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ABSTRACT. Continuous time random walks (CTRWs) have random waiting times between particle
jumps. Based on Ehrenfest—Brillouin-type model motivated by economics, we define the correlated
CTRW that converge to the fractional Jacobi diffusion Y (E(t)), t > 0, defined as a time change of
Jacobi diffusion process Y (¢) to the inverse E(t) of the standard stable subordinator. In the CTRW
considered in this paper, the jumps are correlated so that in the limit the outer process Y (¢) is not
a Lévy process but a diffusion process with non-independent increments. The waiting times between
jumps are selected from the domain of attraction of a stable law, so that the correlated CTRWs with
these waiting times converge to Y (E(t)).
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1. INTRODUCTION

Recent development of theory and applications of the anomalous diffusion have often
been motivated by models for tracking movements of the state-changing particle, assum-
ing random waiting times between its transitions from one state to another (jumps).
Such models are known as continuous time random walks (CTRWs). When jumps and
waiting times are independent, the CTRW is called decoupled. For more information
and applications of coupled and uncoupled CTRW we refer to [5, 16].

In the simplest case when the particle jumps Y7,...,Y,,,... are independent and iden-
tically distributed (iid), the random walk S(n) = Y7 + ... +Y,, converges to either the
Brownian motion or a stable Lévy process [19, Chapter 4]. More precisely, if the waiting
times between particle jumps are modeled by iid random variables G4y, ...G,, from the
domain of attraction of a positively skewed stable law with stability index 0 < 3 < 1, the
CTRW process S(N(t)), where T(n) = G1 + ...+ Gy, N(t) = max{n > 0: T(n) < t},
gives the location of a particle at time ¢ > 0. Then by applying the continuous map-
ping argument (see [19, Theorem 4.19]), it follows that with proper scaling, S(N(|ct]))
converges as ¢ — 00, to A(E(t)), where A is either the Brownian motion or a stable
Lévy process, and FE(t) is the inverse of a standard (-stable subordinator (D(t), ¢ > 0).
Meerschaert and colleagues have shown the convergence to hold in M7 and J; Skorokhod
topology ([17, 25]), and have obtained other Lévy processes as the outer process in the
limit by employing triangular arrays [18].

CTRWs were first proposed in 1965 by Montroll and Weiss in [21] and developed
further in [9, 20, 22] and [23]. Correlated CTRWSs are obtained when the particle jumps or
waiting times in CTRW are correlated. Correlated particle jumps given by the stationary
linear process were considered in [15], where the outer process in the limit was either
a stable Lévy process or a linear fractional stable motion, depending on the strength
of the dependence in the particle jump sequence. Situation when the jump distribution
depends on the current particle position was treated in [10], where Kolokoltsov developed
the theory of subordination of Markov processes by the hitting-time process and showed
that this procedure led to generalized fractional evolutions. More general controlled
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CTRWs were developed in [11]. The case of correlated waiting times in CTRW model
was considered in [26].

Applications of correlated CTRW with time averaged waiting times in statistical me-
chanics were studied in [14], and investigation of limiting correlated CTRW processes
was considered in [1] and [24]. In [24], strongly motivated by applications in biology and
physics, the terms CTRW and correlated CTRW and their exploration were placed in
a slightly different and broader environment than in this paper. Namely, the compo-
sition of the outer continuous time Markov process and the inner inverse of the stable
subordinator is referred to as the CTRW. In our approach this corresponds to a frac-
tional weak limit of what we call CTRW. In the construction of correlated CTRW in
[24], the authors begin with a discrete time random walk in continuous space with iid
jump lengths. This process is then generalized by allowing the correlation between jump
lengths, by the means of a non-random function called the correlation kernel. In such
process the discrete time is replaced by a continuous time, and for the correlation kernel
the power-law is chosen. The correlation is introduced in the waiting time structure as
well. Finally, the correlated CTRW is defined by combining the inverse of correlated
waiting time process with a correlated motion process. Such construction incorporates
limiting process of correlated CTRW observed in this paper.

