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ABSTRACT. In this paper, using the Stein operator Ro given in [17], associated with the normal
product distribution living in the second Wiener chaos, we introduce a new class of polynomials

Poo = {Pn(x) =R31 : n>1}.

We analyze in details the polynomials class Z~, and relate it to Rota’s Umbral calculus by showing
that it is a Sheffer family and enjoys many interesting properties. Lastly, we study the connection
between the polynomial class &, and the non-central probabilistic limit theorems within the second
Wiener chaos.
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1. INTRODUCTION

The motivation of our study comes from the subsequent facts on the Gaussian distribu-
tion. Let N ~ .4#7(0,1) be a standard Gaussian random variable. Consider the following
well known first order differential operator related to the so called Ornstein—Uhlenbeck
operator

(LD)(@) = 2f(2) ~ ['() = % (7% )

acting on a suitable class F of test functions f. A fundamental result in the realm
of Stein method in probabilistic approximations, known as the Stein charactrization of
the Gaussian distribution, reads that for a given random variable F' ~ N if and only if
E[(Lf)(F)] =E[Ff(F)— f/(F)] =0for f € F (in fact, the polynomials class is enough).
The second notable feature of the operator L in connection with the Gaussian distribution
is the following. Paul Malliavin in his book [22, p. 231], for every n € Ny, defines
the so called Hermite polynomial H,, of order n using the relation H,(z) = L"1(z).
For example, the few first Hermite polynomials are given by Ho(z) = 1, Hi(z) = =,
Hy(z) = 22 — 1, H3(x) = 2® — 32, and Hy(r) = 2* — 62 + 3. One of the significant
properties of the Hermite polynomials is that they constitute an orthogonal polynomials

a2
class with respect to the Gaussian measure %dx. The orthogonality property of
the Hermite polynomials can be routinely seen as a direct consequence of the adjoint

operator L* = % which is straightforward computation.

Instead of the Gaussian distribution (living in the first Wiener chaos) we consider
distributions in the second Wiener chaos having a finite number of non-zero coefficients
in the spectral representation, namely random variables of the form

d
Foo =Y M(NZ=1), d>1, (1.1)
k=1

where (Ng)r>1 is a sequence of i.1.d. .47(0,1). Relevant examples of such those random
elements are centered chi-square and normal product distributions corresponding to the
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cases when all A, are equal, and d = 2 where two non-zero coefficients A; = —As respec-
tively. The target distributions of the form (1.1) appear often in the classical framework
of limit theorems of U-statistics, see [30, Chapter 5.5, Section 5.5.2]. Also, recently Bai
& Taqqu in [8] showed that the distributions of the form (1.1) with d = 2 can be realized
as the limit in distribution of the generalized Rosenblatt process

Zyi () = fR Ut(s ) (s - xg)fds)B(dxl)B(dxg)

0
when the exponents (y1,Yy2) approach the boundary of the triangle

A= {(v1,v2)| =1 <v1,v2<—1/2,v1+v2 > -3/2}.

Here, B stands for the Brownian measure, and the prime / indicates the off-diagonal
integration. One of their interesting results reads as

law
Zyiys(1) = N1 X Na, as (y1,v2) = (—1/2,y), —-1<y<-1/2

Recently, the authors of [2], using two different approaches, based on Malliavin calcu-
lus and Fourier analysis, for probability distributions of the form (1.1), introduced the
following so called Stein differential operator of order d (= the number of the non-zero

coefficients)
d+1

Roof () =Y (b1 — a_12) f 77D (@) — agazf(z), (1.2)
1=2
where the coefficients (a;)1<i<a+1, (bi)2<i<a+1 are akin to the random element Fi,
through the relations;

d+1

ar
a = -1 and b = Zl mKr7l+2(Foo)7

and P(z) = xnle(x — Ak). Here k,.(F) stands for the rth cumulant of the random
variable F'. In this paper, the case d = 2 of two non-zero coefficients with the particular
parametrization Ay = —Ay = % is of our interest. The operator Ry, given in (1.2) then
reduces to

R f(2) = Rf(2) = af(z) — () — 2f" (@), (1.3)
Note that in this setup the random variable F,, = N7 X N» (equality in distribution) is
the normal product distribution. The Stein operator (1.3) associated with the normal
product distribution is first introduced by Gaunt in [17]. The normal product distribution
also belongs to a wide class of probability distributions known as the Variance-Gamma
class, consult [18] for further details and development of the Stein characterizations.
Following the Gaussian framework, we define the polynomial class

P ={P,(z) =R"1 : ne Ny} (1.4)

where operator R is the same one as in (1.3). The first fifteenth polynomials P, are
presented in Section 5. In this short note, we study some properties of the polynomials
class &. We derive, among other results, that the class &2 is a Sheffer family of polyno-
mials, hence possess a rich structure, and can be analyzed within the Gian-Carlo Rota’s
umbral calculus. See Subsection 3.2 for definitions. We end the note with connection of
the polynomial class & to the non-central probabilistic limit theorems, and show that
polynomial Ps € & plays a crucial role in the limit theorems when the target distribution
is the normal product random variable N7 x Ns.

2. NORMAL PRODUCT DISTRIBUTION N7 X Ny

In this section, we briefly collect some properties of normal product distribution.
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2.1. Modified Bessel functions of the second kind. The modified Bessel functions
I, and K, with index v of the first and the second kinds respectively are defined as two
independent solutions of the so called modified Bessel differential equation

[R5 fl(2) =2 f"(z) +af'(x) — (2% +v?) f(z) = 0 (2.1)
with the convention RS, 5 = Rarp. We collect the following results on modified Bessel
function of the second kind and the normal product distribution.

(i) It is well known that (see e. g. [32]) the density function pe, of the normal product
random variable is given by

1
Doo(T) = EK0(|x|), r € R,

where Ky be the modified Bessel function of the second kind with the index
v=0.
(ii) The modified Bessel function of the second kind K possess several useful repre-
sentation. Among those, here we state
0, 0>

1 x?

Koflel) = 56355
where G here is the so called Meijer G-function that shares many interesting
properties, see e.g. [1].

(il) £ Ko(z) = —K1(2), Ko(z) ~ —log(z) asz | 0, and Ko(z) ~ \/Fe™® as x — oo.

