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Abstract. In this paper we consider the product of a singular Wishart random matrix and a singular

normal random vector. A very useful stochastic representation of this product is derived, using which its
characteristic function and asymptotic distribution under the double asymptotic regime are established.

We further document a good finite sample performance of the obtained high-dimensional asymptotic
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1. Introduction

The multivariate normal distribution is one of the basic distributions in probabil-
ity theory and a building block in multivariate statistical analysis. It is also used as
a standard assumption in many applications where the normal distribution is usually
accompanied by the Wishart distribution. For instance, when we consider a sample of
size n from a k-dimensional normal distribution, then the unbiased estimators for the
mean vector and covariance matrix have a k-dimensional normal distribution and a k-
dimensional Wishart distribution, respectively. Moreover, they are independent (see e. g.
[16, Chapter 3]).

A number of papers deal either with the properties of the sample mean vector or with
the properties of the sample covariance matrix, although these two random objects often
appear together in the expressions of statistics. Consequently, a question arises how the
distributions of functions involving both a Wishart matrix and a normal vector can be
characterised. Recently, this topic has attracted a lot of attention in the literature from
both the theoretical perspectives (cf. [3, 6]) and the applications (see e. g. [2, 12, 13]).
While [6, 15] derived the exact distribution and the approximative distribution of the
product of an inverse Wishart matrix and a normal vector, [3] presented similar results
for the product of a Wishart matrix and a normal vector. The product of an inverse
Wishart matrix and a normal vector has direct applications in discriminant analysis (cf.
[19]) and in portfolio theory (see e. g. [7]), whereas the product of a Wishart matrix and a
normal vector arises in Bayesian statistics when the aim is to infer the coefficients of the
discriminant function or the optimal portfolio weights by employing the inverse Wishart
- normal prior which is a conjugate prior for the mean vector and the covariance matrix
under normality (see e. g. [1]).

Singular covariance matrix is present in practical applications as well, especially when
data generating process is large-dimensional. For example, the construction of an optimal
portfolio with a singular covariance matrix has become an important topic in finance (see
e. g. [4, 17]). While the normal distribution with the singular covariance matrix is known
as the singular normal distribution in statistical literature, there is no unique definition
in the case of the Wishart distribution. The singular Wishart distribution introduced by
[14] and [20] deals with the case when the number of degrees of freedom is smaller than the
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process dimension. Its practical relevance was discussed in [22], while some theoretical
findings were derived in [5, 21]. Another type of the singular Wishart distributions, the
so-called pseudo-Wishart distribution, was defined in [8] where a model with a singular
covariance matrix was proposed. The latter stochastic model is considered in the present
paper.

We contribute to the existent literature by deriving a stochastic representation for the
product of a singular Wishart matrix and a normal vector, which provides an elegant
way of characterising the finite sample distribution of the product. Also, it appears to be
very useful in the derivation of the asymptotic distribution under the high-dimensional
asymptotic regime, i.e. when both the sample size and the process dimension become
very large.

The rest of the paper is structured as follows. Section 2 contains several distributional
properties of the singular Wishart distribution which are used as a tool to prove the
main results of the paper presented in Section 3. Here, the distribution of the product
of a singular Wishart matrix and a singular normal random vector is derived in terms
of a stochastic representation from which we also obtain the characteristic function of
the product. Furthermore, we prove the asymptotic normality of the product under
the high-dimensional asymptotic regime. The finite sample performance of the obtained
asymptotic results is discussed in Section 4, while Section 5 presents the summary.

2. Preliminary results

We start this section with the formal definition of the singular normal distribution
and singular Wishart distribution.

Definition 1. A random vector z is said to have a singular normal distribution with
mean vector µ and covariance matrix Σ if its characteristic function is given by

ϕz(u) = exp

(
iµTu− 1

2
uTΣu

)
,

where Σ is a positive semi-definite matrix with rank(Σ) = r < k. We denote this
distribution by z ∼ Nk(µ,Σ).

Definition 2. Let z1, ..., zn be independent and identically distributed where zi is sin-
gular normal with zero mean vector and covariance matrix Σ, rank(Σ) = r < k, and let
Z = [z1, ..., zn]. Then the random matrix A = ZZT has a singular Wishart distribution
with n degrees of freedom and covariance matrix Σ. We denote this distribution by
A ∼ Wk(n,Σ).