In the recent paper [12], the correlated CTRWSs converging to fractional Pearson diffu-
sions have been constructed using the Laplace-Bernoulli urn scheme and Wright-Fischer
genetic model [8]. Fractional Pearson diffusions are obtained via a time change to the in-
verse stable subordinator in classical Pearson diffusions that are unique strong solutions
of the stochastic differential equation (SDE) with polynomial coefficients and standard
Brownian motion (W (t), ¢t > 0) as the driving process:

dX (1) = —0(X(t) — w)dt + /20(62X2(1) + b1 X (1) + bo)dW (1), t>0,

where bg, b1,by € R are such that the square root is well defined on the diffusion state
space (I,L), u € R is the mean of the corresponding stationary distribution with the
density m(x) satisfying the Pearson differential equation

w'(z)/m(z) = [a(z) — ¥ (2)]/[b(x)] = [(a1 — 2b2)z + (ag — b1)]/[b22® + brz + bo]

and 8 > 0 is the autocorrelation parameter, i.e. the scaling of time determining the
speed of the reversion to the stationary mean. Pearson diffusions are categorized into six
subfamilies (see e. g. [3] and [13]). The Jacobi diffusion considered in this paper is one of
the six subfamilies, and its Beta stationary distribution arises in the model motivated by
economics, particle physics, and genetics. The model based on the Ehrenfest—Brillouin
Markov chain is used in this paper to construct CTRW that converge to the fractional
Jacobi diffusion. This construction is different from the ones in [12] and is motivated
by applications to economics, where the Markov chain is used to model the movement
of objects among states, with the moves separated by waiting times with a heavy-tailed
distribution.

The paper is organized as follows. Section 2 provides the details on the Jacobi diffu-
sion and fractional Jacobi diffusion and gives an overview of the general approach to the
construction of Markov chains that converge to Feller processes. In Section 3, Ehrenfest—
Brillouin Markov chain is introduced, then specially transformed and re-scaled to con-
verge to the Jacobi diffusion. Finally, in Section 4, the correlated CTRW is constructed,
and its convergence to the fractional Jacobi diffusion is proven.

2. JACOBI DIFFUSION AND FRACTIONAL JACOBI DIFFUSION
The Jacobi diffusion Y = (Y (¢), t > 0) is the strong solution of the SDE
dY (t) = —y (Y (t) — w)dt + /2y8Y (t)(1 = Y (£))dW (t), t > 0.
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Its state space is [0, 1] and infinitesimal generator is

Af) =~y - W) + 3@V -)f" ), feCHD), (1)

where C3([0,1]) is the space of three times continuously differentiable real-valued func-
tions on [0, 1] with compact support.
Its invariant distribution is the Beta distribution with the density function

1 B 1—n
flz) = mxs 1(1 —x)3

5

where B(%, FT”) is the standard Beta function.
The transition density of the time-homogeneous diffusion

“Ioy(z), 0<p<1, v,8>0, (2.2)

d
(e tiy) = P(Y(t) < 2[Y(0) =y)
solves the Cauchy problem for the backward Kolmogorov equation:

op(z, tyy) .
5 = Ap(z,t;y)

with space-varying polynomial coefficients and the point-source initial condition
p(z,0;y) = 8(y).

For 0 < B < 1, the fractional Jacobi diffusion (Y (¢), ¢ > 0) is obtained by a non-
Markovian time-change E(t) independent of Y (¢), i.e.

Ya(t) == Y(E(t), t>0,

where E(t) = inf{x > 0: D(x) > t} is the inverse of the standard B-stable Lévy subor-
dinator (D(t), t > 0), 0 < B < 1, with the Laplace transform E[e=*P®)] = exp{—tsP},
s > 0. Since fractional diffusion rests for periods of time with non-exponential distribu-
tion, it is clearly non-Markovian. We say that fractional diffusion Y} (¢) has a transition
density pg(z, t;y) if

POB() € BIYR(O) = 9) = | pa(astin)ds

for any Borel subset B of its state space.

The generator of the Jacobi diffusion has a purely discrete spectrum, consisting of
infinitely many simple eigenvalues (A,, n € N) (see [13]), and the corresponding or-
thonormal eigenfunctions (Q,(z),n € N), are the Jacobi orthogonal polynomials. The
spectral representations of the transition density of the Jacobi diffusion in terms of the
infinite sum including the corresponding eigenvalues and orthogonal polynomials is well
known (see e.g. [8]) and is used in [13] to obtain the spectral representation of transition
density of fractional diffusion and explicit strong solutions of the corresponding fractional
Cauchy problems for both backward and forward Kolmogorov equations.

