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ABSTRACT. In this paper we consider the product of a singular Wishart random matrix and a singular
normal random vector. A very useful stochastic representation of this product is derived, using which its
characteristic function and asymptotic distribution under the double asymptotic regime are established.
We further document a good finite sample performance of the obtained high-dimensional asymptotic
distribution via an extensive Monte Carlo study.
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1. INTRODUCTION

The multivariate normal distribution is one of the basic distributions in probabil-
ity theory and a building block in multivariate statistical analysis. It is also used as
a standard assumption in many applications where the normal distribution is usually
accompanied by the Wishart distribution. For instance, when we consider a sample of
size n from a k-dimensional normal distribution, then the unbiased estimators for the
mean vector and covariance matrix have a k-dimensional normal distribution and a k-
dimensional Wishart distribution, respectively. Moreover, they are independent (see e. g.
[16, Chapter 3]).

A number of papers deal either with the properties of the sample mean vector or with
the properties of the sample covariance matrix, although these two random objects often
appear together in the expressions of statistics. Consequently, a question arises how the
distributions of functions involving both a Wishart matrix and a normal vector can be
characterised. Recently, this topic has attracted a lot of attention in the literature from
both the theoretical perspectives (cf. [3, 6]) and the applications (see e.g. [2, 12, 13]).
While [6, 15] derived the exact distribution and the approximative distribution of the
product of an inverse Wishart matrix and a normal vector, [3] presented similar results
for the product of a Wishart matrix and a normal vector. The product of an inverse
Wishart matrix and a normal vector has direct applications in discriminant analysis (cf.
[19]) and in portfolio theory (see e. g. [7]), whereas the product of a Wishart matrix and a
normal vector arises in Bayesian statistics when the aim is to infer the coefficients of the
discriminant function or the optimal portfolio weights by employing the inverse Wishart
- normal prior which is a conjugate prior for the mean vector and the covariance matrix
under normality (see e.g. [1]).

Singular covariance matrix is present in practical applications as well, especially when
data generating process is large-dimensional. For example, the construction of an optimal
portfolio with a singular covariance matrix has become an important topic in finance (see
e.g. [4, 17]). While the normal distribution with the singular covariance matrix is known
as the singular normal distribution in statistical literature, there is no unique definition
in the case of the Wishart distribution. The singular Wishart distribution introduced by
[14] and [20] deals with the case when the number of degrees of freedom is smaller than the
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process dimension. Its practical relevance was discussed in [22], while some theoretical
findings were derived in [5, 21]. Another type of the singular Wishart distributions, the
so-called pseudo-Wishart distribution, was defined in [8] where a model with a singular
covariance matrix was proposed. The latter stochastic model is considered in the present
paper.

We contribute to the existent literature by deriving a stochastic representation for the
product of a singular Wishart matrix and a normal vector, which provides an elegant
way of characterising the finite sample distribution of the product. Also, it appears to be
very useful in the derivation of the asymptotic distribution under the high-dimensional
asymptotic regime, i.e. when both the sample size and the process dimension become
very large.

The rest of the paper is structured as follows. Section 2 contains several distributional
properties of the singular Wishart distribution which are used as a tool to prove the
main results of the paper presented in Section 3. Here, the distribution of the product
of a singular Wishart matrix and a singular normal random vector is derived in terms
of a stochastic representation from which we also obtain the characteristic function of
the product. Furthermore, we prove the asymptotic normality of the product under
the high-dimensional asymptotic regime. The finite sample performance of the obtained
asymptotic results is discussed in Section 4, while Section 5 presents the summary.

2. PRELIMINARY RESULTS

We start this section with the formal definition of the singular normal distribution
and singular Wishart distribution.

Definition 1. A random vector z is said to have a singular normal distribution with
mean vector 1 and covariance matrix 3 if its characteristic function is given by

1
@5(u) = exp (iuTu - 2uTEu),

where 3 is a positive semi-definite matrix with rank(3) = r < k. We denote this
distribution by z ~ N (1, ).

Definition 2. Let zq,...,2z, be independent and identically distributed where z; is sin-
gular normal with zero mean vector and covariance matrix 3, rank(X) = r < k, and let
Z = [z1,...,%,). Then the random matrix A = ZZ7 has a singular Wishart distribution
with n degrees of freedom and covariance matrix 3. We denote this distribution by
A~ Wk (n, E).

