

Then (4.12) and Theorem 6.7 in [13] entail that, for all real number α ≥ 2, one has

P
(∣∣∣Id(ψ(ε)

j,k

)∣∣∣ > α√d!
)
≤ P

(
|Id(ψ

(ε)
j,k)| > α

∥∥Id(ψ
(ε)
j,k)
∥∥
L2(Ω)

)
≤ exp

(
− κdα

2
d

)
, (4.13)

where κd is a deterministic positive finite constant only depending on d. Thus, setting

in (4.13) α = a
(

log(2 + j)
) d

2 , one gets that

P
(∣∣∣Id(ψ(ε)

j,k

)∣∣∣ > a
√
d!
(
log(2 + j)

) d
2

)
≤ exp

(
−κd a

2
d log(2 + j)

)
= (2 + j)−κda

2
d . (4.14)

On the other hand, one can easily derive from (4.8) that there exists a deterministic
positive finite constant c such that, for all (u, θ) ∈ Rd × [1,+∞), one has

Card
(
Dj(u, θ)

)
≤ c jdθ. (4.15)

Putting together (4.11), (4.14) and (4.15), one obtains, for all j ≥ 1, that

P

(
max

(ε,k)∈Dj(u,θ)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣ > a
√
d!
(
log(2 + j)

) d
2

)
≤ c jdθ−κda

2/d

. (4.16)

Thus, assuming that the constant a has been chosen big enough so that dθ−κda
2
d < −1,

then it follows from (4.16) that (4.10) holds. �

Proof of Theorem 4.1. Using the same arguments as in the proof of Lemma 3.5, it turns
out that in order to derive the statement of the theorem it is enough to show that (4.1)
holds when X in it is repalced by Xhf , and one can assume that the sums over j in (3.7)
and in (2.9) start from j = 1 instead of j = 0. Also, for the sake of simplicity one focuses
on the case where q = 0. The proof can be done in a rather similar way in the general
case where q is an arbitrary nonnegative integer.

Let us express the compact interval H as H = [a, b], where the real numbers a and b
are such that 0 < a < b < 1. Let then (u, v) ∈ [u0 − 1, u0 + 1] × [a, b] ⊂ R × (0, 1) be
arbitrary and fixed. There is no restriction to assume that 0 < |u − u0| ≤ 2−15, since
sample paths of Xhf are almost surely continuous functions. One denotes by j1 the
biggest nonnegative integer which satisfies |u− u0| ≤ 2−(j1−1). Then, one has:

2−j1 < |u− u0| ≤ 2−(j1−1) , (4.17)

which means that

j1 = 1 +

⌊
log
(
|u− u0|−1

)
log 2

⌋
. (4.18)

One sets

j2 = j1 +

⌊
d log j1

2a log 2

⌋
. (4.19)

Observe that one has j1 ≥ 16 and j2 ≥ j1 + 2. Moreover, for any j ∈ {j1 + 1, . . . , j2},
the following inequality holds:

j
d
a ≥ 2j−j1+2. (4.20)

Next, for all integer j ≥ 1, let Dj(u0) be a finite non-empty set defined as Dj(u0) =

= Dj(u
∗
0,

d
a ), where, as usual, u∗0 denotes the vector of Rd whose coordinates are all
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equal to the real number u0, and Dj(u
∗
0,

d
a ) is defined through (4.8) with u = u∗0 and

θ = d
a . That is:

Dj(u0) =
{

(ε,k) ∈ E × Zd : ‖u∗0 − 2−jk‖1 ≤ d j
d
a 2−j

}
. (4.21)

Then, Lemma 4.7 entails that one has almost surely, for all integer j ≥ 1,

max
(ε,k)∈Dj(u0)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣ ≤ C
(
log(2 + j)

) d
2 , (4.22)

where C is a positive almost surely finite random variable not depending on j. Next, one
denotes by Dco

j (u0) the complement of Dj(u0) in E × Zd, that is:

Dco
j (u0) =

{
(ε,k) ∈ E × Zd : ‖u∗0 − 2−jk‖1 > d j

d
a 2−j

}
. (4.23)

Let us mention in passing that

Dco
j (u0) ⊂

d⋃
l=1

{
(ε,k) ∈ E × Zd : |u0 − 2−jkl| > j

d
a 2−j

}
, (4.24)

where kl is the l-th coordinate of k. One can derive from (2.9) (where the sum over j is
assumed to start from j = 1 instead of j = 0), (4.21), (4.23) and the triangle inequality
that∣∣Xhf (u, v)−Xhf (u0, v)