We finish this section with a brief overview of methodology used to prove the conver-
gence of specially constructed Markov chain to Jacobi diffusion. We consider a suitable
homogeneous, irreducible and aperiodic birth-and-death Markov chain with the finite
state space S = {0,1,2,...,n} and only three non-null one-step transition probabilities:
the probability of transition from state i to state (¢ + 1), to state (i — 1) or staying in
the same state i. Besides its starting distribution and the one-step transition matrix, the
dynamics of such chain can be described by its transition operator T":

TF(i) = (T)(i) = f Wi, dy)f(y). i€ S, (2.3)

where p is the corresponding probability kernel on a measurable space (S, S) and f: S — R
is assumed to be measurable and either bounded or nonnegative (for more details we refer
to [6, Chapter 19]).
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In order to obtain diffusion as the scaling limit of the suitably chosen Markov chain
with known transition operator, we state the basic result on which our construction relies.
Let D(S) be the space of right continuous functions with left limits defined on RT with
values in S endowed with Skorokhod J; topology. Since the state space of the Jacobi
diffusion is the interval [0, 1], we will only consider Banach space of bounded continuous
functions on S = [0, 1] with the supremum norm.

For a closed operator A with the domain D, a core of operator A is a linear subspace
D C D such that the restriction A|p has closure A. In that case, A is clearly uniquely
determined by its restriction .A|p. Note that the Jacobi diffusion satisfies conditions of
Theorem 1.6 from [2, Section 8] which gives sufficient conditions for C$°(S), the space of
infinitely differentiable continuous functions with compact support, to be a core of this
diffusion infinitesimal generator. Therefore C3(S), as a broader space, can be referred
to as the core of the Jacobi diffusion as well.

The next theorem is a key tool for proving the convergence of Markov chains to a
Feller process (for proof we refer to [6, Theorem 19.28, page 387]).

Theorem 2.1. Let (Y(”), n € N) be a sequence of discrete-time Markov chains on S
with transition operators (U,, n € N). Consider a Feller process X on S with semigroup
T; and generator A. Fix a core D for the generator A, and assume that (hy,, n € N) is
the sequence of positive reals tending to zero as n — oo. Let

Ay =h MU, = 1), Ty =0UlMd 0 XMW@ =Y ([t/h,]).
Then the following statements are equivalent:

a) If f € D, there exist some f, € Dom(A,) with f, — [ and A,f, — Af as
n — 0o,

b) T+ — Ty strongly for each t >0,

¢) Tnifn — Tif for each f € Cy, uniformly for bounded t > 0,

d) if X(™(0) = X(0) in S, then X = X in the Skorokhod space D(S) with the
Ji topology.

3. EHRENFEST—-BRILLOUIN MARKOV CHAIN

In this section, motivated by applications to economics, particle physics and genet-
ics, we present the discrete-time birth-and-death Markov chain which have the Jacobi
diffusion as the scaling limit.

3.1. Ehrenfest—Brillouin Markov chain. The dynamics of this model, in which n
objects move within N categories according to prescribed transition probabilities, could
be viewed as the generalization of the famous Ehrenfest’s model (see, for example, [7]).
In the Ehrenfest—Brillouin model, the destruction mechanism is the same as in Ehren-
fest’s model, but the creation mechanism is more general and more complex than in the
Ehrenfest’s case. Here we give a brief overview of the facts on model dynamics, according
to [4], inheriting the notation.

To explain the destruction-creation mechanism of this Markov chain, consider a pop-
ulation of n objects that could be interpreted as particles in a physical system, genes in
applications in genetics or agents in economic models. The state of the system is given
by the occupation number vector

N
n=my,...,ni...,nn), ng>0 Vke{l,...N}, an =n.
k=1
Obviously, the state space is the set of N-tuples with non-negative components summing

up to n, denoted here as S3;. The dynamics of the system observed here is simple: the
state of the system in one step changes from initial state n = (nq,..., 7, ..., Nk, ..., NN)
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to the final state nf = (ni,...,n;i —1,...,np +1,...,ny). This change of state could
be viewed as the two-component transition:

e the destruction of the object on the ith coordinate (category) in the initial state n
(the “Ehrenfest’s term”), resulting in the state vector

n=Mny....,n; —1,...,nk,...,nN),

which happens with probability
ni
P(nijn) = —;
(nifn) = =

e the creation of the object in the kth coordinate (category) given the state vector
n;, resulting in the final state vector n¥, with probability

