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STEIN–HAFF IDENTITY FOR THE EXPONENTIAL FAMILY
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Abstract. In this paper, the Stein–Haff identity is established for positive-definite and symmetric

random matrices belonging to the exponential family. The identity is then applied to the matrix-

variate gamma distribution, and an estimator that dominates the maximum likelihood estimator in
terms of Stein’s loss is obtained. Finally, a simulation study is conducted in order to support the

theoretical results.
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1. Introduction

The Stein–Haff identity was first derived by [15] and [5] regarding the problem of
estimating the covariance matrix of multivariate normal populations. Consider a sam-
ple of n i.i.d. p × 1 vectors x1, . . . ,xn (where n > p) following a multivariate nor-
mal distribution with mean vector µ and covariance matrix Σ. Then the p × p matrix
W =

∑n
i=1(xi − x̄)(xi − x̄)′ follows a Wishart distribution with k = n − 1 degrees of

freedom and covariance matrix Σ. As such, the covariance matrix of such a population is
commonly estimated using the unbiased estimator W/k. However, the eigenvalues of the
estimator W/k tend to spread out more over the positive real line, than the correspond-
ing eigenvalues of the population covariance matrix Σ. For example, letting λ1, . . . , λp
be the p ordered eigenvalues of Σ and l1, . . . , lp be the p ordered sample eigenvalues of
W/k, l1 is a positively biased estimator of λ1 and lp is a negatively biased estimator
of λp (see e. g. [18]). As such, it can often be useful to consider estimators that aim to
decrease larger sample eigenvalues and increase smaller sample eigenvalues.

Additionally, the problem of estimating of the covariance matrix of a normal popula-
tion have been well studied from a decision-theoretic viewpoint 1. In this approach, esti-
mators are evaluated with a non-negative loss function L(θ̂, θ) and associated risk func-

tion E[L(θ̂, θ)], where θ is a parameter vector and θ̂ is an estimator of θ and the expecta-

tion is taken under the true parameter value θ. Moreover, the estimator θ̂2 is said to dom-
inate the estimator θ̂1 with respect to a given loss function if E[L(θ̂2, θ)] ≤ E[L(θ̂1, θ)] ∀θ,
with strict inequality for at least one value of θ. Depending on the loss function used, sev-
eral estimators of Σ that dominate W/k have been proposed (see e.g. [2, 7, 9, 10, 14, 16]
and [17]), the majority of which are based on functions of the sample eigenvalues.

Furthermore, a class of estimators of Σ often considered is orthogonal invariant esti-
mators , i. e. estimators Σ̂ that can be written as

Σ̂ = HΦ(l)H′, Φ(l) = diag(φ1(l), . . . ,φp(l)), φi(l) > 0, i = 1, . . . , p,

where l is the vector of ordered sample eigenvalues of W, and H is the orthogonal matrix
of the eigenvalue decomposition W = HLH with L = diag(l). The Stein–Haff identity,
which expresses E[tr(HΦ(l)H′Σ−1)] in terms of the function Φ(l), is a flexible tool that

1 For a general discussion on the decision-theoretic framework, see for example [3].
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readily applies to the evaluation of various risk functions of orthogonal estimators Σ̂.
One such risk function is the one associated with Stein’s loss 2

E[L(Σ̂,Σ)] = E[tr(Σ̂Σ−1]− E[log |Σ̂Σ−1|]− p,

where the identity is directly applicable to the first term. Further, the identity can also
be used in order to derive various moments of the Wishart distribution, as presented in,
for example, [5].

Apart from the derivation by [15] and [5] in the case of the non-singular Wishart
matrix, equivalent identities have also been presented in the case of a singular Wishart
matrix (see [12]), in the case of a complex Wishart matrix (see [9]) and in the case of
elliptically contoured distributions (see [11], [8] and [1]).

In this paper, we generalize the Stein–Haff identity to the case of positive-definite and
symmetric random matrices of the exponential family, given certain conditions on the
density function of the considered distribution. For such a random matrix S, the re-
sult expresses the Stein–Haff identity as a formula readily applicable to both estimation
problems and derivation of moments. This formula is then applied to the matrix-variate
gamma distribution, where it is used to evaluate estimators for samples of the matrix-
variate gamma distribution with common scale matrix and different shape parameters.
Further, the result is used to derive a condition for orthogonally invariant estimators to
dominate the maximum likelihood estimator, together with an example of such an esti-
mator. Finally, a small simulation study is conducted in order to support the dominance
results.