(iv) The relation —z[Rf](z) = 22" (x)+xf(z)—22 f(z) = [Rarpf](z) holds, where R
as in (1.3) is the Stein operator associated with the normal product distribution.

(v) The characteristic function of the normal product distribution is

Poo(t) = (1+£2) 7"
Hence, the normal product distribution is the unique random variable in the sec-
ond Wiener chaos having only two non-zero coefficients equal with A; = —Ay = 2
(Vl) for n € N, IJQH(Nl X NQ) = E[(Nl X N2)2n} = ((21’L — 1)”)2, K27L(N1 X NQ)
= (277, — 1)' and HQn—l(Nl X NQ) = Kgn_l(Nl X NQ) =0.

N

2.2. The adjoint operator $i*. We recall the following well known finite dimensional
Gaussian integration by parts formulae. For a detailed discussion, the reader is referred
to the lecture note written by Vlad Bally [9].

Lemma 2.1. Let Ny,...,Np be i.i.d. A(0,1). For smooth random variables
F(Ny,...,Np), and (ut(Nl,...,NT))t:LmT
we have the finite dimensional Gaussian integration by parts formula
E((DF,u)) = E(F3(u))
where D is the gradient operator and 6(u) = Zthl ur Ny — Ethl Dyuy denotes the Sko-
rokhod integral in the finite dimension.

Proposition 2.1. Let F,, = N1 X Na, and let oo = poodx be the associated probability
measure on the real line. Consider the second order differential operator
Rf) (@) = zf(2) - f'(z) — 2 f"(2).

Then the adjoint operator R* in the space L*(R, py) is

(R7g)(x) = (Rg)(z) +0(2)g'(z) — zg(z),
where the special function 0 is given by the conditional expectation
Ky(le])
Ko(|])

0(z) = E(NT + N3 | NiN; = z) = 2|z
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Proof. In order to compute the adjoint of R*, we use Lemma 2.1 with u = () = %(%; )

and v = %(%ﬁ) we write

E(f”(N1N2)g(N1N2)N1N2) = E((Df'(N1N2), g(N1N2)u)) =
- E(f'(NlNg)é(g(NlNg)u)) -

— () (s B g, - o))
where
E(f' (N1 Na)g' (N1 No) Ny Ny) =
— e vaa) (o v LI g, - g ) ) )
and
E<f'(N1N2) (g(NlNQ)UV%;_‘Ng)>> = E(<Df(N1N2),g(N1N2)'U>) =

— E(F(NiN2)3(g(NiN2Jv) ) =

= E(f(N1N2) <g(N1N2)N1N2 - g,(N1N2)(N12;N22)>>.

Therefore we have
E(Rf(N1N2)g(N1N2)) = E(f(N1N2)g(N1No) N1 No) — E(f'(N1N2)g(N1Na)) —
— E(f"(N1N2)g(Ny N2) Ny Np) =
= E(f(N1N2)g(N1N2)N1N3) — E(f/(N1N2)g(N1N2)) +
(NF + N3)

+E<f Ny N3) ( (N1N3) 5

— ¢"(N1N3)N Ny — g'(N1N2)>> +

+E(f'(N1N2)g(N1N2)) — E(f(N1N2) (g(N1N2)N1N2 _ g/(NlNz)(]V%;ZVQQ)>) _
= E(f(N1N2)(¢' (N1 N2) (N} + N3) — g" (N1 N2)Ni Ny — ¢'(N1Np)) ) =
= E(F(ViN2) (g (NN2)E(NF + NE | NiNa) = g (NiN2) N1 N = g/ (NiNa)) ).
This implies that 9% g(x) = n(x)g(x) — ¢" (x)a where the conditional expectation
n(z) =E(N? + N3 | NiN; =) — 1

is a special function. In order to compute explicitly the special function 1, we make use
of Lemma 6.1 to write

E(8,(N1N2) (N + N3))

n(@) =E(N; + Nj | NiNy =z) — 1 = (D)

-1

where

y2
E((NZ + N2)8,(N,Ny)) :7J U 22 4 y%)5 (zy)efdz)e'zdy—

LG o)
= + 1y )6, (u)e 21/y du Tdy =
2m R(]R y? (e

L2 ) g1 e 2 2| 5 (|
_ - 27 |yl le~ T dy = — adll ey gy = 2V
27 R(y2+y)e [yl ™"e Y 27TJ0 tve voa T
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by changing variables first with z = u/y and then with v = y2. Therefore

2|z | K (|z|) — Ko(lz])
Ko(|z|) 7

n(z) =

and the result follows at once taking into account the definition of operator fR. ]

3. THE POLYNOMIAL CLASS &

3.1. Some basic properties of polynomials P,. Recall that
P = {P,(x) =R"1 : n >0},

where the Stein operator R associated to the normal product random variable N7 x Np
is given by the second order differential operator Rf(x) = xf(x) — f'(x) — zf"(x). We
start with the following observation on the coefficients of polynomials P,.

Proposition 3.1. For everyn > 1, the polynomial P, € & is of degree n. Also, assume
that

n

Py(z) =) a(n,k)z",  n>1. (3.1)

k=0
Then, for n € N, the following properties hold.
(i) a(n,n) =1, i.e. all polynomials P,, are monic.
(i) a(n,n— (2k — 1)) =0, for all 1 < k < [%E]. In particular, a(n,n — 1) = 0.
(i1i) The doubly indices sequence a(n, k) satisfies in the recursive relation

a(n, k) =a(n —1,k—1)— (k+1)%a(n — 1,k + 1), (3.2)

with two terminal conditions a(n,n) =1, a(n,n—1) = 0. Moreover, the solution
of recursive formula (3.2), for every 0 < k < % (or 51) depending whether n is
even or n is odd, is given by

n—2k+1 i1+1  dig+1 ig—1+1

a(n,n — 2k) Z 212222z3~-- Z iy (3.3)

11=1 ia=1 13=1 =1

(iv) For every n € N,

(n,0) 0, if n is odd, (3.4)
a{n, = i1+1 io+1 . n +1 . . .
(— )n/g Zzl 107 Zz;+1 %Zz§+1 : Zznﬁi_ﬁ i/z’ if nis even.

(v) Forn even,
n/2

nO—4Z — 2k, 2).