Throughout the paper, no assumption is made about the relationship between the
degrees of freedom n and the dimension k. The results are valid in both cases n ≥ k (the
Wishart distribution with positive semi-definite covariance matrix Σ) and k < n (the
singular Wishart distribution with positive semi-definite covariance matrix Σ). Also, we
use the symbol Ik to denote the k × k identity matrix, ⊗ is the Kronecker product, and

the symbol
d
= stands for the equality in distribution.

Next, we present several distributional properties of the singular Wishart distribution
which are used in proving the main results of the paper. In Proposition 1, we derive
the distribution of a linear symmetric transformation of the singular Wishart random
matrix.

Proposition 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let M : p× k be a matrix
of constants with rank(M) = p such that MΣ 6= 0. Then

MAMT ∼ Wp(n,MΣMT ).

Moreover, if rank(MΣ) = p ≤ r, then MAMT and MΣMT are of the full rank p.
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Proof. From Theorem 5.2 of [21], we have that the stochastic representation of A is given
by

A
d
= XXT with X ∼ Nk,n(0,Σ⊗ In).

Then, using Theorem 2.4.2 of [10], we get

MAMT d
= MXXTMT d

= YYT ,

where Y ∼ Np,n(0, (MΣMT )⊗ In). This completes the proof of the proposition. �

An application of Proposition 1 leads to the following result summarized in Proposi-
tion 2.

Proposition 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let W : p×k be a random
matrix which is independent of A such that rank(WΣ) = p ≤ r ≤ n with probability one.
Then

(WΣWT )−1/2(WAWT )(WΣWT )−1/2 ∼ Wp(n, Ip)

and is independent of W.

Proof. Using the fact that W and A are independently distributed, we obtain that the
conditional distribution of WAWT |(W = W0) is equal to the distribution of W0AWT

0 .
Then, applying Proposition 1, we obtain

(W0ΣWT
0 )−1/2(W0AWT

0 )(W0ΣWT
0 )−1/2 ∼ Wp(n, Ip).

Since this distribution does not depend on W, it is also the unconditional distribution
of (WΣWT )−1/2(WAWT )(WΣWT )−1/2. The proposition is proved. �

In the next corollary, we consider a special case of Proposition 2 with p = 1.

Corollary 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r ≤ k and let w be a k-dimensional
vector which is independent of A with P (wTΣ = 0) = 0. Then

wTAw

wTΣw
∼ χ2n,

and is independent of w.

3. Main results

In this section, we present the main results of the paper which are complementary
to the ones obtained in [3] to the case of high-dimensional data and singular covariance
matrix.

3.1. Finite sample results. Let z be a k-dimensional singular normally distributed
random vector with mean vector µ and covariance matrix κΣ, κ > 0, such that rank(Σ) =
r < k, i. e. z ∼ Nk(µ, κΣ). Also, let M be a p× k matrix of constants with rank(M) =
p ≤ r ≤ min{n, k} such that MΣ 6= 0. We are interested in the distribution of MAz,
when A and z are independently distributed where A has a singular Wishart distribution
as defined in Section 2.

In Theorem 1, we derive a stochastic representation for MAz. The stochastic rep-
resentation is a tool in the theory of multivariate statistics and it is frequently used in
Monte Carlo simulations (cf. [9]). Its importance in the theory of elliptically contoured
distributions is well described by [11].
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Theorem 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ,κΣ), κ > 0.
We assume that A and z are independently distributed. Also, let M : p× k be a matrix
of constants of rank p < r ≤ n and denote Q = PTP with P = (MΣMT )−1/2MΣ1/2.
Then the stochastic representation of MAz is given by

MAz
d
= ζMΣ1/2t +

√
ζ(MΣMT )1/2

[
√

tT tIp −
√

tT t−
√

tT (Ik −Q)t

tTQt
PttTPT

]
z0,

where ζ ∼ χ2n, t ∼ Nk(Σ1/2µ, κΣ2), and z0 ∼ Np(0, Ip); ζ, t, and z0 are mutually
independent.

Proof. Since A and z are independently distributed, it holds that the conditional distri-
bution of MAz|(z = z∗) is equal to the distribution of MAz∗.

Let M̃ be the matrix which is obtained from M by adding a row vector z∗, i.e.