The rest of the paper is organized as follows. Section 2 consists of the main contribu-
tion of this paper, the generalization of the Stein–Haff identity to matrices of the expo-
nential family. Section 3 applies the identity to the matrix-variate gamma distribution
and provides a simulation study to support the theoretical results. Section 4 concludes.
Lemmas with proofs used throughout the paper can be found in the Appendix.

2. Stein–Haff identity for the exponential family

Let S be a real, positive-definite and symmetric p×p random matrix belonging to the
exponential family. As such, the density function of S can be factorized as

f(S) = a(θ)h(S)e(θ
′t(S)), (1)

where a(θ) and h(S) are known continuous functions, θ is the canonical parameter and
t(S) is the canonical statistic. Further, let l denote the p×1 vector of ordered eigenvalues
of S and impose the following conditions:

h(S) = u(l), (2)

t(S) = (v(l)′, vech(S)′)′, (3)

where u(l) and v(l) are known differentiable functions. As such, the above conditions
require that h(S) is dependent only on the eigenvalues l, and that the canonical statistic
can be decomposed into one part consisting of vech(S) and one part dependent only on
l. Further, let θ be decomposed as θ = (θ′1, θ

′
2)′, where θ1 is a vector of the same length

as the vector v(l) and θ2 is a p(p+1)/2×1 vector. Now, let θ2 = −D′pDp vech(Ω) where

Ω is a p× p matrix and Dp is the duplication matrix 3, such that

θ′2 vech(S) = − vech(Ω)′D′pDp vech(S) = − vec(Ω)′ vec(S) = − tr(ΩS). (4)

2 A commonly used loss function first considered in [7].
3 Defined as in e. g. [6], s. t. for a symmetric p× p matrix A we have Dp vech(A) = vec(A).
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Equation (1) is then the minimal representation of matrix distributions with density
functions of the form

f(S) = a(θ)u(l)eθ1
′v(l)−tr(ΩS), (5)

such as the matrix-variate gamma distribution, which is further discussed in Section 3.
In the rest of this presentation, Ω will sometimes be denoted Ω(θ) in order to emphasize
its dependency on the canonical parameter. Finally, note that in the case of a real,
symmetric matrix A, the common matrix-to-scalar operators tr(A) and |A| depend only
on the eigenvalues of A. Hence, conditions (2) and (3) still allow for a wide range of
density functions.

As an example of an exponential distribution of the form (1) conforming to (2) and
(3), consider the case of a multivariate normal sample presented in Section 1. Thus,
W follows a Wishart distribution with k ∈ N degrees of freedom, where k ≥ p, and
positive-definite covariance matrix Σ. The density of W can then be expressed in the
form (1) with

θ = −1

2
D′pDp vech

(
Σ−1

)
, a(θ) = |Ω(θ)|k/2/Γp(k/2), h(W) = u(l) =

p∏
i=1

l
(k−p−1)/2
i ,

where Γp(a) is the multivariate gamma function 4, Ω(θ) = − vech−1((D′pDp)−1θ) =

= Σ−1/2, l1, . . . , lp are the eigenvalues of W and t(W) = vech(W). Here, vech−1(·)
denotes the inverse of the vech-operator.

Further, as discussed in Section 1, for problems concerning estimation of the parame-
ters of a random matrix distribution, it is often required to compute the expected value
of a function of the observed random matrices. For example, such is the case when
working with loss and risk functions in the decision-theoretic framework. Furthermore,
these functions are often readily expressed in terms of the observed random matrices’
associated eigenvalues and eigenvectors. As such, we now derive the expectation of such
functions with regard to distributions of the form (1). To this end, let Op denote the
set of p × p orthogonal matrices and let S = HLH′ be the eigendecomposition of S,
where H ∈ Op and L = diag(l). From Theorem 3.2.17 in [13], note that for a p × p
positive-definite random matrix S with density function f(S), the joint density of the p
eigenvalues l1, . . . , lp, where l1 > . . . > lp > 0, is given by