∣∣ ≤ R1(u, u0, v)+R2(u, u0, v)+R3(u, u0, v)+R4(u, u0, v), (4.25)

where

R1(u, u0, v) =

j1∑
j=1

∑
(ε,k)∈Dj(u0)

2−jv
∣∣∣Id(ψ(ε)

j,k

)∣∣∣∣∣Ψε
(
2ju∗ − k, v

)
−Ψε

(
2ju∗0 − k, v

)∣∣,
(4.26)

R2(u, u0, v) =

+∞∑
j=j1+1

∑
(ε,k)∈Dj(u0)

2−jv
∣∣∣Id(ψ(ε)

j,k

)∣∣∣∣∣Ψε
(
2ju∗ − k, v

)
−Ψε

(
2ju∗0 − k, v

)∣∣,
(4.27)

R3(u, u0, v) =

j2∑
j=1

∑
(ε,k)∈Dco

j (u0)

2−jv
∣∣∣Id(ψ(ε)

j,k

)∣∣∣∣∣Ψε
(
2ju∗ − k, v

)
−Ψε

(
2ju∗0 − k, v

)∣∣,
(4.28)

and

R4(u, u0, v) =

+∞∑
j=j2+1

∑
(ε,k)∈Dco

j (u0)

2−jv
∣∣∣Id(ψ(ε)

j,k

)∣∣∣∣∣Ψε
(
2ju∗ − k, v

)
−Ψε

(
2ju∗0 − k, v

)∣∣.
(4.29)

From now on, our goal is to derive an appropriate upper bound for each term in the
right-hand side of (4.25). In all the sequel, one assumes that L is an arbitrary large fixed
positive integer. Therefore, one has

c := sup
y∈R

∑
k∈Zd

(
log(e + ‖y∗ − k‖2)

) d
2

(1 + ‖y∗ − k‖2)
L

 < +∞. (4.30)
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Putting together (4.27), (4.22), (2.4), (4.30), (2.14), (4.17) and (4.18), one obtains
that almost surely:

R2(u, u0, v) ≤ K ′2

+∞∑
j=j1+1

2−jv
(
log(2 + j)

) d
2 ≤

≤ K ′2

+∞∑
j=0

2−(j+j1+1)v
(
log(2 + j + j1 + 1)

) d
2 ≤

≤ K ′22−(j1+1)v
(
log(e + j1 + 1)

) d
2

+∞∑
j=0

2−ja
(
log(e + j)

) d
2 ≤

≤ K2|u− u0|v
(

log
(
e +

∣∣log |u− u0|
∣∣)) d

2

, (4.31)

where K ′2 and K2 are two positive almost surely finite random variables not depending
on (u, v).

Next, using (4.29), (2.11), the fact that |u| ≤ |u0| + 1, the inequality 2j > j for all
j ∈ Z+, (2.14), (4.17), (4.18) and (4.19), one gets, on the event of probability 1 Ω∗, that:

R4(u, u0, v) ≤ K ′4

+∞∑
j=j2+1

2−jv
(

log
(
e + (|u0|+ d + 1)2j

)) d
2 ≤

≤ K ′′4 2−(j2+1)v(j2 + 1)
d
2

+∞∑
j=0

2−ja
(

log
(
e + (|u0|+ d + 1)2j

)) d
2 ≤

≤ K ′′′4 2−(j2+1)v(j2 + 1)
d
2 =

= K ′′′4 2−j1v exp

(
−(v log 2)

(
1 +

⌊
d log j1

2a log 2

⌋)
+

d log(j2 + 1)

2

)
≤

≤ K ′′′4 |u− u0|v exp

(
d

2
log

(
j2 + 1

j1

))
≤

≤ K4|u− u0|v , (4.32)

where K ′4, K ′′4 and K ′′′4 are three positive finite random variables not depending on (u, v),

and where K4 = K ′′′4

(
2 + d

2a log 2

) d
2 .

Next, observe that using the mean value theorem, it can be shown that, for all fixed
(ε, j,k) ∈ E × N× Zd, there exists a real number λεj,k(u, u0) ∈ (0, 1) such that:

Ψε(2ju∗−k, v)−Ψε(2ju∗0−k, v) = 2j(u−u0)

d∑
n=1

(∂yn
Ψε)

(
2ju∗0 +λεj,k(u, u0)2j(u∗−u∗0)

)
.