— S
P(nf|n;) = M7
x+n—1

N
where o« = (&4, ..., an) is the vector of parameters such that > o = & and &y ; is

k=1
the usual Kronecker’s delta symbol, taking value 1 when k& = 7 and zero otherwise.
Interpretation of parameter «; is related to the probability of accommodation on the
coordinate (category) 4 if it is empty. In [4] two interesting cases are discussed. In the
first case all «; are negative. Then the population size is limited by || and categories

by |a;|. In this case the transition probability is

P(nf{n) = Pnifn) - P(nffng) = " X212 30 (31)
In the second case, all o; > 0. Then, starting from initial state n by repeated applica-
tion of the previous transition probabilities, each state from the state space S}, can be
reached with positive probability, meaning that the Ehrenfest—Brillouin Markov chain
is irreducible. Finiteness of the state space together with the irreducibility implies that
Ehrenfest—Brillouin Markov chain is recurrent, and therefore it has a unique invariant
measure 7t(n). Furthermore, the transition probability doesn’t exclude the case k = j,
so this Markov chain is aperiodic. It implies that the invariant measure 7(n) is the equi-
librium distribution as well. The standard procedure recovers the N-dimensional Pélya
distribution

ni)

;N N N
i=1 v i=1 i=1

o= (a+1) . (x4+n—1),

as the equilibrium distribution (see [4, page 175]). This distribution comprises some
famous multivariate distributions of quantum physics:

o If all o; > 0, the special case of equilibrium distribution (3.2) for «; = 1 and o« = N
is the Bose-Einstein distribution.

o Ifall o; < 0, (3.2) is the N-dimensional hypergeometric distribution whose special
case, for o; = —1 and o« = —N is the Fermi-Dirac distribution.

e As |&| — oo, the limit of (3.2) is the multinomial distribution whose symmetric
case is known as the Maxwell-Boltzmann distribution.

An important observation, directly connecting one particular case of this model to Ja-
cobi diffusion, is that in case of two categories, from the invariant Pdélya distribution
Pdélya(k,n — k;1/2,1/2) the distribution of the ratio k/n is the Beta distribution (2.2)
with 0 =1/2 and & = 1. For more details we refer to [4, Section 7.3].

One example of the Ehrenfest—Brillouin Markov chain is the taxation-redistribution
economic model, see [4, page 212], where n coins are redistributed among N agents. A



128 N. N. LEONENKO, I. PAPIC, A. SIKORSKII, N. SUVAK

taxation is a step in which coin is randomly taken out of the set of n coins (destruction)
and a redistribution is a step in which the coin is given to one of N agents (creation). The
(destruction) probability of selecting one coin belonging to the ith agent is n;/n, while
in the redistribution step there are several possible schemes, e.g. favoring the agents
already having many coins or those having few coins. For example, if it is assumed
that the probability of giving the coin taken from agent i to agent j is proportional
to (w; + n;), where n; is the wealth of jth agent and wj; is the corresponding weight,
then depending on the choice of the weight different equilibrium distributions could be
obtained. In this general framework one could assume that the transition probability is
of the following form:

n; wj+n;—8;; al
Piln)= 2. 22T 7% _ ..
() = L w3
If no agent is favored in this scheme, then w; = « for all j € {1,..., N}, and therefore

n; o+n; — 61'7]'
n Nax+n—1"
which is exactly the Ehrenfest—Brillouin model with unary moves. For more details on
the taxation-redistribution model see [4, Section 8.2], while [4, Section 8.3] contains more
applications of the Ehrenfest—Brillouin model to economics. One particularly interest-
ing example is the relationship of this model to the Aoki—Yoshikawa model for sectoral
productivity, which is detailed in [4, Section 8.3].

P(n]|n) = (3.3)

3.2. Jacobi diffusion as a scaling limit of Ehrenfest—Brillouin Markov chain.
In this subsection we use the margin of the two-dimensional Ehrenfest—Brillouin Markov
chain from Subsection 3.1 to construct a transformed and rescaled chain converging to
the Jacobi diffusion, using Theorem 2.1. First we introduce the needed notation and
technical details.