πp
2/2

Γp(p/2)

∏
i<j

(li − lj)

∫

Op

f(HLH′)dH. (6)

Thus, letting Lp = {l|l1 > l2 > . . . > lp > 0}, we have for any scalar function g(H,L)
with E[|g(H,L)|] <∞,

E[g(H,L)] =
πp

2/2

Γp(p/2)

∫

Lp

∏
i<j

(li − lj)

∫

Op

g(H,L)f(HLH′)dHdl =

=
πp

2/2

Γp(p/2)
a(θ)

∫

Lp

∏
i<j

(li − lj)u(l) exp (θ′1v(l))×

×
∫

Op

g(H,L) exp (θ′2 vech(HLH′))dHdl =

4 Defined as Γp(a) =
∫

A>0 exp(tr(−A))|A|a−(m+1)/2dA.
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=
πp

2/2

Γp(p/2)
a(θ)

∫

Lp

∏
i<j

(li − lj)u(l) exp (θ′1v(l))×

×
∫

Op

g(H,L) exp
(
− tr

(
ΩHLH′

))
dHdl, (7)

where the second equality comes from inserting (1) and the third equality is due to
θ2 = −D′pDp vech(Ω) and the identity (4). Now, let A = H′ΩH and denote the elements
of A as aij(H). Then

tr(ΩHLH′) = tr(LA) =

=

p∑
i=1

liaii(H).

As such, (7) becomes

πp
2/2

Γp(p/2)
a(θ)

∫

Lp

∏
i<j

(li − lj)u(l) exp (θ′1v(l))

∫

Op

g(H,L) exp

(
−

p∑
i=1

liaii(H)

)
dHdl.

Further, denote

c =
πp

2/2

Γp(p/2)
a(θ),

b(l) =
∏
i<j

(li − lj)u(l) exp (θ′1v(l)),

w(l) =

∫

Op

exp

(
−

p∑
i=1

liaii(H)

)
dH,

and define, for i = 1, . . . , p,

l0 =∞,

lp+1 = 0,

l(i) = (l1, . . . , li−1, li+1, . . . , lp),

L(i) = {l(i)|l1 > . . . > li−1 > li+1 > . . . > lp}.

We can now formulate the Stein–Haff identity for the matrix-variate exponential family.
The proof is a generalization of the derivations in [14].

Theorem 1. Let S be a real, positive-definite, symmetric p × p random matrix from
the exponential family with density given in the form (1) for which conditions (2) and
(3) hold. Further, let S = HLH′ be the eigendecomposition of S and let Φ(l) =
= diag(φ1(l), . . . ,φp(l)). Moreover, assume that

(i) E[| tr(HΦ(l)H′Ω)|] <∞;
(ii) φi(l)b(l), i = 1, . . . , p is absolutely continuous with respect to li;

(iii) φi(l), i = 1, . . . , p satisfies

lim
li→li+1

φi(l)b(l)w(l) = 0 and lim
li→li−1

φi(l)b(l)w(l) = 0 ∀l ∈ Lp.

Then the following identity holds

E[tr(HΦ(l)H′Ω)] =

p∑
i=1

E

∂φi(l)

∂li
+

∂u(l)

∂li

φi(l)

u(l)
+ θ′1φi(l)

∂v(l)

∂li
+
∑
i<j

φi(l)− φj(l)

li − lj

,
(8)

where u(l) and v(l) are defined in (2) and (3).
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Proof. Let I = E[tr(HΦ(l)H′Ω)]. We then have

I = E[tr(Φ(l)A)] =

=

p∑
i=1

E[φi(l)aii(H)] =

=

p∑
i=1

c

∫

Lp

φi(l)b(l)

∫

Op

aii(H) exp

(
−

p∑
i=1

liaii(H)

)
dHdl =

= −
p∑

i=1

c

∫

L(i)

∫ li−1

li+1

φi(l)b(l)
∂

∂li

[
∫

Op

exp

(
−

p∑
i=1

liaii(H)

)
dH

]
dlidl(i) =

= −
p∑

i=1

c

∫

L(i)

∫ li−1

li+1

φi(l)b(l)
∂w(l)

∂li
dlidl(i).