M̃ = (MT , z∗)T . Consider the following two partitioned matrices

Ã = M̃AM̃T =

(
MAMT MAz∗

z∗TAMT z∗TAz∗

)
=

(
Ã11 Ã12

Ã21 Ã22

)
and

Σ̃ = M̃ΣM̃T =

(
MΣMT MΣz∗

z∗TΣMT z∗TΣz∗

)
=

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
.

Since A ∼ Wk(n,Σ) and rank(M̃) = p + 1 ≤ r, following Proposition 1, it holds that

Ã ∼ Wp+1(n, Σ̃). Using Theorem 3.2.10 of [16], we get the conditional distribution of

Ã12 = MAz∗ given Ã22 can be expressed as

Ã12|Ã22 ∼ Np

(
Σ̃12Σ̃−122 Ã22, Σ̃11·2Ã22

)
with Σ̃11·2 = Σ̃11 − Σ̃12Σ̃−122 Σ̃21.

Let ζ = Ã22Σ̃−122 . Then, from Corollary 1, we get that ζ ∼ χ2n, and it is independent
of z. Hence,

MAz|ζ, z ∼ Np

(
ζMΣz, ζ(zTΣzMΣMT −MΣzzTΣMT )

)
,

which leads to the stochastic representation of MAz given by

MAz
d
= ζMΣz +

√
ζ(zTΣzMΣMT −MΣzzTΣMT )1/2z0, (1)

where ζ ∼ χ2n, z ∼ Nk(µ, κΣ), and z0 ∼ Np(0, Ip). Moreover, ζ, z, and z0 are mutually
independent.

Next, we calculate the square root of (zTΣzMΣMT −MΣzzTΣMT ) using the fol-
lowing equality

(D− bbT )1/2 = D1/2(Ip − cD−1/2bbTD−1/2)

with c =
1−
√

1−bTD−1b

bTD−1b
, b = MΣz, and D = zTΣzMΣMT that leads to

MAz
d
= ζMΣz +

√
ζ(MΣMT )1/2 ×

×

[
√

zTΣzIp −
√

zTΣz−
√

zT (Σ−Σ1/2QΣ1/2)z

zTΣ1/2QΣ1/2z
PΣ1/2zzTΣ1/2PT

]
z0,

where P = (MΣMT )−1/2MΣ1/2 and Q = PTP.
Finally, making the transformation t = Σ1/2z ∼ Nk(Σ1/2µ, κΣ2), we obtain the

statement of the theorem. �

Next, we consider the special case of Theorem 1 when p = 1 and M = mT .
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Corollary 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ), κ > 0.
We assume that A and z are independently distributed. Let m be a k-dimensional vector
of constants such that mTΣm > 0. Then the stochastic representation of mTAz is given
by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0, (2)

where ζ ∼ χ2n and z0 ∼ N (0, 1); ζ, z0, and z are mutually independent.

The proof of Corollary 2 follows directly from (1). The result of the corollary is
very useful from the viewpoint of computational statistics. Namely, in order to get a
realization of mTAz it is sufficient to simulate two random variables from the standard
univariate distributions together with a random vector which has a singular multivariate
normal distribution. There is no need to generate a large-dimensional object A and, as
a result, the application of (2) speeds up the simulations where the product of A and z
is present.

Another application of Corollary 2 leads to the expression of the characteristic function
of Az presented in the following theorem.

Theorem 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ). We
assume that A and z are independently distributed. Then the characteristic function of
Az is given by

ϕAz(u) =
exp
(
−κ−1

2 µ
TRΛ−1RTµ

)
κr/2|Λ|1/2

∫ ∞

0

|Ω(ζ)|−1/2fχ2
n
(ζ)×

× exp

(
iζν(ζ)TΛRTu− ζ

2

2
uTRΛΩ(ζ)−1ΛRTu +

1

2
ν(ζ)TΩ(ζ)ν(ζ)

)
dζ,

where ν(ζ) = κ−1Ω(ζ)−1Λ−1RTµ,

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · uTΣu−ΛRTuuTRΛ

]
,

and Σ = RΛRT is the singular value decomposition of Σ with diagonal matrix Λ con-
sisting of all r non-zero eigenvalues of Σ and the k × r matrix R of the corresponding
eigenvectors; fχ2

n
denotes the density function of the χ2 distribution with n degrees of

freedom.