For each n € N, denote by (G (r), r € Ny) the marginal Ehrenfest-Brillouin Markov
chain with the state space {0,1,2,...,n}. The transition probabilities for this Markov
chain are as follows:

Xy +n—1

n-—1 o1 +1 1
n 0(1+0(2+n—1’

n .061+062+n—1’

Pii = 1=piit1—Pii-1,
(3.4)
0 otherwise, where oy > 0, &g > 0. In light of the taxation-redistribution model with
uniformly weighted agents (with weight o), these transition probabilities could be in-
terpreted in terms of the number of coins belonging to agent 1 in time ¢. If we start
with ¢ coins, p; ;41 is the probability that a randomly chosen coin, out from the set of
(n—1i) coins belonging to other agents, is redistributed to agent 1; p; ;_1 is the probability
that a randomly chosen coin, out of i coins belonging to agent 1, is redistributed to one
of the other agents; p;; is the probability that reflects agent 1 invariance to the coin
“destruction-creation”.
As previously stated, we assume that the initial state of the chain is given by

i(y) =i=G"(0) = |ny],
y € [0, 1] being the initial state of the corresponding limiting diffusion. Even though the

initial state is a function of y, we will use the notation i for simplicity. For each n € N
we define the new Markov chain (H)(r), r € Ny), where

elD] (r)
n

Dii+1 = Pii-1=

H™(r) = (3.5)

with state space {0,1,2 ... 1}.

‘non?
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The transition operator T, of the new Markov chain (H™(r), r € Ny) is defined as
follows:

Tnf(;) = ;pijf(i) = Pi,i—1 f(l_nl) “F}%‘,if(i) + Pijit1 f(i ; 1)- (3.6)

Define the operator

Ayim Ot (T, = 1), g Do), ful) = 1(P2) = 4(2). @)

n

where f € C3([0,1]).
By the scaling of time in (H ™) (), r € Ny), for each n € N we obtain the corresponding
continuous-time process (Y (™) (t), t > 0):

Y™ (1) .= H™(|8n?t]), 8 > 0. (3.8)

The next theorem states that the Jacobi diffusion could be obtained as the limiting
process of the previously defined time-changed processes (Y (™) (t), t > 0).

Theorem 3.1. For each n € N, let (H™(r), 7 € Ng) be the Markov chain defined by
(3.5) with the transition operator (3.6). For each n € N |, let Y™ = (Y™ (t),t > 0),
be its corresponding time-changed process with the time-change (3.8). Let the operators
(An, n € N) be defined by (3.7). Then
Y" =Y inD([0,1]),
where Y = (Y (t), t > 0) is the Jacobi diffusion with the infinitesimal generator A given
by (2.1), and
1 X1

o= , =0(o; + x2), = )
ot o Y (1 2) w 1 + oy

Proof. We are now in the setting of the Theorem 2.1. We first prove that statement a)
of Theorem 2.1 is valid for A,, defined by (3.7) and A defined by (2.1). Then we use the
equivalence of statements a) and d) from Theorem 2.1 to obtain convergence Y = Y
in D([0,1]) under assumption Y (™) (0) = Y (0), n — oo.

First, we prove the statement a) from Theorem 2.1 in our setting:

[fn = fllo = sup [fu(y) — f(¥)| = sup [f(i/n)— f(y)l.
y€[0,1]

y€(0,1]

According to the well-known property |ny| < ny < |ny]|+1 of the function |- |, it follows
that

1 1 1
—<y<-—-+-
n non
and therefore ‘
1
lim — =y.
n—oo N

From this we obtain
[fn = fllooc = 0, n— 00
and we have

Yy 5

y€[0,1]
According to (3.7) it follows that

() (Ena(2)-(9) -+ En (D))
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By the Taylor formula for function f around % with the mean-value form of the remainder
we obtain

. n . n i 2 i n P 3
Anf(j) =ond py(i- z')f’(;) +ezpij“2)f”(n) vy p o),
j=0 §=0 §=0