Throughout the paper, no assumption is made about the relationship between the
degrees of freedom n and the dimension k. The results are valid in both cases n > k (the
Wishart distribution with positive semi-definite covariance matrix X) and k¥ < n (the
singular Wishart distribution with positive semi-definite covariance matrix X). Also, we
use the symbol I to denote the k x k identity matrix, ® is the Kronecker product, and
the symbol 2 stands for the equality in distribution.

Next, we present several distributional properties of the singular Wishart distribution
which are used in proving the main results of the paper. In Proposition 1, we derive
the distribution of a linear symmetric transformation of the singular Wishart random
matrix.

Proposition 1. Let A ~ Wy (n,X) with rank(X) =r < k and let M : p x k be a matriz
of constants with rank(M) = p such that M3 # 0. Then

MAM” ~ W, (n,MEZM7).
Moreover, if rank(MX) =p < r, then MAMT and MEMT are of the full rank p.
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Proof. From Theorem 5.2 of [21], we have that the stochastic representation of A is given
by

ALXXT with X ~Nn(0,2®1L,).
Then, using Theorem 2.4.2 of [10], we get

MAMT £ MxX"M7 £ yyT,
where Y ~ N, , (0, (MEMT) ®1I,,). This completes the proof of the proposition. |

An application of Proposition 1 leads to the following result summarized in Proposi-
tion 2.

Proposition 2. Let A ~ Wy (n,X) with rank(X) = r < k and let W : px k be a random
matriz which is independent of A such that rank(WX) = p < r < n with probability one.
Then

(WZW)"V2(WAWT)(WEWT) =2 W, (n, 1)
and is independent of W.

Proof. Using the fact that W and A are independently distributed, we obtain that the
conditional distribution of WAW? [(W = W) is equal to the distribution of WoAW{ .
Then, applying Proposition 1, we obtain

(WoEWI) 1 2(Wo AW (WeEWI) =12 ~ W, (n,1,).

Since this distribution does not depend on W, it is also the unconditional distribution
of ( WEWT)~1/2(WAWT)(WEWT)~1/2_ The proposition is proved. O

In the next corollary, we consider a special case of Proposition 2 with p = 1.

Corollary 1. Let A ~ Wy (n,X) with rank(X) = r < k and let w be a k-dimensional
vector which is independent of A with P(wI'¥ = 0) = 0. Then

wl Aw 9
7/11 ~ XTN
wiXYw

and is independent of w.

3. MAIN RESULTS

In this section, we present the main results of the paper which are complementary
to the ones obtained in [3] to the case of high-dimensional data and singular covariance
matrix.

3.1. Finite sample results. Let z be a k-dimensional singular normally distributed
random vector with mean vector p and covariance matrix k3, k > 0, such that rank(3) =
r < k,ie z~N(u k). Also, let M be a p X k matrix of constants with rank(M) =
p < r < min{n, k} such that MX # 0. We are interested in the distribution of M Az,
when A and z are independently distributed where A has a singular Wishart distribution
as defined in Section 2.

In Theorem 1, we derive a stochastic representation for M Az. The stochastic rep-
resentation is a tool in the theory of multivariate statistics and it is frequently used in
Monte Carlo simulations (cf. [9]). Its importance in the theory of elliptically contoured
distributions is well described by [11].
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Theorem 1. Let A ~ Wy (n,X) with rank(X) = r < k and let z ~ Nj(p, k%), k > 0.
We assume that A and z are independently distributed. Also, let M : p X k be a matrix
of constants of rank p < r < n and denote Q = PTP with P = (MEM”)~1/2Mx1/2,
Then the stochastic representation of M Az is given by

VTt — T (T, — Q)t
MAz £ (MSY2t + /((MEMT)/2 | V4TI, — tTQi E= Qb prpr zo,
where { ~ X2, t ~ Ni(ZY2Ww,kX?), and zg ~ Np(0,1,); ¢, t, and zy are mutually
independent.

Proof. Since A and z are independently distributed, it holds that the conditional distri-

bution of M Az|(z = z*) is equal to the distribution of MIAz*.
~_Let M be the matrix which is obtained from M by adding a row vector z*, ie.