Proof. (i) It is straightforward (for example, by an induction argument on n) to see
that for every n € N, we have deg(P,) = n, and moreover a(n,n) = 1. (ii) We again
proceed with an induction argument on (n,k) for 0 < k < n, and n € N. Obviously,
the claim holds for starting values n = 1,2. Assume that it holds for some n € N that
a(n,n— (2k —1)) =0, for all 1 < k < [2H]. We want to show it also holds for n + 1.
Using the very definition of polynomial P, y(x) = RP,(x) = 2P, (x) — P! (x) — 2P/ (z),
and doing some simple computation we infer that

a(n+1,k) =a(n,k—1) — (k+1)%a(n, k +1)
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for 0 < k < n+ 1 with the convention that a(n,k) = 0 for every value 0 > k > n. Now
the claim for n+ 1 easily follows from induction hypothesis. (iii) Using recursive relation
(3.2) we can infer that

a(n,n—2k) =a(n—1,(n—1) —2k) — (n -2k + 1)’a(n —1,(n— 1) —2(k — 1)) =

n—2k i1+1 io+1 ip—1+1
eSS a¥a Ty gl

i1=1  dp=1 iz=1 ir=1
n—2k+2  i1+1  dp+1 ip_o+1
- {(—1)k_1(n—2k+1)2 St sy g Y iil} =
i1=1 =1 i3=1 ik—1=1
n—2k d1+1  ip+1 ie_1+1
:(_1)k{{ DD R i§}+
i1=1 io=1 i3=1 =1
n—2k+2 d1+1  da+1 ip—2+1
+{(n—2k+1)2 Z 1%215223 Z iz—l}}:
i1=1 in=1 iz=1 ip_1=1
n—2k+1 i1+1  di2+1 ir—1+1
=(=DF > G By g Y i
i1=1 io=1 i3=1 =1

(iv) This part is a direct consequence of item (iii), and finally (v) can be obtained directly
from the recursive relation (3.2). O

Lemma 3.1. Let m,n € N. For polynomials P, € &2, the following properties hold.
(1) (RP, 1) (x) = Py (x) = Pooa(z) + P (2).
(i) R(PnPn) = PhRPy, + PnRP, — (22P. P! 4+ «P,Py,). In particular,
R(zP,) = xPyy1 — P, — 22P).
(i) E[Pa(Fao)] = 0.
(iv) For every n € N, it holds that E[Foo Pyy1(Foo)] = 2E[Fxo Pl (Fx)]. In particular,
when n is odd both sides vanish.
(v) Let n be even, and m odd, or vice versa. Then E[P,(Foo)Pn(Fx)] = 0. In
particular,

E[Pn(FOO)(mPn)(FOO)] = E[Pn(FOO)Pn-i-l(FOO)] =0.
This item provides some sort of “weak orthogonality”.

Proof. By very definition of polynomials in the class & using raising operator R it yields
that P, = P,_1—P/,_,—xP/_, for every n > 1. Then items (i), (ii) can be obtained by
doing some straightforward computations, using definition of R operator, and P; (z) = «.
(iil) It holds that E[P,(Fx)] = E[R(Pn-1)(F)], and the later expectation vanishes since
the raising operator R serves as an associated Stein operator for the normal product
distribution. However, to be self-contained, here we present a simple proof base on
Lemma 2.1. Let u = (uj uz)’ = (N1 N2)?, so §(u) = (N + N)/2 — 1. By using the
Gaussian integration by parts formula on L?(R?,y®vy), where vy is the standard Gaussian
measure, we write

E(f”(NlNg)NlNQ) = E(<Df/(N1N2),U>) = E(f/(NlNg)é(u)) =
- E( f’(NlNg)(Nl;rNQ _ 1)) = —E(f'(N1V2)) + E((Df(NiNo),v)) =
= —E(f"(N1N2)) + E(f(N1N2)3(v)) =
= —E(f'(N1N)) + E(f(NiN2)N1N2), v = (3) = $(32),
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since §(v) = NjNy for every function f as soon as the involved expectations exist,
in particular the polynomial functions. (iv) It is a direct consequence of Items (ii),
(iii), and the fact that P,(x) = RP,_1(z). (v) Note that E[P,(Fx)(RPn)(Fx)] =
= E[P(Fs)Pn+1(Fx)], and the later expectation also vanishes relying on item (ii)
Lemma 3.1, and the fact that the random variable F, is a symmetric distribution yields
that all the odd moments F,, vanish. O

We continue with the non-orthogonality result of the polynomials family &2.
Proposition 3.2. The family &2 is not a class of orthogonal polynomials.

Proof. Using Favard Theorem (see [14]), if the family &2 would be a class of orthogonal
polynomials, then there exist numerical constants ¢, d, so that for polynomial P, € &2,
we have

Poi1(z) = (x — ) Po(z) — dp Pr—1(2). (3.5)
On the other hand, by very definition of operator PR, we have also the following relation
Poi1(z) = 2P, (z) — P (z) — xP) (). (3.6)
Hence, ¢, P,(x) = P!(z) + zP)(x) — d,Pno—1(z). Now, taking into account that
deg(P,) = n for all n € N, when ¢, # 0, a degree argument leads to a contradic-

tion. If ¢,, = 0 for some ng € N, then we have necessary d,, = n37 see also Remark 3.2.
This is because of the fact that all polynomials P,, are monic. Now, assume that

n—1
P,_i(z) = Za(n—l,k)gck7 aln—1,n—1)=1.
k=0

Then, using definition of polynomial P, through of the operator R, one can obtain that

Py(z) =2" +a(n—1,n—2)z" "' +
+ i (a(n ~1Lk—1)—(k+1)?%a(n— 1,k + 1)>xk —a(n—1,1).  (3.7)
k=1

On the other hand, relation n§P,,—1(z) = P} (x) + 2P}/ (x) implies that P, 41(z) =
=aP,,(z) —n2P,,_1. Hence,

a(ng + 1,0) = 4a(ng — 1,2) — a(ng — 1,0) = nga(ng — 1,0),
i.e. da(ng —1,2) = (1 +nd)a(no — 1,0), which also leads to a contradiction, because one

side is positive and the other side negative. O

Remark 3.1. It is worth noting that, it is easy to see the class & is not orthogonal with
respect to probability measure induced by random variable F,. For example, we have
E[P(Fx) X Pi(Fso)] = 94 # 0. See also item (v) Lemma 3.1.