(4.33)
Then, combining (4.26), (4.33), (4.22), (2.4), (4.30), (4.17) and (4.18), one gets almost
surely that

R1(u, u0, v) ≤ K ′1|u− u0|
j1∑
j=1

2j(1−v)
(
log(2 + j)

) d
2 ≤

≤ K ′1|u− u0|
(
log(2 + j1)

) d
2

j1∑
j=1

2(j1−j+1)(1−v) ≤

≤ K ′1|u− u0|2(j1+1)(1−v)
(
log(2 + j1)

) d
2

+∞∑
j=1

2−j(1−b) ≤
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≤ K1|u− u0|v
(

log
(
2 +

∣∣log |u− u0|
∣∣)) d

2

, (4.34)

where K ′1 and K1 are two positive almost surely finite random variables not depending
on (u, v).

It only remains to obtain a convenient upper bound for R3(u, u0, v). Notice that,
using the equivalence of all norms on Rd, one deduces from (2.4) that:

∀ (n,p, q) ∈ N× Zd × Z, sup
{(
α+ ‖u‖1

)n |∂p
u∂

q
vΨε(u, v)| : u ∈ Rd, v ∈ [a, b]

}
< +∞ ,

(4.35)
where α is an abritrary positive real number. Next, combining (4.28), (4.33) and (4.35),
one obtains that

R3(u, u0, v) ≤ κ3|u− u0| ×

×
j2∑
j=1

∑
(ε,k)∈Dco

j (u0)

2j(1−v)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣(
2d + 1 + ‖2ju∗0 − k + λεj,k(u, u0)2j(u∗ − u∗0)‖1

)L , (4.36)

where κ3 denotes a positive finite and deterministic constant. Observe that using the tri-
angle inequality, (4.17) and the fact that λεj,k(u, u0) ∈ (0, 1) one has, for all j ∈ {1, . . . , j1}
and (ε,k) ∈ Dco

j (u0), that

2d + 1 + ‖2ju∗0 − k + λεj,k(u, u0)2j(u∗ − u∗0)‖1 ≥
≥ ‖2ju∗0 − k‖1 − λεj,k(u, u0) d 2j |u− u0|+ 2d + 1 ≥
≥ 1 + ‖2ju∗0 − k‖1. (4.37)

Also observe that using the triangle inequality, the fact that λεj,k(u, u0) ∈ (0, 1), (4.17),

(4.23) and (4.20), one obtains, for all j ∈ {j1 + 1, . . . , j2} and all (ε,k) ∈ Dco
j (u0), that

2d + 1 + ‖2ju∗0 − k + λεj,k(u, u0)2j(u∗ − u∗0)‖1 ≥
≥ ‖2ju∗0 − k‖1 − λεj,k(u, u0) d 2j |u− u0|+ 2d + 1 ≥

≥ 1

2
‖2ju∗0 − k‖1 +

1

2
‖2ju∗0 − k‖1 − d 2j−j1+1 + 2d + 1 ≥

≥ 1

2
‖2ju∗0 − k‖1 +

d

2
j

d
a − d 2j−j1+1 + 2d + 1 ≥

≥ 1

2
(1 + ‖2ju∗0 − k‖1). (4.38)

Thus, combining (4.37), (4.38) and (4.36), one gets that

R3(u, u0, v) ≤ 2κ3|u− u0|
j2∑
j=1

∑
(ε,k)∈Dco

j (u0)

2j(1−v)

∣∣∣Id(ψ(ε)
j,k

)∣∣∣(
1 + ‖2ju∗0 − k‖1

)L . (4.39)

Next, using (4.39), Lemma 2.1, the inequalities

log
(
e + j + ‖k‖1

)
≤ log

(
e + j + ‖2ju∗0‖1 + ‖2ju∗0 − k‖1

)
≤

≤ log
(
e + j + ‖2ju∗0‖1

) d∏
l=1

log
(
e + |2ju0 − kl|

)
,

(
1 + ‖2ju∗0 − k‖1

)L ≥ d∏
l=1

(
1 + |2ju0 − kl|

)L
d ,
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(4.24), and (4.30) with Z in place of Zd, it turns out that, on the event of probability 1
Ω∗, one has