M = (M7 ,z*)T. Consider the following two partitioned matrices

<~ = MAM?  MAz* A, A
A= MAMT — — ~11 ~12
< Z*TAMT Z*TAZ’k > ( A21 A22
and
S o MEM? Mzt ), T
> = MEMT _ _ ~11 ~12 )
( Z*TEMT Z*T§]Z>‘< > ( 221 222

Since A ~ Wg(n,X) and rank(M) = p + 1 < r, following Proposition 1, it holds that
A ~ Wyii(n,X). Using Theorem 3.2.10 of [16], we get the conditional distribution of
A, = MAz" given Ass can be expressed as

;&12|Z22 ~Np (iuig;gm, i11-21122)
with illg i i}/l — §12§2_21§21.
Let ¢ = AggEgzl. Then, from Corollary 1, we get that { ~ x2, and it is independent
of z. Hence,
MAz|(,z ~ N, (CMEZ, (2T SzMEMT — MEZZTEMT)>,
which leads to the stochastic representation of M Az given by
MAz £ (MXz + /(2" 2zMEM” — MSzz” SM7) /27, (1)

where { ~ x2, z ~ Nj (1, kX), and zg ~ N,(0,1,). Moreover, (, z, and zg are mutually
independent.
Next, we calculate the square root of (zTEZMEMT - MEZZTEMT) using the fol-
lowing equality
(D _ bbT)l/Q — D1/2(Ip _ CDfl/beTDfl/Q)

with ¢ = 12V D7 b VblT;),TlDbﬂ), b =M3Xz, and D = z7SzM3XM7 that leads to

MAz £ (MXz + /{(MEMT)"/2 x

TSz — (Y —21/2Q%1/2
x | VaT=a1, - Vel 2z }/zzzl/(?QXﬂ/? QX225 /2,, ms/2pT Zo,
Z Z

where P = (MEM”)~/2MX!/? and Q = PTP.
Finally, making the transformation t = X'/2z ~ N, (Z'/?u,kX?), we obtain the
statement of the theorem. |

Next, we consider the special case of Theorem 1 when p =1 and M = m”.
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Corollary 2. Let A ~ Wy (n,X) with rank(X) = r < k and let z ~ Ny (1, kX), k > 0.
We assume that A and z are independently distributed. Let m be a k-dimensional vector
of constants such that m*Xm > 0. Then the stochastic representation of m” Az is given
by

m7Az £ imTSz + \/E[ZTEZ -m”Em — (m”¥z)? 1/2207 (2)
where { ~x2 and zo ~ N(0,1); ¢, 20, and z are mutually independent.

The proof of Corollary 2 follows directly from (1). The result of the corollary is
very useful from the viewpoint of computational statistics. Namely, in order to get a
realization of m” Az it is sufficient to simulate two random variables from the standard
univariate distributions together with a random vector which has a singular multivariate
normal distribution. There is no need to generate a large-dimensional object A and, as
a result, the application of (2) speeds up the simulations where the product of A and z
is present.

Another application of Corollary 2 leads to the expression of the characteristic function
of Az presented in the following theorem.

Theorem 2. Let A ~ Wy (n,X) with rank(X) = r < k and let z ~ Ni(n,kX). We
assume that A and z are independently distributed. Then the characteristic function of
Az is given by

<\ TRA-IRT o
(4) = exp( 5 H RAT'R H) |Q(C)|71/2f (@) x
Pazu)= K/2| A1/ 0 X7

2
X exp (in(C)TARTu — %uTRAQ(c)*lARTu + ;V(C)TQ(C)V(C)) de,

where v(() = k1) TPATIR T,
Q) =« 'AT +([A-u"Zu - AR"uu"RA],

and ¥ = RART is the singular value decomposition of 3 with diagonal matriz A con-
sisting of all r non-zero eigenvalues of 3 and the k X r matriz R of the corresponding
eigenvectors; fyz denotes the density function of the x? distribution with n degrees of
freedom.

Proof. From the stochastic representation derived in Corollary 2, we get that

9az(u) = E(exp(iu” Az)) =

E(exp(zéu 2z+zf[ sz u'Su— (u? 1/2 ))
= E(exp(iCuTEz)E<eXp (z’ﬁ[zTEz ul's (uT'xz) 2] >|C z)) =
=E exp(iCuTZZ) exp<;C[ Tz - u'Su - TZz )>

(
_ E(]E(exp(iCuTZz) exp<_;c[szz WTSu — (u7S) 2]) )) _

=F <]E (exp (itv" Ay) exp (—;c [y"Ay - vTAv — (vT Ay)?] ) |C) ) ,

where v. = RTu; ¥ = RARYT is the singular value decomposition of ¥; y = RTz ~
~ N, (RT, kA) has a non-singular multivariate normal distribution.
Hence,