Proof. From the stochastic representation derived in Corollary 2, we get that

ϕAz(u) = E
(
exp
(
iuTAz

))
=

= E
(

exp
(
iζuTΣz + i

√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

))
=

= E
(

exp
(
iζuTΣz

)
E
(

exp
(
i
√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

)
|ζ, z

))
=

= E
(

exp
(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

]))
=

= E
(
E
(

exp
(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

])
|ζ
))

=

= E
(
E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
))

,

where v = RTu; Σ = RΛRT is the singular value decomposition of Σ; y = RT z ∼
∼ Nr(RTµ, κΛ) has a non-singular multivariate normal distribution.

Hence,

E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
)

=
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=
1

(2πκ)r/2|Λ|1/2
∫

Rr

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
×

× exp

(
−κ
−1

2
(y −RTµ)TΛ−1(y −RTµ)

)
dy

where

κ−1(y −RTµ)TΛ−1(y −RTµ) + ζ
[
yTΛy · vTΛv − (vTΛy)2

]
=

= (y − ν(ζ))TΩ(ζ)(y − ν(ζ)) + d

with

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · vTΛv −ΛvvTΛ

]
,

ν(ζ) = κ−1Ω(ζ)−1Λ−1RTµ,

d = κ−1µTRΛ−1RTµ− ν(ζ)TΩ(ζ)ν(ζ) = κ−1µTΣ+µ− ν(ζ)TΩ(ζ)ν(ζ),

and Σ+ the Moore–Penrose inverse.
As a result, we get

ϕAz(u) =
exp
(
−κ−1

2 µ
TΣ+µ

)
κr/2|Λ|1/2

∫ ∞

0

|Ω(ζ)|−1/2fχ2
n
(ζ)×

× exp

(
iζν(ζ)TΛv − ζ

2

2
vTΛΩ(ζ)−1Λv +

1

2
ν(ζ)TΩ(ζ)ν(ζ)

)
dζ.

This completes the proof of the theorem. �

3.2. Asymptotic distribution under double asymptotic regime. In this section
we derive the asymptotic distribution of MAz under double asymptotic regime, i.e. when
both r and n tend to infinity such that r/n → c ∈ [0,+∞). In the derivation of the
asymptotic distribution we rely on the results of Corollary 2.

The following conditions are needed to ensure the validity of the asymptotic results
presented in this section.

(A1) Let (λi,ui) denote the set of non-zero eigenvalues and eigenvectors of Σ. We
assume that there exist l1 and L1 such that

0 < l1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr ≤ L1 <∞

uniformly on k.
(A2) There exists L2 such that

|uT
i µ| ≤ L2 for all i = 1, . . . , r uniformly on k.

It is noted that Assumptions (A1) and (A2) are valid uniformly on k, that is both
constants L1 and L2 should not depend on k. Later on we also assume that κ increases
with r. This condition is needed in order to ensure that the random vector z is well
concentrated around its mean vector in large dimension. For example, fulfilled in the
case, when z is the sample mean computed from the independent normal sample.

Theorem 3. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ),κ > 0.
Assume r

n = c + o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n → ∞. Also, let m be

a k-dimensional vector of constants such that mTΣm > 0 and |uT
i m| ≤ L2 for all

i = 1, . . . , r uniformly on k. Assume that A and z are independently distributed. Then,
under (A1) and (A2), it holds that the asymptotic distribution of mTAz is given by

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1) for r/n→ c as n→∞,
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where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

Proof. From Corollary 2, the stochastic representation of mTAz is given by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

with ζ ∼ χ2n, z0 ∼ N (0, 1) and z ∼ Nk(µ, κΣ),κ > 0; ζ, z0, and z are mutually indepen-
dent.

From the property of χ2-distribution, we immediately obtain the asymptotic distribu-
tion of ζ given by

√
n

(
ζ

n
− 1

)
d→ N (0, 2) as n→∞. (3)

Further, it holds that
√
n(z0/

√
n) ∼ N (0, 1) for all n, consequently it is its asymptotic

distribution.
We next show that mTΣz and zTΣz are jointly asymptotically normally distributed

under the high-dimensional asymptotic regime. For any a1 ∈ R and a2 ∈ R, we consider

a1z
TΣz + 2a2m

TΣz = a1

(
z +

a2
a1

m

)T

Σ

(
z +

a2
a1

m

)
− a22

a1
mTΣm =

= a1z̃
TΣz̃− a22

a1
mTΣm,

where z̃ ∼ Nk(µa,κΣ) with µa = µ + a2

a1
m. By [18] the random variable z̃TΣz̃ can be

expressed as

z̃TΣz̃
d
= κ

r∑
i=1

λ2i ζi with ζi
d∼ χ21(δ2i ), δ2i = κ−1λ−1i

(
uT
i µa

)2
,

where the symbol χ2d(δ) denotes the non-central chi-squared distribution with d degrees
of freedom and non-centrality parameter δ.