By condition (ii) we can apply integration by parts and write

∫ li−1

li+1

φi(l)b(l)
∂w(l)

∂li
dli = lim

li→li−1

φi(l)b(l)w(l)− lim
li→li+1

φi(l)b(l)w(l)−

−
∫ li−1

li+1

∂φi(l)b(l)

∂li
w(l)dli.

Due to condition (iii), I can now be written as

I =

p∑
i=1

∫

L(i)

∫ li−1

li+1

c
∂φi(l)b(l)

∂li
w(l)dlidl(i) =

=

p∑
i=1

E

[
1

b(l)

∂φi(l)b(l)

∂li

]
=

=

p∑
i=1

E

[
∂φi(l)

∂li
+ φi(l)

∂b(l)

∂li

1

b(l)

]
=

=

p∑
i=1

E

[
∂φi(l)

∂li
+ φi(l)

∂ log(b(l))

∂li

]
.

Since log b(l) =
∑

i<j log(li − lj) + log u(l) + θ′1v(l), we have that

∂ log b(l)

∂li
=

∂u(l)

∂li

1

u(l)
+ θ′1

∂v(l)

∂li
+

p∑
j=1,j 6=i

1

li − lj
,

and thus

I =

p∑
i=1

E

∂φi(l)

∂li
+

∂u(l)

∂li

φi(l)

u(l)
+ φi(l)θ

′
1(l)

∂v(l)

∂li
+

p∑
j=1,j 6=i

φi(l)

li − lj

 =

=

p∑
i=1

E

∂φi(l)

∂li
+

∂u(l)

∂li

φi(l)

u(l)
+ φi(l)θ

′
1(l)

∂v(l)

∂li
+
∑
i<j

φi(l)− φj(l)

li − lj

. �

Apart from being useful in evaluating estimators, as shown in the subsequent section,
Theorem 1 can also be applied in order to derive various moments of S. For example,
noting that S−1 = (HLH′)−1 = HL−1H′, we can insert φi(l) = 1/li, i = 1, . . . , p in (8)
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to obtain

E[tr(S−1Ω)] =

p∑
i=1

E

− 1

l2i
+

∂u(l)

∂li

1

u(l)li
+
θ′1
li
φi(l)

∂v(l)

∂li
−
∑
i<j

1

lilj

.
3. Application to the matrix-variate gamma distribution

In this section, the identity derived in Section 2 is applied to the matrix-variate gamma
distribution, a generalization of the gamma distribution to positive-definite matrices.
Section 3.1 presents the distribution in the form (1) together with the identity. Section 3.2
applies the identity in order to derive a condition under which estimators dominate the
maximum likelihood estimator and provides an example of such an estimator, while
Section 3.3 verifies the results through a simulation study.

3.1. Stein–Haff identity for the matrix-variate gamma distribution. Let a p×p
matrix S follow a matrix-variate gamma distribution with shape α > (p − 1)/2 and
symmetric scale matrix Σ > 0, denoted by S ∼MGp(α,Σ). As such, in accordance with
e.g. Definition 3.6.1 in [4], the p.d.f. of S is

f(S) =
|Σ|−α

Γp(α)
|S|α−(p+1)/2 exp(tr

(
−Σ−1S

)
). (9)

This matrix distribution belongs to the exponential family and thus the above p.d.f.
can be written in the form (1). In the application following in this section, α will be
considered to be known, and as such, we set θ = −D′pDp vech

(
Σ−1

)
, t(S) = vech(S),

a(θ) = |Ω(θ)|α/Γp(α), with Ω(θ) = − vech−1
(
(D′pDp)−1θ

)
= Σ−1, and h(S) = u(l) =

=
∏p

i=1 l
α−(p+1)/2
i . Thus, this density conforms to conditions (2) and (3).

By applying (8), we can derive the Stein–Haff identity for the matrix-variate gamma
distribution as

E
[
tr
(
HΦ(l)H′Σ−1

)]
= E[tr(HΦ(l)H′Ω)] =

=

p∑
i=1

E

∂φi(l)

∂li
+

(
α− p + 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)

li − lj

. (10)

3.2. Estimation of the scale matrix Σ. Now, consider a sample of independent ma-
trices S1, . . . ,Sn, where Sk ∼ MGp(αk,Σ), k = 1, . . . , n and αk > (p− 1)/2 are known,
while Σ > 0 is unknown 5. Further, suppose we are interested in an orthogonally invariant
estimator for Σ, such that the estimator can be written as

Σ̂ = HΦ(l)H′, Φ(l) = diag(φ1(l), . . . ,φp(l)), φi(l) > 0, i = 1, . . . , p.