We close this section with a neat application of the adjoint operator R*. We present
the following average version of the well known Turan’s inequality in the framework of
orthogonal polynomials.

Proposition 3.3. For every n € N, the following inequality hold
E[P2(Fx)] = E[Pr—1(Fx)Pry1(Fso)]- (3.8)
Proof. According to Proposition 2.1, we can write
E[P,f(Foo)} =E[P,(Foo)LP—1(Fx)] = E[Pro1(Foo) &P (Fx)] =
= E[Ph—1(Foo) £Pn (Foo)] + E[Pn—l(FOO)e(FOO)PrIL(FOO)} — E[Foc Poo1(Foo) Pr(Foo)] =
E[P,.—

Pﬂ 1(FOO)P7I+1(FOO)] + E[Pn—l(Foo)e(Foo)Py/L(Foo)] - E[Foopn—l(Foo)Pn(Foo)L
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where the special function 0(z) = 2|z| % Ky (] iB Hence, we are left to show that

E[Pnfl(FOO)e( ) ( )] > E[FooPan(FOO)Pn<FOO)]'

The later is equivalent to show that

o0

2 j " aPy ()P (1)K (2)da > f 2P+ () Po () Ko () da. (3.9)
0 0

We need also the following integral formula is taken from Gradshetyn and Ryzhik
[21, p. 676]

° 1 1 —

f MK (2)dx = 2“—1r< i ‘2‘+ V)r( + ;‘ V), Ru+1+v)>0.  (3.10)
0

Now assume that P,(z) = Y_j_,a(n,k)z". Then using the integral formula (3.10) to-

gether with some straightforward computation, inequality (3.9) is equivalent with show-

ing that

22ilzlanl (n—1,k—1)2F" 1r( k)r(’;):

k=1 1=0

v

2n—1 k 2

k—2)!!
=2) Elanl (n—1,k— 1)2’“‘11{(2\/1
k=1 =0

E
2

2n
14k (1+k
a(n,Da(n — 1,k —1 — )2k—1r(;)r<;)=

M»

k=11=0
2n  k 2
nHn
= Z a(n,Da(n — 1,k —1 —1)2%! [W] .
k=1 1=0 22
We set
kg )2 k
_ 2
A(n, k) = (k) ;Ea(n,l)a(n—l,k—l), B(n, ;a a(n — 1,k —1).

Hence, we are left to show that

> An, k) > > B(n, k).
1<k<2n—1,k odd 1<k<2n—1,k odd
The last inequality itself, can be shown, using induction on n, together with some
straightforward computations but tedious, the recursive relation (3.2), and the shape
of coefficients a(n, k) given by relation (3.3). O

3.2. Generating function and the Sheffer sequences. In this section, we provide
some fundamental elements of theory of Sheffer class polynomials. For a complete
overview, the reader may consult the monograph [27]. Sequences of polynomials play
a fundamental role in mathematics. One of the most famous classes of polynomial se-
quences is the class of Sheffer sequences, which contains many important sequences such
as those formed by Bernoulli polynomials, Euler polynomials, Abel polynomials, Hermite
polynomials, Laguerre polynomials, etc. and contains the classes of associated sequences
and Appell sequences as two subclasses. Roman et al. in [27, 29] studied the Sheffer
sequences systematically by the theory of modern umbral calculus.

Let K be a field of characteristic zero. Let F be the set of all formal power series in
the variable ¢ over K. Thus an element of F has the form

= i ath (3.11)

k=0
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where a; € K for all k € N:={0,1,2,...}. The order O(f(t)) of a power series f(t) is
the smallest integer & for which the coefficient of t* does not vanish. The series f(t) has
a multiplicative inverse, denoted by f(t)”" or ﬁ, if and only if O(f(¢)) = 0. Then f(¥)

is called an invertible series. The series f(t) has a compositional inverse, denoted by f(t)
and satisfying f(f(¢)) = f(f(¢)) = ¢, if and only if O(f(¢)) = 1. Then f(¢t) is called a
delta series. Let f(t) be a delta series and g(t) be an invertible series of the following

forms:

=3 Fats fo=0, fi #0 (1.20)
n=0 :
and .
g(t) = Zgn%, go # 0. (1.20)
n=0 :

Moreover, for any formal power series f of the form (3.11), the action of f on the
monomials is defined by (f | ™) = a,, for all n > 0. By linearity, the definition can be
easily extended to a general polynomial s(z).

Theorem 3.1 (Shefler sequence [27, Theorem 2.3.1]). Let f(t) be a delta series and let
g(t) be an invertible series. Then there exists a unique sequence sy(x) of polynomials
satisfying the orthogonality conditions

(gt f()" | sn(@)) = cubp, (3.12)

for all n,k > 0, where b, is the Kronecker delta, and (L|p(x)) denote the action
of a linear functional L on a polynomial p(xz). In this case, we say that the sequence
sn(x) in (3.12) is the Sheffer sequence for the pair (g(t), f(t)), or that s,(x) is Sheffer
for (g(t), f(t)). In particular, the Sheffer sequence for (1, f(t)) is called the associated
sequence for f(t) defined by the generating function of the form

_ e tn
n=0 ’

and the Sheffer sequence for (g(t),t) is called the Appell sequence for g(t) defined by the
generating function of the form

— ™ = ZAH(:C)E. (1.7)
n=0

Theorem 3.2 [27, Theorem 2.3.4]. The sequence s,(x) in equation (3.12) is the Sheffer
sequence for the pair (g(t), f(t)) if and only if they admit the exponential generating
function of the form

L o) N~y (ot
g(f(®)) HZ::O n(®) s (3.13)

where f(t) is the compositional inverse of f(t).

Now, consider the class & of polynomials P,. Let G denotes the generating function,
i.e.