E (exp(inTAy) exp (—;C[yTAy vIAv — (VTAY)Q]) |C) =
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1 1
= AT, S AY) e (‘ Uy Ay vIAY - (vTAyf]) ‘
-1
X exp (—KQ(y ~RTWTA (y - RTu)> dy
where
<y - RTWTAT (y — RTw) + [y Ay v AV - (v AY Y] =

= (y = ()" () (y - v(0) +d

with

QQ) =c AT+ A VIAV — AvvTA],
v(Q) = k'R T AR,
d =k RATR 1= v(QTQOV(Q) = I B = v(Q TR V(0),

and 1 the Moore-Penrose inverse.
As a result, we get

exp (_ K;l HTEJr PL)

_ > —12p
Pasln) = —— o | IR0 g (0
2
X exp (m(cﬁAv - SVTARO T AY §v<c>Tn(c>v<c>)dc.
This completes the proof of the theorem. O

3.2. Asymptotic distribution under double asymptotic regime. In this section
we derive the asymptotic distribution of M Az under double asymptotic regime, i.e. when
both r and n tend to infinity such that r/n — ¢ € [0,+00). In the derivation of the
asymptotic distribution we rely on the results of Corollary 2.

The following conditions are needed to ensure the validity of the asymptotic results
presented in this section.

(A1) Let (A;,u;) denote the set of non-zero eigenvalues and eigenvectors of X. We
assume that there exist {; and L; such that

0<li<AM <A <...<AN<Li <

uniformly on k.
(A2) There exists Lo such that

|ul'u| < Ly for all i = 1,...,r uniformly on k.

It is noted that Assumptions (A1) and (A2) are valid uniformly on k, that is both
constants L, and Ly should not depend on k. Later on we also assume that k increases
with 7. This condition is needed in order to ensure that the random vector z is well
concentrated around its mean vector in large dimension. For example, fulfilled in the
case, when z is the sample mean computed from the independent normal sample.

Theorem 3. Let A ~ Wi(n,X) with rank(X) = r < k and let z ~ Np(u, kX),k > 0.
Assume = = ¢+ o(n"1/?),c € [0,+00) and xr = O(1) as n — oo. Also, let m be
a k-dimensional vector of constants such that mT¥m > 0 and |[ulm| < Ly for all
i=1,...,r uniformly on k. Assume that A and z are independently distributed. Then,
under (A1) and (A2), it holds that the asymptotic distribution of mT Az is given by

1
Vno ! (mTAz - mTEu> L N(0,1)  forr/n— c asn — oo,
n
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where <
0% = (mTZ]pL)2 +m”"Em|ktr(2?) + p" Sp] + —m” =Pm.
c

Proof. From Corollary 2, the stochastic representation of m” Az is given by

1/2
z

m7Az £ (m”>z + ﬁ[zTEz -mT¥m — (mTEz)Q] 0,

with ¢ ~ X2, 29 ~ N(0,1) and z ~ Ny (i, kX),k > 0; , 20, and z are mutually indepen-
dent.

From the property of x2-distribution, we immediately obtain the asymptotic distribu-
tion of ¢ given by

\/ﬁ(c—1>i>/\/'(0,2) as m — 00. (3)
n

Further, it holds that v/n(zg/y/n) ~ N(0,1) for all n, consequently it is its asymptotic
distribution.

We next show that m” ¥z and z” ¥z are jointly asymptotically normally distributed
under the high-dimensional asymptotic regime. For any a; € R and as € R, we consider

T 2
alzTEz + ZanTEz =a (z + a2m> E(z + a2m> — @mTEm =
aq aq ai

2
T~ @

=az2'3z — 2mTEm,
ai

where Z ~ N (1, kX) with g, = u+ 22m. By [18] the random variable z'¥7 can be
expressed as

2722 L 3 NG with G AE87), 87 = kA (ul ),

i=1
where the symbol x%(8) denotes the non-central chi-squared distribution with d degrees
of freedom and non-centrality parameter 8.