Moreover, assume that we want to minimize the risk for this estimator in terms of Stein’s
loss function

L(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p, (11)

which has the associated risk function

E[L(Σ̂,Σ)] = E[tr(Σ̂Σ−1)]− E[log |Σ̂Σ−1|]− p. (12)

Now, let V =
∑n

k=1 Sk. By Lemma A2, V ∼ MGp(q,Σ), where q =
∑n

k=1 αk. In

accordance with Lemma A3, the maximum likelihood estimator of Σ is Σ̂MLE = V/q.

Moreover, one can show that for the class of estimators of the form Σ̂ = dV, the risk
function (12) is minimized by Σ̂MLE = V/q.

5 Comparable to the case of sample covariance matrices for a multivariate normal distribution with
a common unknown covariance matrix Σ.
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Equation (10) now allows us to obtain a condition under which estimators dominate
the maximum likelihood estimator V/q.

Theorem 2. Let Sk ∼ MGp(αk,Σ), k = 1, . . . , n, where αk > (p − 1)/2 are known,
q =

∑n
i αk,

∑n
k=1 Sk = HLH′, and let

Σ̂D = HΦ(l)H′, with Φ(l) = diag(φ1(l), . . . ,φp(l)), φi(l) > 0, i = 1, . . . , p,

be an orthogonal invariant estimator of Σ. Then Σ̂D will dominate Σ̂MLE, with regard
to Stein’s loss function (11), if and only if

p∑
i=1

E

∂φi(l)

∂li
+

(
q − p + 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)

li − lj
− log

φi(l)

li

 ≤ p + p log q, (13)

for all values of Σ, with strict inequality for at least one value of Σ.

Proof. We have that Σ̂D will dominate Σ̂MLE if and only if

E[L(Σ̂D,Σ)] ≤ E[L(Σ̂MLE ,Σ)], (14)

for all values of Σ , with strict inequality for at least one value of Σ. By (10) we have,
since

∑n
k=1 Sk ∼MGp(q,Σ), that

E[L(Σ̂D,Σ)] = E[tr(HΦ(l)H′Σ−1)]− E[log |HΦ(l)H′Σ−1|]− p =

=

p∑
i=1

E

∂φi(l)

∂li
+

(
q − p + 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)

li − lj

−
− E

[
log

p∏
i=1

φi(l)

]
+ log |Σ| − p =

=

p∑
i=1

E

∂φi(l)

∂li
+

(
q − p + 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)

li − lj
− logφi(l)

+

+ log |Σ| − p. (15)

Further, note that by letting Φ∗(l) = diag(dl1, . . . , dlp), we have by equation (10) that

E

[
tr

(
V

q
Σ−1

)]
= E[tr(HΦ∗(l)H′Σ−1)] =

=

p∑
i=1

E

d + d

(
q − p + 1

2

)
+ d

∑
i<j

1

 =

=
dp(p− 1)

2
+

p∑
i=1

[
d + d

(
q − p + 1

2

)]
=

=
dp(p− 1)

2
+ dp + dpq − dp(p + 1)

2
=

= dpq.

And thus, by setting d = 1/q, we have E
[
tr
(

V
q Σ−1

)]
= p and can write

E[L(Σ̂MLE ,Σ)] = E

[
tr

(
V

q
Σ−1

)]
− E

[
log

∣∣∣∣Vq Σ−1
∣∣∣∣]− p =

= p− E[log |V|] + log |Σ| − p log
1

q
− p =
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= −E

[
log

p∏
i=1

li

]
+ log |Σ|+ p log q =

= −
p∑
i

E[log li] + log |Σ|+ p log q. (16)

Inserting (15) and (16) into (14) gives the desired result. �

Finally, Theorem 2 can be applied in order to derive an estimator that dominates
Σ̂MLE . Here, we will consider orthogonally invariant estimators where Φ(l) =
= diag(φ1(l), . . . ,φp(l)) is of the form φi(l) = dili, i = 1, . . . , p, where di is a constant.