(3.9)
where ( is a real number such that [{ — £| < |L — L],
Next, denote
. . . . . N2
my) = lim n) pi(G—i),  o*(y) = lim Y pi(i i),
§=0 §=0
Rn(y) = eipz(] - Z)B f///(c)'
) ‘ 7 6n
7=0
Taking into account (3.9), we obtain
: 1 _ / 9 2 " :
Tim Anf(n> = 0u() (W) + 90%(w) () + lim Ru(y). (3.10)
It follows that
n(y) = nlggonzopij(ﬂ —i) = nhjgo n(Pii+1 — Pii—1) =
J:
. . x] +1 . Xo+n—1
= lim ( (n—1)- —q- =
n—00 X +o+n—1 X1 +og+n—1
. nxi —’i(0(1+0(2)
= lim =
n—oo\ X + &y +n—1
. 061*,%(061+062)
e -ranarmn )
" wte e
= — (o1 + o)y + &1, (3.11)
2 — 1 (i N2 — T . . —
o (y) - nh%n;o Zong (.7 Z) nlggo(pz,z—i-l +p1,1—1)
i=
. n—1 x +1 7 o +n—1
= lim . — - =
n— 00 n X1+o+n—1 n oy+os+n—1
: i R i 2412
ZHIL%<(1_n)' %+%+1—%+E' °;;+°;f+1—}1> -
=(1-yy+y(l—y)=2y(1—y), (3.12)
lim |R,(y)] < K|0 lim ipﬂ = K|0 lim i(p —Pii-1)| =
n—oo ! " - n—)oojzo K 6n n—oo 6N b+l 6i-1
:Kehmi TL*i' OC1+i _1 0(2+TL*’L' _
n—o0 6N n X1+ +n—1 n ogy+oas+n—1
1 1 ; S ; X2 41 _ 1
—Klplm -([(~-"1). n w4 lTs _
o\ w) T W S

(3.13)
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where K is a constant such that |f"/(0)| < K.
Finally, by substituting (3.11), (3.12) and (3.13) in (3.10), we obtain

i Anf () = 0(-(an -+ cly-+ o) ) + 5201~ )"0

n—oo

Now by re-parametrizing

1 xq
o= , =0(1 + x2), = ,
o+ 0z Y (1 2) [ o1 + oy

the last limit becomes

i 4, (£ ) = vl W)+ Y0 - ).

n— oo

which is precisely the infinitesimal generator of the Jacobi diffusion. In the space
C3([0,1]) all above limits hold uniformly, therefore we obtain

1Anfn = Aflloc =0, 1 — o0,

and since
Y™0)=Y(0), n—ooo <= i/n—y, n— oo,

by Theorem 2.1 we obtain Y™ = Y in ID([0,1]), where Y is the generally parametrized
Jacobi diffusion. |

4. FRACTIONAL JACOBI DIFFUSION AS THE CORRELATED CTRW LIMIT

Suppose that (T'(r), r € Ny), where T(0) = 0, T(r) = Gy + ... + G,, is the random
walk where GG, > 0 are iid waiting times between particle jumps that are independent
of the Markov chain (H™ (r), r € Ny). We assume G is in the domain of attraction of
the -stable distribution with index 0 < 3 < 1, and that the waiting time of the Markov
chain until its r-th move is described by G,.. Let

N(t) =max{r > 0: T(r) <t} (4.1)
be the number of jumps up to time ¢ > 0. Then the continuous time stochastic process
(H(") (N(t)), t > o),

where H(™) (N (t)) is the state of the Markov chain at time ¢ > 0, is the correlated CTRW
process. The following theorem is the main ingredient to connect our correlated CTRW
with corresponding limit, i.e. fractional Jacobi diffusion.

Theorem 4.1. Let (A" (t), t > 0) be the cadlag process with cadlag process (A(t), t > 0)
as its corresponding weak limit, i. e. let

A" = A, n — oo,

in the Skorokhod space D(S) with Jy topology, where S is the state space for the process
A. Let (N(t),t > 0) be the renewal process defined in (4.1), and (E(t), t > 0) be the
inverse of the standard B-stable subordinator (D(t), t > 0) with 0 < p < 1. Then

A (nilN(n%t>) = A(E(t)), n— o0
in the Skorokhod space D(S) with Jy topology.
Proof. The result directly follows from the proof of Theorem 8.1 in [12]. ]

Next, we apply this theorem in our setting to obtain the fractional Jacobi diffusion as
the correlated CTRW limit from the model motivated by economics.
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Corollary 4.2. Let (H™(r), r € Ny) be the Markov chain defined by (3.5) with transi-
tion probabilities (3.4). Let (Y(™(t), t > 0) be the corresponding rescaled Markov chain
given by (3.8). Let (N(t), t > 0) be the renewal process defined in (4.1), and (E(t), t > 0)
be the inverse of the standard B-stable subordinator (D(t), t > 0) with 0 < < 1. Then

y ™ (n_1N<n%t)) =Y (E({), n— oo,

in the Skorokhod space D([0, 1]) with Jy topology, where (Y (t), t > 0) is Jacobi diffusion
with generator

1
Af(y) ==yl — WS W) + 5@v8)y(1 =) "), | C([0,1].
Proof. Stochastic processes (Y™ (t), ¢t > 0) and (Y (t),t > 0) are both cadlag, and
Theorem 3.1 implies
Y" =Y in D([0, 1)).