Next, we apply the Lindeberg central limit theorem to the i.i.d. random variables
V; = kA2G;. Let 02 = V(V;) and s2 = V(3._, Vi). It holds that

. V<z v;) @S AE) - SN2+ 282) —
=1 =1 =1

= k2 2:(27\2L + 4k TIN (U] 1,)?) = K2 [2tr(BY) + 4l 2, ]
i=1
In order to verify the Lindeberg condition, we need to check if for any small € > 0 it
holds that

1 )
Jm ;E[(Vi —B(Vi)* Lvi-vi)>es.y] =0, (4)
where
r 9 Cauchy—Schwarz
> E[(Vi — E(Vi)*L{vi-(vi)|>esn}] <
i=1

Cauchy—Schwarz

< > VE[V: —E(Vi))“]\/]E[]l{\W—E(w>|>esn}] =
i=1

Chebychev

= >_VEVi—EV) VRV —E(VI)[ > esa] =
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Chebychev

(Vi = E(V;

esn

K
2v3— N AL /(1 + 2562 4(1 + 462
ﬁ€;1¢<+z>+<+>

’ﬂ

By using

(1+282)% + 4(1 +487) = (5+282)% — 20 < (5 + 2672
for omax = sup; 0;, we get the following inequality

K GmaX
3z Z]E (Vi =E(Vi))* L vi—g(vi)|>esn}] < 2\[
n =1
_ @ Omax 5tr(E4) + 2k 1’3y,
€ s, tr(3*) 42k tul'xes
Using

r, .

Z)\45+262
Lz 1

5 \/g Gmax

€  Sp

2
(Wli)? = (s Zulm) -

ai

2
2(ul w)? + 2( 2uTm> =
a
0\ 2
—2L§<1+ <2> ) < 00
a
and Assumptions (A1) and (A2), we get

0.2

G S (M 28) sup, (2 M@l )Y
2 tr(ZH) 42k tuIS3u,  tr(34) 2k 1plxs ’
which verifies the Lindeberg condition
Since

D EWV) =Y NE(G) =k Y A (1+87) = ktr(2?) + 1 S,
=1 =1 =

we obtain by using the Lindeberg central limit theorem that

12727 — 2 s
12" 3z — ktr(X°) — g Xp, Ly N(0,1).
V2ktr(B4) + 4pls3y,

Then the last identity leads to
T 2 T
rf 2’3z \  _pf ktr(¥?)+u Sp
\/ﬁ{a (mTEZ) a ( m’p
iﬂ\/’(O aTK< 2ktr(X4) +4u323n 2m7%?
e

om’33u mTESHF: )51)7 (5)

T, .
which implies that the vector ( TSz, mTZ]z) is asymptotically multivariate normally
distributed because a is an arbitrary fixed vector

Let a = (a1,2a2)7.

Taking into account (3),(5) and the fact that , 2z, and z are mutually independent
we get the following asymptotic result

4
o 1
z'' ¥z ktr(2?) + u'Sp d
Vi m’¥z | m”Tpu

0
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2 0 0 0
d 0 25¢r(S4) + 450723 25mTS3 0
— N0 0 25m” 3%y m”¥%m 0
0 0 0 1

Finally, the application of the delta method leads to

N (1mTAz - mTEu> 4, N(0,1),

n

where

o’ = ( m Sy 0 1 “Ktr(EQ)—kaEu]mTEm— (mTEu)zr ) X

2 0 0 0
Lo 2 ¢ (24) + 45T 25mTS3 0 y
0 2§mT23u ngEg’m 0
0 0 0 1
m” T
0
X 1 =

1
[[Kt?”(EQ) + ' Sujm’Em - (mTEu)Z} ’
= (mTEu)2 + mTEm[Ktr(EQ) + uTEu] + EmTs3m. |
c

Finally, we extend the results of Theorem 3 to the case of finite number of linear
combinations of the elements of Az. The results are summarised in the following theorem.

Theorem 4. Let A ~ Wy(n,X) with rank(X) = r < k and let z ~ Ni(n, k%),
kK > 0. Assume L = ¢+ o(n"Y2),c € [0,4+00) and kr = O(1) as n — oo. Let
M = (my,.. .,mp)T : p X k be a matriz of constants of rank p < r < n with proba-
bility one and let lulm;| < Lo for alli = 1,...,r and j = 1,...,p uniformly on k.
Assume that A and z are independently distributed. Then under (A1) and (A2) the
asymptotic distribution of M Az under the double asymptotic regime is given by

1
V12 (TLMAZ - Mzz> 4, N,(0,1,)  forr/n—casn— oo,

where
Q =MIZpp"EM” + MEM [ktr(2?) + n" Ty + MM
C

Proof. For all 1 € RP-fixed, we consider 1" MAz. The rest of the proof follows from
Theorem 3 with m = M71 and the fact that 1is an arbitrary vector. ([l

4. FINITE SAMPLE PERFORMANCE

In this section, we present the results of a Monte Carlo simulation study where the
performance of the obtained asymptotic distribution for the product of a singular Wishart
matrix and a singular Gaussian vector is investigated.