Corollary 1. Let Sk ∼ MGp(αk,Σ), k = 1, . . . , n, where αk > (p − 1)/2 are known,

q =
∑n

i αk,
∑n

k=1 Sk = HLH′, and let Σ̂1 = HΦ(l)H′ with Φ(l) = diag(d1l1, . . . , dplp)
and

di =
1

q + (p + 1)/2− i
, i = 1, . . . , p, (17)

be an estimator of Σ. Then Σ̂1 dominates Σ̂MLE with regard to Stein’s loss function (11).

Proof. First, note that by definition l1 > · · · > lp and further that d1 < · · · < dp. By
(13) in Theorem 2, we have that if

p∑
i=1

E

di +

(
q − p + 1

2

)
di +

∑
i<j

dili − dj lj
li − lj

− log di

 < p + p log q, (18)

Σ̂1 will dominate Σ̂MLE . Now (18) can be written as

p + p log q >

p∑
i=1

(1 + q − p + 1

2

)
di + E

∑
i<j

dili − dj lj
li − lj

− log di

 =

=

p∑
i=1

(1 + q − p + 1

2

)
di + E

∑
i<j

lj
li − lj

(di − dj)

+
∑
i<j

di − log di

 =

=

p∑
i=1

(1 + q − p + 1

2

)
di +

∑
i<j

E

[
lj

li − lj

]
(di − dj) + di(p− i)− log di

 =

=

p∑
i=1

(q +
p + 1

2
− i

)
di +

∑
i<j

E

[
lj

li − lj

]
(di − dj)− log di

.
Let mi =

∑
i<j E

[
lj

li−lj

]
(di−dj) and note that mi < 0, i = 1, . . . , p since (lj)/(li− lj) > 0

and di − dj < 0. Inserting di = 1/(q + (p + 1)/2− i), we get

p + p log q >

p∑
i=1

[1 + mi + log(q + (p + 1)/2− i)],

p log q >

p∑
i=1

log(q + (p + 1)/2− i) +

p∑
i=1

mi.

Since
∑p

i=1 mi < 0, it will suffice to show that p log q >
∑p

i=1 log(q + (p + 1)/2 − i), or
similarly

qp >

p∏
i

(q + (p + 1)/2− i). (19)
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To this end, set ai = (p + 1)/2− i and note that ai = −ap−i+1. Further, we have that

(q + ai)(q + ap−i+1) = (q + ai)(q − ai) <

< q2. (20)

If p is even, we can write

p∏
i

(q + (p + 1)/2− i) =

p/2∏
i

(q + ai)

p/2∏
i

(q − ai) < qp (21)

where the inequality is in accordance with (20). On the contrary, if p is odd, we can
write

p∏
i

(q + (p + 1)/2− i) = (q)

(p−1)/2∏
i

(q + ai)

(p−1)/2∏
i

(q − ai) ≤ qp, (22)

where the inequality again is due to (20). Combining (21) and (22) shows (19), which
completes the proof. �

As an example, consider p = 3, such that the constants of the estimator Σ̂1 become
d1 = 1/(q + 1), d2 = 1/q, d3 = 1/(q − 1). Similarly, the MLE can be expressed in this
form with d1 = d2 = d3 = 1/q. As such, comparing with the equivalent constants in the

MLE, the constant of Σ̂1 associated with the largest sample eigenvalue is smaller than
1/q, while the constant associated with the smallest eigenvalue is larger than 1/q. Thus,
this estimator aims to pull sample eigenvalues towards a middle point. Further, note
that when n = 1 the estimator derived in Corollary 1 is closely related to the estimator
derived by [15] and [2] regarding the estimation of the covariance matrix of a normal
population.

3.3. Simulation study. In order to illustrate that Σ̂1, defined in Corollary 1, dominates
Σ̂MLE in terms of Stein’s loss, we conduct a brief Monte Carlo simulation study. As such,
we first define the difference in estimation loss r as

r = L(Σ̂MLE ,Σ)− L(Σ̂1,Σ), (23)

such that E[r] > 0 for all values of Σ. Further, define the matrix Jp = (0.5|i−j|)i,j ,
i, j = 1, . . . , p. We now perform a simulation study according to the following algorithm:

1. For each combination of matrix dimensions p = {2, 4, 10} and parameters α =
= {5, 10, 100} and Σ = {Ip,Jp}, draw a sample of n = 10 matrices S ∼MGp(α,Σ).