G(t,xz) = Z Pn(aj)%n'

n>0

Theorem 3.3. For the random variable Fo, = Ny X No consider the associated family
of polynomials & given by (1.4). Then, the family & is Sheffer for the pair

(F(t). 9(t)) = (cothl(i), ﬂ%)
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Proof. Note that the generating function G satisfies in the following second order PDE

d d d
o <xd$G(t, a:)) =zG(t,z) — %G(t, x),

ie.
Gy =2G — G, — 2G4y (3.14)

Hence, the PDE (3.14) is just the associated PDE, scaled in space, in the Feynman—Kac

formula for the squared Bessel process with index & = 2, and therefore [10, Theorem 5.4.2]

immediately implies that

© Soth(E)

cosh(t)’

Therefore f(t) = coth™' (%) in the representation (3.13), and moreover, g(t) =

G(t,z) =

1
T2
a direct consequence of the hyper trigonometric identity sinh(cosh_l(t)) =Vt2-1. O

is

A polynomial set &2 = {P, },>0 (i.e. deg(P,) = n for all n > 0) is said to be quasi-
monomial if there are two operators ‘R, and £ independent of n such that

R(Po)(x) = Pusi(z), and £(Po)(z) = Puy(2). (3.15)

In other words, operators R and £ play the similar roles to the multiplicative and deriv-
ative operators, respectively, on monomials. We refer to the £ and R operators as the
descending (or lowering) and ascending (or raising) operators associated with the polyno-
mial set &2. A fundamental result (see [12, Theorem 2.1]) tells that every polynomial set
is quasi-monomial in the above sense. The next corollary aims to take the advantage of
being Sheffer the polynomial set & to provide an explicit form of the associated lowering
operator £.

Corollary 3.1. For the Sheffer family &2 of polynomials P,, associated to random vari-
able Foo = N7 X No, the lowering operator, i.e. £LP, = nP,_1 forn > 1 is given by

B B 1 1 _ t2k+1
£=f(D), and f(t)=coth (t>_§2k+1’

where D stands for derivative operator.

Proof. This is an application of [27, Theorem 2.3.7]. |

The polynomial set & appearing in Corollary 3.1 is called £-Appell polynomial set
since

LP,=nP,_1, VYn>1.

This notion generalizes the classical concept of the Appell polynomial set meaning that
d%Pn(z) = nP,_1(x) for every n > 1. Among the classical Appell polynomials set,
we recall the monomials set {z"},,>0, Hermite polynomials, the Bernoulli polynomials,
and the Euler polynomials. For the application of Appell polynomials in noncentral
probabilistic limit theorems, we refer the reader to [4].

The next corollary provides more information on the constant coefficients of the even
degree polynomials P, € &.

Corollary 3.2. Let & = {P, : n > 1} be the associated Sheffer family of the random
variable Foy = N1 X Ny. Assume that E,,n > 1 stands for Euler numbers (see [15,
Section 1.14, p. 48]). Then

Cl(27’L, 0) = Egn, n > 1.
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Hence, the following representation of even Fuler numbers is in order, for n € N even
number,
i1+l ip+1 iny2—1+1

”/2211212213 SR D (3.16)

’Ll 1 7,2 1 23 1 in/gzl

Proof. According to [27, Theorem 2.3.5],

1 £ — n
Po(w) = o (a(FE)T () [ 2")a"
k=0 "
Hence, the result follows at once by taking into account Theorem 3.3, and Taylor series
expansion of Euler numbers

1

= E i
cosh(t) 62t +1 nZ>O

3.3. Orthogonal Sheffer polynomial sequences. There are several charactrizations
of the orthogonal Sheffer polynomial sequences. Here we mentioned the one in terms
of their generating function originally due to Sheffer (1939) [31]. Consider a Sheffer
polynomial sequence {s,(z)},>0 associated to the pair (g(t), f(t)), see Theorem 3.2,
with the generating function

RN ST T N - t
G(t,z) 70 ZO — (3.17)

Theorem 3.4. A Sheffer polynomial sequence {sy,(x)}n>0 s orthogonal if and only if
its generating function G(t,x) is one of the following forms:

G(t,z) = p(1 - bt)cexp{ dl—i—alftx} abep # 0, (3.18)

G(t,z) = pexp{t(b+ az) + ct*}, acp # 0, (3.19)

G(t, ) = ue(1 — bt)*+ae, abep # 0, (3.20)
n di+%Z " do—%

g(t,z) = u(l — ) (1 — b) , abct £ 0, b # c. (3.21)
c

Among the well known Sheffer orthogonal polynomial sequences are Laguerre, Her-
mite, Charlier, Meizner, Meizner—Pollaczek and Krawtchouk polynomials. See the excel-
lent textbooks [14, 20] for definitions and more information. Theorem 3.4 can be directly
performed to give an alternative proof of Proposition 3.2. The reader is also refereed
to references [13, 33| for related results on the associated orthogonal polynomials with
respect to the probability measure F,, = N1 X N5 on the real line.

Corollary 3.3. Let Foo = N1 X No, where N1, Ny ~ A(0,1) are independent, and the
associated polynomials set & is given by (1.4). Then polynomial family & is Sheffer but
not orthogonal.

Remark 3.2. [31] A necessary and sufficient condition for {s,(z)},>0 to be a orthogo-
nal Sheffer family is that the monic recursion coefficients a,, and b, in the three-term
recurrence relation s,41(x) = (¢ — ay)$n(x) — bpsp—1(z) have the form

2
Gpty1 =cC1 +con, and by41 =cz3n+cyn’, C1,...,c4 €ER

with b,41 > 0, in other words a,, is at most linear in n and that b, is at most quadratic
in n.
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4. CONNECTION WITH WEAK CONVERGENCE ON THE SECOND WIENER CHAOS

4.1. Normal approximation with higher even moments. The aim of this section is
to build a bridge between the Sheffer family of polynomials & given by (1.4) associated to
target random variable F,, = N1 X N3, and the non-central limit theorems on the second
Wiener chaos. We start with a striking result appearing in 2005 known nowadays as
the fourth moment Theorem due to Nualart & Peccati [25] stating that for a normalized
sequence {F}, },,>1, meaning that E[F2] = 1 for all n > 1, in a fixed Wiener chaos of order
p > 2, the weak convergence F,, towards .47(0,1) is equivalent with convergence of the
fourth moments E[F] — 3(= E[.#(0,1)%]). In the case of normal approximation on the
Wiener chaoses, the authors of [6] introduced a novel family of special polynomials that
characterizes the weak convergence of the sequence {F,},>1 towards standard normal
distribution. Assume that {F),},>1 is a sequence of random elements in the fixed Wiener
chaos of order p > 2 such that E[F?] = 1 for all n > 1. Following [6] we consider the family
2>¢ of polynomials defined as follows: for every k > 2, define the monic polynomial Wy,
as