Next, we apply the Lindeberg central limit theorem to the i.i.d. random variables
Vi = κλ2i ζi. Let σ2i = V(Vi) and s2n = V(

∑r
i=1 Vi). It holds that

s2n = V

(
r∑

i=1

Vi

)
= κ2

r∑
i=1

λ4iV(ζi) = κ2
r∑

i=1

λ4i 2(1 + 2δ2i ) =

= κ2
r∑

i=1

(
2λ4i + 4κ−1λ3i (uT

i µa)2
)

= κ2
[
2tr(Σ4) + 4κ−1µTa Σ3µa

]
.

In order to verify the Lindeberg condition, we need to check if for any small ε > 0 it
holds that

lim
r→∞

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]

= 0, (4)

where
r∑

i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
] Cauchy–Schwarz

≤

Cauchy–Schwarz

≤
r∑

i=1

√
E[(Vi − E(Vi))4]

√
E
[
1{|Vi−E(Vi)|>εsn}

]
=

=

r∑
i=1

√
E[(Vi − E(Vi))4]

√
P[|Vi − E(Vi)| > εsn]

Chebychev

≤
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Chebychev

≤
r∑

i=1

√
E[(Vi − E(Vi))4]

σi

εsn
=

= 2
√

3
κ2

ε

r∑
i=1

λ4i

√
(1 + 2δ2i )2 + 4(1 + 4δ2i )

σi

sn
.

By using

(1 + 2δ2i )2 + 4(1 + 4δ2i ) = (5 + 2δ2i )2 − 20 ≤ (5 + 2δ2i )2,

for σmax = supi σi, we get the following inequality

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]
≤ 2
√

3
κ2

ε

σmax

sn

1

s2n

r∑
i=1

λ4i (5 + 2δ2i ) =

=

√
3

ε

σmax

sn

5tr(Σ4) + 2κ−1µTa Σ3µa
tr(Σ4) + 2κ−1µTa Σ3µa

≤ 5
√

3

ε

σmax

sn
.

Using

(uT
i µa)2 =

(
uT
i µ+

a2
a1

uT
i m

)2

= 2(uT
i µ)2 + 2

(
a2
a1

uT
i m

)2

=

= 2L2
2

(
1 +

(
a2
a1

)2
)

<∞

and Assumptions (A1) and (A2), we get

σ2max

s2n
=

supi(λ
4
i (1 + 2δ2i ))

tr(Σ4) + 2κ−1µTa Σ3µa
=

supi(λ
4
i + 2κ−1λ3i (uT

i µa)2)

tr(Σ4) + 2κ−1µTa Σ3µa
→ 0,

which verifies the Lindeberg condition.
Since

r∑
i=1

E(Vi) = κ

r∑
i=1

λ2iE(ζi) = κ

r∑
i=1

λ2i
(
1 + δ2i

)
= κtr(Σ2) + µTa Σµa

we obtain by using the Lindeberg central limit theorem that√
1

κ

z̃TΣz̃− κtr(Σ2)− µTa Σµa√
2κtr(Σ4) + 4µTa Σ3µa

d−→ N (0, 1).

Let a = (a1, 2a2)T . Then the last identity leads to

√
n

[
aT

(
zTΣz
mTΣz

)
− aT

(
κtr(Σ2) + µTΣµ

mTΣµ

)]
d−→

d−→ N
(

0,aT κ

c

(
2κtr(Σ4) + 4µΣ3µ 2mTΣ3µ

2mTΣ3µ mTΣ3m

)
a

)
, (5)

which implies that the vector
(
zTΣz,mTΣz

)T
is asymptotically multivariate normally

distributed because a is an arbitrary fixed vector.
Taking into account (3),(5) and the fact that ζ, z0, and z are mutually independent,

we get the following asymptotic result

√
n




ζ
n

zTΣz
mTΣz

z0√
n

−


1
κtr(Σ2) + µTΣµ

mTΣµ
0


 d−→
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d−→ N

0,


2 0 0 0

0 2κ2

c tr(Σ4) + 4κ
cµ

TΣ3µ 2κ
c mTΣ3µ 0

0 2κ
c mTΣ3µ κ

c mTΣ3m 0
0 0 0 1


.