2. For each such sample, estimate Σ̂1 and Σ̂MLE , and compute r.
3. Repeat the above steps 1000 times and compute the average value of r for each

combination of p,α and Σ.

Table 1 summarizes the results. First, all average values of r are positive, as expected
since E[L(Σ̂MLE ,Σ)] > E[L(Σ̂1,Σ)]. Further, for a given value of α and structure of
Σ, r tends to increase as the dimension p increases. Conversely, r tends to decrease
as α increases. Finally, in all the considered cases, the loss difference is smaller when
the off-diagonal elements of Σ are non-zero compared to the cases when they are zero.
This suggests that the risk improvement is greater for the identity matrix, similar to, for
example, the conclusions of [2] in the case of a normal population.
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Table 1. The average of r, the difference in Stein’s losses L(Σ̂MLE ,Σ)

and L(Σ̂1,Σ), for various values of p,α and Σ

α/p
Σ = Ip Σ = Jp

2 4 10 2 4 10
5 0.0024 0.017 0.17 4.1 · 10−4 0.0043 0.071
10 8.5 · 10−4 0.0060 0.061 6.4 · 10−5 8.9 · 10−4 0.019
100 2.7 · 10−5 2.0 · 10−4 0.0020 9.9 · 10−7 9.5 · 10−6 2.0 · 10−4

4. Conclusion

In this paper, we derive the Stein–Haff identity for random matrices of the exponential
family, generalizing existent results. This identity is then applied to the matrix-variate
gamma distribution, where it is implemented in order to derive an estimator that domi-
nates the MLE in terms of Stein’s loss. In order to support these derivations, a simulation
study is conducted, where the results suggest that the risk improvement is greater when
the scale matrix is the identity matrix rather than a matrix with non-zero off-diagonal
elements, and that improvement tends to increase with dimension.

Topics for future research include deriving the Stein–Haff identity for even more gen-
eral random matrices. One approach is to relax the condition of symmetry, or the
requirements on the density function imposed by (2) and (3) in the case of the exponen-
tial family. Another related field of interest is how to improve estimators in the case of
samples from the matrix-variate gamma distribution with unknown shape parameters.

Appendix

In this section, we present results regarding the matrix-variate gamma distribution
needed for the derivations in Section 3.2, most of which are directly related to results on
the Wishart distribution.

Lemma A1. If S ∼MGp(α,Σ), then the characteristic function of S is

ϕ(Θ) = E[exp(tr(iTS))] = |I− iΣT|−α,

where Θ is a symmetric p× p matrix, T = (tij), i, j = 1, . . . , p and

tij =

{
θij , if i = j,

θij/2, if i 6= j.

Proof. By the density of S, as noted in (9), we have

E[exp(tr(iTS))] =
|Σ|−α

Γp(α)

∫

S>0

|S|α−(p+1)/2 exp(tr(−Σ−1S)) exp(tr(iTS))dS =

=
|Σ|−α

Γp(α)

∫

S>0

|S|α−(p+1)/2 exp(tr(iTS−Σ−1S))dS =

=
|Σ|−α

Γp(α)

∫

S>0

|S|α−(p+1)/2 exp(− tr((Σ−1 − iT)S))dS. (24)

By setting B−1 = Σ−1 − iT, we can write (24) as

|Σ|−α

Γp(α)

∫

S>0

|S|α−(p+1)/2 exp(− tr(B−1S))dS =
|Σ|−α

Γp(α)
Γp(α)|B|α =

= |Σ|−α|B−1|−α =

= |Σ|−α|Σ−1 − iT|−α =



STEIN–HAFF IDENTITY FOR THE EXPONENTIAL FAMILY 17

= |Σ|−α|(Ip − iTΣ)Σ−1|−α =

= |Ip − iTΣ|−α,

where the first equality is due to
∫

S>0 exp(− tr(B−1S))|S|α−(p+1)/2dS = Γp(α)|B|α,
which can be seen from the fact that (9) is a p.d.f. and thus integrates to one over
S > 0. �

Lemma A2. Let S1, . . . ,Sk be independent and Sk ∼MGp(αk,Σ), k = 1, . . . , n. Then

n∑
k=1

Sk ∼MGp(α,Σ),

where α =
∑n

k=1 αk.