Wi(z) = (2k — 1) (x f; Hy () Hy—o (t)dt — Hk(m)Hk_g(x)>, (4.1)

where Hj, is the kth Hermite polynomial, and set
Dog = {P \ P(z) =Y o Wile); m>2, o > o}. (4.2)
k=2

Then, one of the main findings of [6] states that the polynomial family 2> character-
izes the normal approximation on the Wiener chaoses in the sense that the following
statements are equivalent:

@): F, 2% 4(0,1).
(IT): (0 <)E[P(F,)] — E[P(4(0,1))] (= 0) for some P € 2>y.
One of the significant consequences of the aforementioned equivalence is the following

generalization of the Nualart—Peccati fourth moment criterion. The symbol d7y stands
for the total variation distance.

Theorem 4.1 (Even moment Theorem [6]). Let {F),},>1 be a sequence of random ele-
ments in the fized Wiener chaos of order p > 2, and that E[F?] = 1 for alln > 1. Let
N ~ A4(0,1). Then the following asymptotic statements are equivalent:

(I): F, =% N.

(IT): moy(F,) = E[F2*] = marp(N) = (2k — 1)!L.

Furthermore, for some constant C, independent of n, the following estimate in the total
variation probability metric takes place

dry (Foy H(0,1)) <c JELF2H] — (2 — D)L,

4.2. Convergence towards N; X Ny: cumulants criterion. In what follows, D and
L (L71) stand for the Malliavin derivative operator, the infinitesimal Ornstein-Uhlenbeck
generator (the pseudo-inverse of operator L) respectively. Next, we define the iterated
Gamma operators (see the excellent monograph [23] for a complete overview on the topic
as well as the non-explained notations) as follows: for a “smooth” random variable F' in
the sense of Malliavin calculus, define I'g(F) = F, and I'.(F) = (DF,—DL™'T',_1(F))¢
for r > 1, where § is the underlying separable Hilbert space. Also, the useful fact
Kr(F) = (r — DIET,—1(F)] is well known, see [23, Theorem 8.4.3] where k,(F') stands
for the rth cumulant of the random variable F'.

We continue with the following non-central convergence towards the target distribution
F. = Nj X N3 in terms of the convergences of finitely many cumulants/moments. In the
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framework of the second Wiener chaos, it has been first proven in [24] using the method
of complex analysis. For a rather general setup using the iterated Gamma operators and
the Malliavin integration by parts formulae, see [7]. Also, for quantitative Berry—Esseen
estimates see the recent works [3, 19], and [5, 16] for the free counterpart statements.

Theorem 4.2. Let {F,},>1 be a centered sequence of random elements in a finite direct
sum of Wiener chaoses such that E[F?] =1 for allm > 1. Then, the following statements
are equivalent.

(I): sequence F,, converges in distribution towards Fs, ~ N1 X Nj.
(IT): as n — oo the following asymptotic relations hold:
(1) KB(Fn) - 0’
(2) A(F,) = Var(Ty(F,) — F,) — 0.
Whenever the sequence {Fy,}n,>1 belongs to the second Wiener chaos, the quantity A(F,,)
appearing at item (2) can be replaced with

F7 F’L
A'(F,) = KGE_)' ) — 2K4(3' ) + ko (Fp). (4.3)
The following proposition aims to provide a direct link between the Sheffer polyno-
mial class & and Theorem 4.2. The Wasserstein—2 distance between two probability

distributions @1, Q2 on (R, B(R)) is given by
. 1/2
(@1, @) = nf {E((%1 — X2)°) 7}

where the supremum is taken over the random pairs (X7, X5) defined on the same classical
probability spaces (Q, F,P) with marginal distributions @; and Q-.

Proposition 4.1. Let {F,},>1 be a sequence in the second Wiener chaos such that
E[F2] = 1 for all n > 1. Consider polynomial Ps(z) = 2% — 552* + 33122 — 61 € 2.
Then, as n tends to infinity, the following statements are equivalent.

(I): sequence F,, converges in distribution towards Fs, ~ N1 X Na.

(II): E[F2] — 9, and E[FF] — 225.

(III): (0 <) E[Ps(Fn)] — E[Ps(Fi)] (= 0).

In other words, polynomial Ps captures at the same time the two necessary and sufficient
conditions for convergence towards Fu appearing in Theorem 4.2. Furthermore, the
following quantitive estimate in Wasserstein—2 distance holds: for n > 1,

dvw, (Fp, Fso) < v/ Ps(Fr) <c \/(E[F,Ef] —225) — 55(E[F4] - 9). (4.4)

Proof. Implication (I) = (II) is just an application of the continuous mapping theo-
rem, and the hypercontractivity property of the Wiener chaoses (see [23, Theorem 2.7.2,
p. 36]). (II) < (III) Using the relation between moments and cumulants of random
variables (see [26, p. 259]) and straightforward computation, and taking into account
that E[Ps(F)] = 0, it yields that

E[Ps(F,)] = (E[FS] — 225) — 55(E[F] —9) =
=5IA'(F,) + 10&3(F,) >0 (4.5)

under the lights of Item 2 at Theorem 4.2, and the fact that F;, being in the second Wiener
chaos. Finally implication (ITI) = (I) together with the estimate (4.4) is borrowed from
[5, Proposition 5.1]. O

Remark 4.1. The following remarks are of independent interests. Let F' be a random
element in the second Wiener chaos with the second moment E[F?] = 1.
(a) The crucial relations

(0 <)E[Ps(F)] = 5!A(F) 4 10k3(F) = 5!Var(T'y(F) — F) + 10«3 (F).
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appearing in Proposition 4.1 can be directly deduce using the Malliavin integration by
part formulae instead of the relation between moments and cumulants. In fact, using
very definition of polynomials in the family & thorough the rising operator R, and also
applying twice the Malliavin integration by parts formula [23, Theorem 2.9.1], we can
write (to follow incoming computation, one has to note that E[F] = 0, and E[I';(F)] =
=E[F?]=1)
E[Ps(F)] = E[RPs5(F)] = E[FP5(F) — P5(F) — FP{(F)] =