R3(u, u0, v) ≤ K ′3|u− u0|
j2∑
j=1

j
d
2 2j(1−v)

∑
k∈Dco

1,j(u0)

(
log(e + |2ju0 − k|)

) d
2(

1 + |2ju0 − k|
)L

d

, (4.40)

where K ′3 is a positive finite random variable not depending on (u, v), and where

Dco
1,j(u0) =

{
k ∈ Z : |2ju0 − k| > j

d
a

}
. (4.41)

Next, let us assume that η is an arbitrarily small fixed positive real number. Using (4.41),
and the fact that x 7→ log(e + x) and x 7→ x are increasing functions over R+, one gets
that ∑

k∈Dco
1,j(u0)

(
log(e + |2ju0 − k|)

) d
2(

1 + |2ju0 − k|
)L

d

≤ 2

∫ +∞

j
d
a

(
log(e + 1 + x)

) d
2

x
L
d

dx ≤ κ′3 j−( L−d
a −η) ,

(4.42)
where κ′3 is a positive finite deterministic constant not depending on j. Moreover the
assumption that L is an arbitrarily large integer allows to assume that

L− d

a
− η− d

2
>

d

2a
> 0 . (4.43)

Thus, using the fact that v ∈ [a, b] ⊂ (0, 1), one obtains that

j2∑
j=1

j−( L−d
a −η−

d
2 ) 2j(1−v) ≤

bj2/2c∑
j=1

2j(1−v) +
(
j2/2

)−( L−d
a −η−

d
2 )

j2∑
bj2/2c+1

2j(1−v) ≤

≤ 4
(
21−b − 1

)−1
(

2j2(1−v)/2 +
(
j2/2

)−( L−d
a −η−

d
2 )

2j2(1−v)
)
≤

≤ κ′′3 j
−( L−d

a −η−
d
2 )

2 2j2(1−v) , (4.44)

where the finite deterministic constant

κ′′3 = 4
(
21−b − 1

)−1
(

2( L−d
a −η−

d
2 ) + sup

n∈N

{
2−n(1−b)/2 n( L−d

a −η−
d
2 )
})

.

Moreover, one can derive from (4.18), (4.19) and (4.43) that

j
−( L−d

a −η−
d
2 )

2 2j2(1−v) ≤ 4|u− u0|v−1 j
−( L−d

a −η−
d
2 )

2 2d log(j1)/(2a log 2) ≤

≤ 4|u− u0|v−1 j
−( L−d

a −η−
d
2−

d
2a )

2 ≤ 4|u− u0|v−1 . (4.45)

Next, putting together (4.40), (4.42), (4.44) and (4.45), it turns out that, on the event
of probability 1 Ω∗, one has

R3(u, u0, v) ≤ K3|u− u0|v , (4.46)

where K3 is a positive finite random variable not depending on (u, v).
Finally, combining (4.25), (4.31), (4.32), (4.34) and (4.46), one obtains the statement

of the theorem. �

Proof of Corollary 4.2. Using (1.7) and the triangle inequality, one gets that

sup
t∈[t0−1,t0+1]

 |Z(t)− Z(t0)|

|t− t0|H(t0)
(
log
(
e +

∣∣log |t− t0|
∣∣)) d

2

 ≤ U1(t0) + U2(t0), (4.47)
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where

U1(t0) = sup
t∈[t0−1,t0+1]

 |X(t,H(t))−X(t,H(t0))|

|t− t0|H(t0)
(
log
(
e +

∣∣log |t− t0|
∣∣)) d

2

 (4.48)

and

U2(t0) = sup
t∈[t0−1,t0+1]

 |X(t,H(t0))−X(t0, H(t0))|

|t− t0|H(t0)
(
log
(
e +

∣∣log |t− t0|
∣∣)) d

2

. (4.49)

Next, observe that it follows from the assumption (4.2) that

sup
t∈[t0−1,t0+1]

 |H(t)−H(t0)|

|t− t0|H(t0)
(
log
(
e +

∣∣log |t− t0|
∣∣)) d

2

 < +∞ . (4.50)

On the other hand, denoting by H the compact interval included in (0, 1) defined as

H = H([t0 − 1, t0 + 1]) =
{
H(t) : t ∈ [t0 − 1, t0 + 1]

}
,

one clearly has that

sup
t∈[t0−1,t0+1]