Proof. Since S1, . . . ,Sk are independent, the characteristic function of
∑n

k=1 Sk is the
product of the characteristic functions of S1, . . . ,Sk. It is as such, in accordance with
Lemma A1,

n∏
k=1

|I− iΣT|−αk = |I− iΣT|−α,

which is the characteristic function of MGp(α,Σ), completing the proof. �

Lemma A3. Consider an i. i. d. sample S1, . . . ,Sk, where Sk ∼ MGp(αk,Σ), k =
= 1, . . . , n, αk > (p − 1)/2 are known and q =

∑n
k=1 αk. The maximum likelihood

estimate of Σ is then given by

Σ̂MLE =

∑n
k=1 Sk

q
.

Proof. The log-likelihood function for the sample S1, . . . ,Sn is

l(S1, . . . ,Sn) = −q log |Σ| − n log Γp(α) +

(
α+

p + 1

2

) n∑
k=1

log |Sk| − tr

(
Σ−1

n∑
k=1

Sk

)
.

Deriving the above expression by Σ and equating it to zero, we obtain

qΣ−1 = Σ−1
n∑

k=1

SkΣ−1,

Σ̂ =

∑n
k=1 Sk

q
,

as desired. �
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ÒÎÒÎÆÍIÑÒÜ ÑÒÅÉÍÀ�ÃÀÔÔÀ ÄËß ÅÊÑÏÎÍÅÍÖIÉÍÎ� ÑIÌ'�

Ã. ÀËÔÅËÒ

Àíîòàöiÿ. Ó ñòàòòi âñòàíîâëåíî òîòîæíiñòü Ñòåéíà �Ãàôôà äëÿ äîäàòíî âèçíà÷åíèõ i ñèìåòðè-
÷íèõ âèïàäêîâèõ ìàòðèöü, ÿêi íàëåæàòü äî åêñïîíåíöiéíî¨ ñiì'¨. Ïîòiì òîòîæíiñòü çàñòîñîâàíî
äî ìàòðè÷íîçíà÷íîãî ãàììà-ðîçïîäiëó òà îäåðæàíî îöiíêó, ÿêà äîìiíó¹ îöiíêó ìàêñèìàëüíî¨ âiðî-
ãiäíîñòi â òåðìiíàõ ôóíêöi¨ âòðàò Ñòåéíà. Íàðåøòi, ïðîâåäåíî ìîäåëþâàííÿ äëÿ ïiäòâåðäæåííÿ
òåîðåòè÷íèõ ðåçóëüòàòiâ.

ÒÎÆÄÅÑÒÂÎ ÑÒÅÉÍÀ�ÕÀÔÔÀ ÄËß ÝÊÑÏÎÍÅÍÖÈÀËÜÍÎÃÎ
ÑÅÌÅÉÑÒÂÀ

Ã. ÀËÔÅËÒ

Àííîòàöèÿ. Â ñòàòüå óñòàíîâëåíî òîæäåñòâî Ñòåéíà �Õàôôà äëÿ ïîëîæèòåëüíî îïðåäåëåííûõ è
ñèììåòðè÷íûõ ñëó÷àéíûõ ìàòðèö, ïðèíàäëåæàùèõ ýêñïîíåíöèàëüíîìó ñåìåéñòâó. Ïîòîì òîæäå-
ñòâî ïðèìåíåíî ê ìàòðè÷íîçíà÷íîìó ãàììà-ðàñïðåäåëåíèþ è ïîëó÷åíà îöåíêà, êîòîðàÿ äîìèíèðó-
åò îöåíêó ìàêñèìàëüíîãî ïðàâäîïîäîáèÿ â òåðìèíàõ ôóíêöèè ïîòåðü Ñòåéíà. Íàêîíåö, ïðîâåäåíî
ìîäåëèðîâàíèå äëÿ ïîäòâåðæäåíèÿ òåîðåòè÷åñêèõ ðåçóëüòàòîâ.