= E[P'(F)(T2(F) — E[[2(F)] — F)] + E[C2(F)] E[PS (F)] =

= E[P(F)(T2(F) — E[C2(F)] = F)] + 10&3(F). (4.6)
As a direct consequence, in order to have Var(I'y(F') — F) in the very last right hand side
of relation (4.6), there must be one more copy of the random variable I'y (F')—E[I'y(F)] — F

inside the quantity P{(F'). Now, note that for F = I5(f) being in the second Wiener
chaos,

T, (F) ~ () = (2 f &0 f), r=1,

which implies that random variable I'y(F) — E[I'2(F)] — F belongs to the second Wiener
chaos. Now, taking into account orthogonality of the Wiener chaoses, in order to com-
pute E[PY(F)(T'2(F) — E[I'2(F)] — F)], one needs only to understand the projection of
random variable PY(F') on the second Wiener chaos. Since, F' is a multiple integral,
and P! is a polynomial, so random variable P/ (F) is smooth in the sense of Malliavin
differentiability. Hence, one can use Stroock’s formula [23, Corollary 2.7.8] to compute
the second projection. We have

Ps(x) = 2° — 302® +- 61z, = P!(x)=20(2® - 9z).
Hence, P/(F) = Y>_ I,(gp), where

ga(t1, 1) = %E[6F(Dt1F)(Dt2F) + (3F*-9)D} ,, F].
For example,
E[6F (D, F)(D, F)] = 6 x 2 X 2E[I5(f) x I1 (f(t1,.)) x I1 (f(t2,.))] =
=24E[L(f) x L(f(t1,.) ® f(t2,.))] =
=24 x 2(f, f(t,.) ® f(t2,.)) =
=6x 23(f o f)(tl,tQ)-

The similar computations can be done for the other term. All together imply that

ga(tn,t2) = 51(2* (£ 97 1) (1. 12) = F(1.12) ).

The later is exactly the kernel of random element I'y(F') — E[['2(F)] — F.
(b) Assume that Fo, ~ Nj X Ny. Then

2% — 11025 = 2% — E[F3] = Ps(x) + 140 Ps(z) + 4214 Py(z) + 24940 Py ().
This in turns implies that

However, in general, for a random element F in the second Wiener chaos with E[F?] = 1,
unlike the quantity E[Ps(F)], the expectation E[Ps(F’)] can take negative values too. For
example, assume that G is an independent copy of F,. Consider, for every t € [0, 1],

the random element
F,=VtFe +V1 —tGs
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260

FIGURE 1. Q4(t) = 15120¢* — 30240¢3 + 19152¢? — 4032¢

Note that F} belongs to the second Wiener chaos, and that law(F};) # law(F,) for every
t € (0,1). Define the auxiliary function Q4(t) := E[Ps(F})]. Using MATLAB, we obtain
that
Qa(t) = 15120* — 30240 ¢ 4 191522 — 4032t.

The graph of the polynomial @4 is shown in Figure 1. We note that Q4(¢) < 0 for
every t € [0,1], and furthermore Q4(0) = E[Ps(Gw)] = Q4(1) = E[P3(Fx)] = 0. As a
conclusion, this line of argument cannot be useful to justify the fact that convergences
of the fourth and the eighth moments are enough to declare convergence in distribution.
See [5], and also the forthcoming remark.

Definition 4.1. Let F, ~ N7 x Nyo. We say that a polynomial P (of degree > 3)
characterizes the law of F, whenever E[P(F)] = 0 for some random element F' inside
the second Wiener chaos so that E[F?] = 1 then F ~ F,. Also, we say that polynomial
P sequentially characterizes the law of Fi, whenever E[P(F,,)] — 0 for some normalized
random sequence { F, },>1 inside the second Wiener chaos then F,, — F in distribution.

Remark 4.2. The aim of the remark is to clarify the role of other polynomials P, € &
in the characterization of the normal product distribution in the sense of Definition 4.1.
We have already shown that when F' is a normalized element in the second Wiener with
E[Ps;(F)] = 0 then F is necessarily distributed as the normal product distribution. For
the polynomial Pg, we consider the random element F' in the second Wiener chaos of the
form

1 9 1 9 1 9 N2+ N2 —2N?,

\/§(N_1 1)+ \/ﬁ(Nl 1)+ \/ﬁ(NQ 1) = Nib .
We found the element F' by using a random search algorithm. Note that E[F'?] = 1, and
some straightforward computations yield that E[Py(F)] = E[Ps(F)] = 0, and furthermore
law(F') # law(F) where Foy ~ N1 X N3. For the random variable F' in (4.7) we have
that

F= (4.7)

aw 1
oy E(GlGQ + G5Gy)

where (G1, Ga, G3,G4) is Gaussian vector with zero mean and covariance matrix
1 0 1 -1

0 1 -1 1
(Cij)lﬁiﬁjﬁ‘l = 1 -1 1 0

-1 1 0 1



66 E. AZMOODEH, D. GASBARRA

with the Hankel matriz form E(G;G;) = C(i+j) withC(2) = C(8) =1,C(3) = C(7) =0,
C(4) =C(6) =1, C(5) = —1, is the normalized sum of two dependent copies of N3 x Ny
random variables. One possibility for finding one root E[Ps,, (F')] = 0 other than normal

product distribution for higher values of n is to consider polynomials (see also item (b)
of Remark 4.1)

On(t) = E[Pon(F})] = E[Pgn (\/EFOO n \/ﬁGm)], telo,1]

where G, is an independent copy of F,. It is easy to see that @), is a polynomial in
t so that deg(Q,) = n when n is even, and deg(Q,,) = n — 1 when n is odd, and hence
deg(Q,,) is always even. See Figure 2 for the graphs of polynomials @, for n = 5,6,7
on the interval [0,1]. As it can be seen that polynomials @5, Qs and Q7 have at least
one real root in the open interval (0,1). Moreover, for every n > 5 one can show that
polynomial @,, is of the form

Qn(t) = Yo (=D)Fb(n, k) tF, n even,
SIS DR e k) £, odd,

where coefficients b(n, k) are all positive (non-zero) real numbers for every 1 < k < n (or
n — 1) depending whether n is even or odd. Hence, as a direct consequence the number
of sign changes in Q,(z + 0) = Q,(z) = deg(Q,) — 1 which is always an odd number.
Furthermore Q,(0) = @,(1) = 0. This directs one to the possible use of the Budan—
Fourier Theorem on the positive real roots of polynomials, and we leave it for further
investigation. Finally, note that since the distribution F, is symmetric, and polynomials
P, € & for k > 3 being odd contain only odd powers of x, so the odd degree polynomials
P,, cannot be used in characterization of F, in the above sense.