Now, simply apply Theorem 4.1 to obtain the desired result. O
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KOPEJIBOBAHE BUITAJKOBE BJIVKAHHZ{ I3 HEITEPEPBHUM YACOM
THUIIY EPEH®ECTA -BPIJIJIFOEHA TA JPOBOBA JU®Y3Id AKOBI

M. M. JIEOHEHKO, I. ITAIIIY, A. CIKOPCBEKA, H. IITYBAK

AnoTauA. Bunaaxosi Giykauus 3 HenepepsHuM dacom (BBHY) xapakrepusyorbcs dacaMu OYiKy-
BaHb MixkK crpubkamu vyacturok. Kopucryrwuucs cxemoro Ependecra— Bpluioena, sika MOTUBYETHCS 3a-
CTOCYBAHHSIMHU B €KOHOMIIli, BBOOUTBCA KopesiboBane BBHY, mo 36iraersca g0 npobosol nudy3sii Axobi
Y(E(t)), t > 0, axa cama BU3HAYAETHCA aK audysiiiaunil Bunagkosuii npouec Axo6i Y (t), y axomy gac
3aMiHEHO Ha He3aJIeXKHUH Biji HHOrO BHNIAAKOBHIL porec F(t), KoTpuii € 06epHeHNM JI0 [IPOIeCy CTIAKOro
cybopauuaTopa. ¥ takomy BBHY cTpubku € KOpeapoBaHMMH, | TOMY 30BHIIHIN rpanwaruii nponec Y (1)
He € nponecoM Jlesi, a € nudysiiHuUM MporecoM, IPUPOCTH SAKOTO He € He3aJleKHUMU. Jacu od9iKyBaHb
Mmixk crpubkamu BuOpaHi Tak, m00 BOHM HaJjeXXaJu 00J1aCTi mPUTATYBaHHS CTIMKOro posnoxisy. Tomy
BBHUY i3 rakuMmu yacaMu odikyBaHb 36iraeTbes 10 Bunaakosoro mporecy Y (E(t)).

KOPPEJINPOBAHHOE CJIVUYAMHOE BJIV2KJIAHUE C HEIIPEPbIBHBIM
BPEMEHEM THUIIA SPEH®ECTA -BPUJIJIFOOHA 1 JPOBHAS
ANO®PY3INAd AKOBU

H. H. IEOHEHKO, 1. I[TATINY, A. CUKOPCKA, H. IITYBAK

Annotanust. Cuyuwafinee 6iy>kganrust ¢ HenpepuisHbIM BpeMerem (CBHB) xapakTepu3yOTcs BpeMeHa-
MU OXKHUJAHUS MEXKIY CKauKaMu 4acTUll. OCHOBBIBASCH HA MOJeIN IJpeHdecTa — Bpuiosna, KoTopas
MOTHBHAPOBAaHA IPUMEHEHUSIMH B KOHOMUKE, BBOOHUTCA KoppesaupoBannoe CBHB, xoropoe cxomurcs k
1pobHOi pauddysuu Axobu Y (E(t)), t > 0, sToT npouecc oupegenserca Kak audQy3noHHbIE 1ponece
Skobu, B KOTOPOM BpeMs 3aMEHEHO Ha HEe3aBHCHUMBIH OT Hero ciy4aiinblii npomnecc E(t), obpaTHblil K
ycroauBoMy cyOopauHaTopy. B aToit crarse paccmarpusaiorcs CBHB, y KOTOpPBIX CKauKu KOPpPeIupo-
BaHbl. [lo3TOMY BHEIIHUII NIpeNebHBIN IPOIecC He ABJseTcs IpoleccoM Jlesu, a apaserca quddy3nuos-
HBIM IPOIECCOM, ¥ KOTOPOrO NPUPAINEHUA HE SABJISIOTCS He3ABHCHMBIMU. BpeMmena oxxumaHnst BoIOPAHB
TaK, 4TOOBI OHHU IIPUHA/JIEXKAIN O0JIACTH MPUTHXKEeHHUA yCTOH4IuBOro 3akoHa. [loatomy CBHB ¢ Takumu
BPEMEHAME OXKHJAAHUA CXOAATCH K Cilydaiinomy nponeccy Y (E(¢)).