{
|X(t,H(t))−X(t,H(t0))|

|H(t)−H(t0)|

}
≤

≤ sup
(u,v1,v2)∈[t0−1,t0+1]×H2

{
|X(u, v1)−X(u, v2)|

|v1 − v2|

}
. (4.51)

Thus, combining (4.48), (4.50) and (4.51) with Corollary 3.2, one almost surely gets that:

U1(t0) < +∞. (4.52)

On the other hand, it easily follows from (4.49) and Theorem 4.1 that:

U2(t0) ≤ sup
(u,v)∈[t0−1,t0+1]×H

 |X(u, v)−X(u0, v)|

|u− u0|v
(
log
(
e +

∣∣log |u− u0|
∣∣)) d

2

 < +∞. (4.53)

Finally, putting together (4.52), (4.53) and (4.47), one obtains (4.3). �

Proof of Theorem 4.3. It easily follows from (4.4) and (1.7) that, for every n ∈ N, the
stochastic process Tt0,νn

Z =
{

(Tt0,νn
Z)(s) : s ∈ R

}
can be expressed as the sum of two

stochastic processes T 1
t0,νn

X =
{

(T 1
t0,νn

X)(s) : s ∈ R
}

and T 2
t0,νn

X =
{

(T 2
t0,νn

X)(s) :

s ∈ R
}

, defined, for all s ∈ R, as:(
T 1
t0,νn

X
)
(s) =

X
(
t0 + νns,H(t0)

)
−X

(
t0, H(t0)

)
ν
H(t0)
n

(4.54)

and (
T 2
t0,νn

X
)
(s) =

X
(
t0 + νns,H(t0 + νns)

)
−X

(
t0 + νns,H(t0)

)
ν
H(t0)
n

. (4.55)

Next, using (4.54), the stationary increments property of the stochastic process

X(·, H(t0)) =
{
X(u,H(t0)) : u ∈ R

}
(see (1.1)), its global self-similar property of order H(t0) (see (1.2)), and the equality

X(0, H(t0))
a.s.
= 0, one gets that{

(T 1
t0,νn

X)(s) : s ∈ R
} law

=
{
X(s,H(t0)) : s ∈ R

}
.

This equatility in the sense of finite-dimensional distributions and the fact that the
processes

{
(T 1

t0,νn
X)(s) : s ∈ R

}
and

{
X(s,H(t0)) : s ∈ R

}
have continuous paths
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imply that these two processes induce the same probability distribution on the space of
continuous functions C(J ). Thus, in order to derive the statement of the theorem, it
is enough to show that T 2

t0,νn
X, viewed as a random variable with values in the space

C(J ), converges to 0 in this space, when n goes to +∞. That is,

lim
n→+∞

sup
s∈J

∣∣(T 2
t0,νn

X)(s)
∣∣ a.s.

= 0 . (4.56)

There is no rectriction to assume that J = [−M,M ] for some fixed positive real number
M , and that νn ∈ (0, 1], for every n ∈ N. Let then I and H be compact intervals defined
as I = [t0 −M, t0 + M ] and H = H(I) =

{
H(t) : t ∈ I

}
. It follows from Corollary 3.2

that the positive random variable A defined as

A = sup
(u,v1,v2)∈I×H2

{
|X(u, v1)−X(u, v2)|

|v1 − v2|

}
(4.57)

is finite on the event of probability 1 Ω∗. Moreover, one can derive from (4.55) and (4.57)
that on Ω∗, for all n ∈ N, one has

sup
s∈J

∣∣(T 2
t0,νn

X)(s)
∣∣ ≤ ν−H(t0)

n A sup
s∈J

{∣∣H(t0 + νns)−H(t0)
∣∣} . (4.58)

Finally, combining (4.2) and (4.58) one obtains (4.56). �

Proof of Theorem 4.5. In view of the fact that on the event of probability 1 Ω∗ the fields
X lf and Xhf are with continuous paths, one can assume without any restriction that
δ = 2. Let H = [a, b] ⊂ (0, 1) be an arbitrary compact interval and let u be an arbitrary
real number such that |u| ≥ 2. One denotes by j3 the biggest positive integer satisfying:
|u| ≥ 2j3 . Then, one gets that:

2j3 ≤ |u| < 2j3+1 , (4.59)

which means that

j3 =

⌊
log |u|
log 2

⌋
. (4.60)