¥ I |
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FIGURE 2. Graphs of polynomials Qs, Qs, Q7

5. APPENDIX A
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Po(l‘)
Pl(df)

I
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Py(z) = 2? — 1,
Ps(z) = 2* — b,
Py(x) = x* — 142” 4 5,
Ps(z) = 2° — 302° + 612,
Ps(x) = 2% — 552% 4 33122 — 61,
Pr(z) = 27 — 912° 4 12112% — 1385z,
Py(r) = 2® — 1402° + 34862* — 1228427 + 1385,
Py(x) = 2% — 20427 4 85262 — 680602° + 50521z,
Pio(x) = 20 — 2852% + 1852225 — 2812102 + 66306122 — 50521,
Pyi(z) = o't — 3852% + 3676227 — 9480022° + 516242123 — 2702765z,
Pio(x) = 2'? — 50620 + 679472% — 274934025 + 288624712 — 4916455422 + 2702765,
Pyi3(z) = 2% — 6502 + 11854727 — 70979482" + 12783871125 — 51096409023 +

+ 199360981z,
Pry(z) = 2™ — 8192' + 19719720 — 167002552° + 4756381632° — 37069318652 +
+ 479803779122 — 199360981,
Pi5(z) = 2 — 10152 4 3151332 — 3641995527 + 154445448327 — 208299057332° +
4 641089476332° — 193915121442

6. APPENDIX B

Lemma 6.1. Consider a random variable X € L*(P) and a random vector Y € R? with
continuous density py (u). Then
E(X5,(Y))
EX|Y=u)= L cL'(RY Py (6.1)
where 8,(y) = do(y — u), 8¢ is the Dirac delta function, and E(8,(Y)) = py (u) is the
density of Y.

Proof. Note first that by definition of the Dirac delta
EE.(V) = | 8uwpy 1)y = pr (.

Also, for any bounded continuous test function ¢ : R — R

o[,
:J E(X80(Y —u))

py (u)
Using Fubini theorem with the generalized function 8y is justified as it follows: for a
sequence of mollifiers with compact support 1,, — 8¢ (in distribution), for example

do(Y(w) — u)g(u)du)X(w)P(dw) =

g(uw)py (v)du. (6.2)

d
() = nt [0 = nlal)

we have
J E(nn(Y - u)X)
R4

py (u)

wpy (u)du= |

Q

(fRd M (Y (w) = “)g(u)dU>X(w)P(dw) —
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JQ( y 8o (Y (w) — u)g(u)du)X(w)p(dw)

since the measure P(dw)n, (Y (w)—u)du converges in distribution to P(dw) dy () (u)du.
Note also that the sequence of functions

Pn(u) = py () T E(Ma (Y (w) — u)X)

is bounded in L!(R%, Py), and since the unit ball of L'(R?, Py) is weakly compact, the
sequence p,(u) converges weakly in L!(R%, Py) towards (6.1) which satisfies (6.2). The
results extends to all bounded measurable g by the standard monotone class argument.

O
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I[IPO HOBUM KJIAC LIE®®EPA IIOJIIHOMIB, I[IOB’SI3AHUX
I3 PO3IIOAIJIOM HOPMAJIBHOTO JOBYTKY

E. ABMVYJIEX, /T. TACBAPPA

AHoTALIA. YV niit poGori 3a gomomororo omeparopa Creitna Moo, 33Kanoro B [17] Ta mos’s3aHoro 3
PO3IOAITIOM HOPMAJIBHOI'O JOOYTKY, IO KUBE y APYroMY BiHEPiBCBKOMY XaoCi, MU BBOJMMO HOBHUIH KJac
OJIIHOMIB
Poo ={Pn(x) =Rl : n>1}.

Mu [OKJIAIHO aHAJIBYEMO KJAC TOMIHOMIB Pop Ta BCTAHOBJIIOEMO HOTO 3B’I30K i3 MIHH08UM YUCAEHHAM
Potu, nokaszyouu, mo BiH € cim’ero [lledpepa Ta mae 6araro mikapux BiactuBocteil. Hapemi, Mmu BuB4a-
€MO 3B’S30K MiXK KJIACOM MOJIHOMIB oo Ta HEIEHTPAJILHUME HMOBIPHICHEMEU IDAHHTHHMH TEOPEMAMH
Y APYTOMY BiHEPiBCBKOMY Xaoci.

O HOBOM KJIACCE IME®®EPA IIOJIMHOMOB, CBfA3AHHBIX
C PACIIPEAEJIEHVUEM HOPMAJIBHOTO ITPOMU3BEJIEHNA

2. ABMY/JIEX, JI. TACBAPPA

AnHOTALMS. B Hacrosmeif pabore ¢ nomormpio oneparopa Creiina Roo, 3a1auH0r0 B [17] U cBA3aHHOTO
C pacupe/esieHneM HOPMAJbHOIO MPOU3BEIEHNs, >KUBYIIET0 BO BTOPOM BHHEPOBCKOM Xa0Ce, MbI BBOJIUM
HOBBIH KJIacC MOJIMHOMOB
Poo = {Pn(x) =R31 :n>1}

MBI J€TANBHO AHAJIUIUPYEM KJIACC TOJUHOMOB Poo M yCTAHABIUBAEM €T0 CBA3D C MEHEBBIM UCHUCAE-
Huem POTBI, MTOKa3BIBas, UTO OH ABJAETC cemelicmeom Llefdepa n obnagaer MHOTUMA HHTEPECHBIMHU
CBOHCTBAMHU. HaKOHeL{, MBI U3y4a€M CBA3b MEXKAY KJIACCOM IIOJIMHOMOB Woo U HEICHTPAJIBHBIMU BEPO-
STHOCTHBIMU IIPeeIbHBIMU T€OPEMaMH BO BTOPOM BHHEPOBCKOM XaocCe.