In our simulation, we fix m = 1/k where 1 denotes the k-dimensional vector of ones
and generated each element of i from the uniform distribution on [—1, 1]. The population
covariance matrix was drawn in the following way:

e 7 non-zero eigenvalues of ¥ were generated from the uniform distribution on
(0,1) and the rest were set to be zero;

e the eigenvectors were generated from the Haar distribution by simulating a
Wishart matrix with identity covariance matrix and calculating its eigenvectors.
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Both the mean vector and the population covariance matrix obtained by such setting
satisfy the assumptions (Al) and (A2).

24 — - Finite sample 24 — - Finite sample
—— Asymptotic —— Asymptotic
< | < |
=} =}
7N
o | o |
=4 =4
~ N
=1 o
- =
o S
Q
o | _| o | _
= S
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
(a) m =500,¢= 0.1,k = 750 (b) n=500,c= 0.5k =750
24 — - Finite sample 24 — - Finite sample
— Asymptotic — Asymptotic
< ] <
=} S
o | @ |
= =4
N N
=1 S
- =
S c
o | o |_
= S
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
(c) n=500,c = 0.8,k = 750 (d) n =500, c = 0.95,k = 750

FIGURE 1. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n = 500)

We compare the asymptotic density of the standardized random variable m” Az with
its finite sample one which is obtained by applying the stochastic representation of Corol-
lary 2. More precisely, we draw N = 10* independent realizations of the standardized
random variable m” Az by using the following algorithm.

a) Generate m” Az by using stochastic representation (2) of Corollary 2 expressed
as

1/2
z

m?Az < (mTYz + ﬁ[ZTEZ -mT¥m — (mTEz)Q] 0,

where ¢ ~ x2, zo ~ N(0,1), z ~ Ni(1,kX); {, 20, and z are mutually indepen-
dent.
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b) Compute

Vno! (1m

n
where

TAz — mT2u> ,

0? = (mTEp)2 +m”Em|ktr(2?) + p ' Sp] + EmTﬁgm.

¢) Repeat a)-b) N times.

Then, the elements of the generated sample are used to construct a kernel density es-

timator which is compared to the asymptotic distribution, i.e.

to the density of the

standard normal distribution. As a kernel, we make use of the Epanechnikov kernel with

the bandwidth chosen by applying Silverman’s rule of thumb.

0.5

0.4

0.3

0.2

01

0.0

= = Finite sample
—— Asymptotic

= = Finite sample
—— Asymptotic

(a) n = 1000,c = 0.1,k = 750

(b) n =1000,c = 0.5,k = 750

X 0
— - Finite sample 24 — - Finite sample
—— Asymptotic —— Asymptotic
<
- S
r N\ =
o |
c
o
8
-
i
L - o | —
L | = —
T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4

(c) n = 1000, c = 0.8,k = 990

(d) n = 1000, c = 0.95, k = 990

FIGURE 2. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular

Wishart matrix and a singular normal vector (n = 1000)
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0.5
I
0.5
I

— = Finite sample = = Finite sample
—— Asymptotic —— Asymptotic

0.4
0.4

0.2
0.2
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FI1GURE 3. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n € {500, 1000})

The results of the simulation study are summarized in Figure 1 for n = 500, in Figure 2
for n = 1000, and for n € {500,100} with ¢ = 2 in Figure 3. In all cases we set k = 1/n.
Finally, k& = 750 is chosen for n = 500 and k& € {750,990} for n = 1000. For ¢ = 2,
k = 1200 is chosen for n = 500 and k£ = 2100 for n = 1000. Furthermore, several
values of r are considered such that ¢ = {0.1,0.5,0.8,0.95} in Figures 1 and 2, while
¢ = 2 in Figure 3. The finite sample distributions are shown as dashed lines, while the
asymptotic distributions are solid lines. All obtained results show a good performance of
the asymptotic approximation which is almost indistinguishable from the corresponding
finite sample density. This result remains true even for the values of ¢ = 0.95 and ¢ = 2.