First, one shows that (4.5) holds. Recall that, for all (v,ω) ∈ (0, 1)× Ω∗, one has:

X lf (u, v,ω) =

+∞∑
j=1

2jv(Φ−j(2
−ju∗, v,ω)− Φ−j(0, v,ω)) , (4.61)

where Φ−j(·, ·,ω) is the infinitely differentiable function on Rd × (0, 1), introduced in
(2.12). Also, recall that the series in (4.61) is uniformly convergent in (u, v) on each
compact subset of R×(0, 1). Using the mean value theorem, one gets, for all (j, v) ∈ N×H,
that:

|Φ−j(2−ju∗, v,ω)−Φ−j(0, v,ω)| ≤ 2−j |u|
d∑

n=1

sup
(y,v)∈[0∧2−ju,0∨2−ju]×H

|∂yn
Φ−j(y

∗, v,ω)|.

Then, Lemma 2.5 entails that:

|Φ−j(2−ju∗, v,ω)− Φ−j(0, v,ω)| ≤ Cd(ω)2−j |u|
(
log(e + j + 2−j |u|)

) d
2 , (4.62)

where Cd is a positive finite random variable not depending on u. Thus, one can derive
from (4.62), (2.14), (4.59) and (4.60) that:

+∞∑
j=j3+1

2jv|Φ−j(2−ju∗, v,ω)− Φ−j(0, v,ω)| ≤

≤ Cd(ω)|u|
+∞∑

j=j3+1

2−j(1−v)
(
log(e + 1 + j)

) d
2 ≤
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≤ Cd(ω)|u|2−(j3+1)(1−v)
+∞∑
l=0

2−l(1−v)
(
log(e + 2 + l + j3)

) d
2 ≤

≤ C ′d(ω)2j3v
(
log(e + j3)

) d
2 ≤

≤ C ′′d (ω)|u|v
(
log
(
e +

∣∣ log |u|
∣∣)) d

2 , (4.63)

where

C ′d = 2b Cd

+∞∑
l=0

2−l(1−b)
(
log(e + 2 + l)

) d
2 < +∞ ,

and C ′′d = C ′d(log(e + 1
log 2 ))

d
2 . On the other hand, Lemma 2.5, (4.59), (2.14), and (4.60)

imply that:

j3∑
j=1

2jv|Φ−j(2−ju∗, v,ω)− Φ−j(0, v,ω)| ≤

≤ C̃d(ω)

j3∑
j=1

2jv
(
log(e + j + 2−j |u|)

) d
2 =

= C̃d(ω)2(j3+1)v

j3∑
j=1

2−jv
(

log
(
e + (j3 + 1− j) + 2−(j3+1−j)|u|

)) d
2 ≤

≤ C̃ ′d(ω)|u|v
j3∑
j=1

2−jv
(
log(e + j3 + 2j)

) d
2 ≤

≤ C̃ ′′d (ω)|u|v
(
log(e + j3)

) d
2 ≤

≤ C̃ ′′′d (ω)|u|v
(
log
(
e +

∣∣log |u|
∣∣)) d

2 , (4.64)

where C̃d is a positive finite random variable not depending on u, C̃ ′d = 2bC̃d,

C̃ ′′d = C̃ ′d

+∞∑
l=1

2−la
(
log
(
e + 2l

)) d
2 ,

and C̃ ′′′d = (log(e + 1
log 2 ))

d
2 C̃ ′′d . Finally, (4.63) and (4.64) entail that (4.5) holds.

Now, let us show that (4.6) is satisfied. Recall that, for all (v,ω) ∈ (0, 1) × Ω∗, one
has:

Xhf (u, v,ω) =

+∞∑
j=0

2−jv
(
Φj(2

ju∗, v,ω)− Φj(0, v,ω)
)
, (4.65)

where Φj(·, ·,ω) is the infinitely differentiable function on Rd × (0, 1), introduced in
(2.12). Also, recall that the series in (4.65) is uniformly convergent in (u, v) on each
compact subset of R× (0, 1). Next, let us mention that thanks to the convexity property

of the function z 7→ z
d
2 , one has the following inequaty:

∀ (x, y) ∈ R2
+, (x + y)

d
2 ≤ 2

d
2−1
(
x

d
2 + y

d
2

)
. (4.66)