5. SUMMARY

The Wishart distribution and normal distribution are widely spread in both statistics
and probability theory with numerous and useful applications in finance, economics,
environmental sciences, biology, etc. Different functions involving a Wishart matrix and
a normal vector have been studied in statistical literature recently. However, to the
best of our knowledge, combinations of a singular Wishart matrix and a singular normal
vector have not been investigated up to now.

In this paper we analyse the product of a singular Wishart matrix and a singular
Gaussian vector. A very useful stochastic representation of this product is obtained,
which is later used to derive its characteristic function as well as to provide an efficient
way how to simulate the elements of the product in practice. With the use of the derived
stochastic representation, there is no need in generating a large dimensional Wishart
matrix. Its application speeds up simulation studies where the product of a singular
Wishart matrix and a singular normal vector is present. Furthermore, we prove the
asymptotic normality of the product under the double asymptotic regime. In a numerical
study, a good performance of the obtained asymptotic distribution is documented. It is
also noted that for the values ¢ = 0.95 and ¢ = 2, it produces a very good approximation of
the corresponding finite sample distribution obtained by applying the derived stochastic
representation.
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JOBYTOK CHUHI'YJIAPHOI BUIIAJIKOBOI MATPHUIII BIIIIAPTA
TA CUHTVYJIAPHOTO HOPMAJIBHOTO BUITAAKOBOT'O BEKTOPA
Y BEJIMKNX PO3MIPHOCTAX

T. BOTHAP, C. MABYP, C. MYXIHIOBA, H. ITAPOJIS

AHOTAIIISA. Y CTATTI MU PO3TJIIIa€MO JO0OYTOK CHHTYISIPHOT BUIAAKOBOI MaTpurli Bimapra ta cHHryssp-
HOTO HOPMaJIBHOT'O BUII4JKOBOT'O BEKTOPDaA. OTpI/IMaHO AYZKe KOPUCHE CTOXaCTUYHE NIPeACTaBJICHHSA [[BOTO
0OYTKY, 3a IOIOMOTOI0 IKOTO BUBOJUTHCS MO0 XapaKTepUCTHIHA (DYHKIIA Ta ACHMITOTHYHUAN PO3IOILT
npu noABiRHOMY aCHMITOTHYIHOMY pexkuMi. Takoxk, i3 Bukopucranuam merogy Monrte-Kapio, nokazano
XOPOIIi Pe3yJIbTATH AIIPOKCHUMAIIl, OTPUMaHi 3a JONMOMOTOI BHBEJIEHOI0 GAraTOBUMIPHOTO ACHUMIITOTH-
YHOTO PO3MOJIIY B YMOBAaX CKiHwueHHOI! BHOIpKH.

IIPOM3BEJAEHUE CUHIYJISIPHON CJIYYAMHON MATPUIIBI
BUIIIAPTA U CUHTVYJISIPHOTO HOPMAJILHOTO CJIYYAMHOTO
BEKTOPA B BOJIBIIIOW PABMEPHOCTN

T. BOJTHAP, C. MABYP, C. MYXHUHIO3BA, H. TAPOJIS

AnHoTAlMA. B craThe MBI paccMaTpHBaeM MPOU3BEEHNE CHHTYISIPHON ciyvaiinoil Mmarpuisl BumapTa
¥ CUHTYJIIPHOTO HOPMAJIBHOTO CJIyYaiHOro BeKTOopa. IlosiydeHO O4YeHb MOJIe3HOE CTOXACTHYECKOEe MPes-
CTABJIEHUE ITOrO IPOU3BEACHHUs, C IOMOIIBIO KOTOPOIO BBIBOLHUTCS €r0 XaPaKTEPUCTHIECKAs (DyHKITUS
¥ aCHMIITOTHYIECKOE PacIpejiesieHne IPpH JBOMHOM aCHMITOTHIECKOM pexXmMe. TakxKe, ¢ HCIONB30BAHU-
eMm Merona Monre-Kapso, 1oka3aHbl XOPOLIUE PE3y/IbTaThl ALIPOKCUMALMUM, IIOJIy4YEHHbIE C HOMOLIbIO
BBIBEJEHHOI'0O MHOTOMEDHOI'0 aCHMITOTHYECKOI'0 PACIpeeieHus B YCIOBHAX KOHEYHONU BBIOOPKU.