Also, one mentions that the inequality

∀ (x, y, z) ∈ R3
+, log(e + x + yz) ≤ log(e + x + y) + log(e + z) (4.67)
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holds, since (e+x+ yz) ≤ (e+x+ y)(e+ z) and the logarithm is an increasing function.
Using (4.65), the triangle inequality, Lemma 2.5, (4.67) and (4.66), one obtains:

|Xhf (u, v,ω)| ≤ Ĉd(ω)

+∞∑
j=0

2−ja
[

log(e + j + 2j |u|)
] d

2 ≤

≤ Ĉd(ω)

+∞∑
j=0

2−ja
[

log(e + |u|) + log(e + j + 2j)

] d
2

≤

≤ Ĉ ′d(ω)

+∞∑
j=0

2−ja
[(

log(e + |u|)
) d

2 +
(

log(e + j + 2j)
) d

2

]
≤

≤ Ĉ ′′d (ω)
(

log(e + |u|)
) d

2 + Ĉ ′′′d (ω), (4.68)

where Ĉd is a positive finite random variable not depending on u,

Ĉ ′d = 2
d
2−1 Ĉd, Ĉ ′′d =

2a

2a − 1
Ĉ ′d, and Ĉ ′′′d = Ĉ ′d

+∞∑
j=0

2−ja
(

log(e + j + 2j)
) d

2 < +∞ .

It easily results from (4.68) that (4.6) holds. �

Proof of Corollary 4.6. The corollary is a straightforward consequence of Theorem 4.5
and (1.7). �
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ÂÅÉÂËÅÒ-ÀÍÀËIÇ ÌÓËÜÒÈÄÐÎÁÎÂÎÃÎ ÏÐÎÖÅÑÓ Ó ÄÎÂIËÜÍÎÌÓ
ÂIÍÅÐIÂÑÜÊÎÌÓ ÕÀÎÑI

À. ÀÉßØ, ß. ÅÑÌIËI

Àíîòàöiÿ. Âiäîìèé ïðîöåñ ìóëüòèäðîáîâîãî áðîóíiâñüêîãî ðóõó (ìáð) ¹ çðàçêîâèì ïðèêëàäîì
íåïåðåðâíîãî ãàóññiâñüêîãî ïðîöåñó ç íåñòàöiîíàðíèìè ïðèðîñòàìè, ëîêàëüíà ðåãóëÿðíiñòü ÿêîãî
çìiíþ¹òüñÿ âiä òî÷êè äî òî÷êè. Ó ñòàòòi çà äîïîìîãîþ âåéâëåò-ïiäõîäó ïîáóäîâàíî ïðèðîäíå óçà-
ãàëüíåííÿ ìáð, ùî íàëåæèòü äî îäíîðiäíîãî âiíåðiâñüêîãî õàîñó äîâiëüíîãî ïîðÿäêó. Âèâ÷à¹òüñÿ
éîãî ãëîáàëüíà òà ëîêàëüíà ïîâåäiíêà.

ÂÅÉÂËÅÒ-ÀÍÀËÈÇ ÌÓËÜÒÈÄÐÎÁÍÎÃÎ ÏÐÎÖÅÑÑÀ
Â ÏÐÎÈÇÂÎËÜÍÎÌ ÂÈÍÅÐÎÂÑÊÎÌ ÕÀÎÑÅ

À. ÀÉßØ, ß. ÝÑÌÈËÈ

Àííîòàöèÿ. Èçâåñòíûé ïðîöåññ ìóëüòèäðîáíîãî áðîóíîâñêîãî äâèæåíèÿ (ìáä) ÿâëÿåòñÿ îáðàç-
öîâûì ïðèìåðîì íåïðåðûâíîãî ãàóññîâñêîãî ïðîöåññà ñ íåñòàöèîíàðíûìè ïðèðàùåíèÿìè, ëîêàëü-
íàÿ ðåãóëÿðíîñòü êîòîðîãî èçìåíÿåòñÿ îò òî÷êè ê òî÷êå. Â ñòàòüå ñ ïîìîùüþ âåéâëåò-ïîäõîäà
ïîñòðîåíî åñòåñòâåííîå îáîáùåíèå ìáä, êîòîðîå ïðèíàäëåæèò îäíîðîäíîìó âèíåðîâñêîìó õàîñó
ïðîèçâîëüíîãî ïîðÿäêà. Èçó÷àåòñÿ åãî ãëîáàëüíîå è ëîêàëüíîå ïîâåäåíèå.