Finally, the application of the delta method leads to

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1),

where

σ2 =

(
mTΣµ 0 1

[[
κtr(Σ2) + µTΣµ

]
mTΣm−

(
mTΣµ

)2] 1
2

)
×

×


2 0 0 0

0 2κ2

c tr(Σ4) + 4κ
cµ

TΣ3µ 2κ
c mTΣ3µ 0

0 2κ
c mTΣ3µ κ

c mTΣ3m 0
0 0 0 1

×

×


mTΣµ

0
1[[

κtr(Σ2) + µTΣµ
]
mTΣm−

(
mTΣµ

)2] 1
2

 =

=
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m. �

Finally, we extend the results of Theorem 3 to the case of finite number of linear
combinations of the elements of Az. The results are summarised in the following theorem.

Theorem 4. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ),
κ > 0. Assume r

n = c + o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n → ∞. Let

M = (m1, . . . ,mp)T : p × k be a matrix of constants of rank p < r ≤ n with proba-
bility one and let |uT

i mj | ≤ L2 for all i = 1, . . . , r and j = 1, . . . , p uniformly on k.
Assume that A and z are independently distributed. Then under (A1) and (A2) the
asymptotic distribution of MAz under the double asymptotic regime is given by

√
nΩ−1/2

(
1

n
MAz−MΣz

)
d−→ Np(0, Ip) for r/n→ c as n→∞,

where

Ω = MΣµµTΣMT + MΣMT
[
κtr(Σ2) + µTΣµ

]
+
κ

c
MΣ3MT .

Proof. For all l ∈ Rp-fixed, we consider lTMAz. The rest of the proof follows from
Theorem 3 with m = MT l and the fact that l is an arbitrary vector. �

4. Finite sample performance

In this section, we present the results of a Monte Carlo simulation study where the
performance of the obtained asymptotic distribution for the product of a singular Wishart
matrix and a singular Gaussian vector is investigated.

In our simulation, we fix m = 1/k where 1 denotes the k-dimensional vector of ones
and generated each element of µ from the uniform distribution on [−1, 1]. The population
covariance matrix was drawn in the following way:

• r non-zero eigenvalues of Σ were generated from the uniform distribution on
(0, 1) and the rest were set to be zero;

• the eigenvectors were generated from the Haar distribution by simulating a
Wishart matrix with identity covariance matrix and calculating its eigenvectors.
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Both the mean vector and the population covariance matrix obtained by such setting
satisfy the assumptions (A1) and (A2).
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(a) n = 500, c = 0.1, k = 750
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(b) n = 500, c = 0.5, k = 750
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(c) n = 500, c = 0.8, k = 750
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(d) n = 500, c = 0.95, k = 750

Figure 1. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n = 500)

We compare the asymptotic density of the standardized random variable mTAz with
its finite sample one which is obtained by applying the stochastic representation of Corol-
lary 2. More precisely, we draw N = 104 independent realizations of the standardized
random variable mTAz by using the following algorithm.

a) Generate mTAz by using stochastic representation (2) of Corollary 2 expressed
as

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

where ζ ∼ χ2n, z0 ∼ N (0, 1), z ∼ Nk(µ,κΣ); ζ, z0, and z are mutually indepen-
dent.
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b) Compute
√
nσ−1

(
1

n
mTAz−mTΣµ

)
,

where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

c) Repeat a)–b) N times.

Then, the elements of the generated sample are used to construct a kernel density es-
timator which is compared to the asymptotic distribution, i.e. to the density of the
standard normal distribution. As a kernel, we make use of the Epanechnikov kernel with
the bandwidth chosen by applying Silverman’s rule of thumb.
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(a) n = 1000, c = 0.1, k = 750
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(b) n = 1000, c = 0.5, k = 750
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(c) n = 1000, c = 0.8, k = 990
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(d) n = 1000, c = 0.95, k = 990

Figure 2. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n = 1000)
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(a) n = 500, c = 2, k = 1200
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(b) n = 1000, c = 2, k = 2100

Figure 3. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n ∈ {500, 1000})

The results of the simulation study are summarized in Figure 1 for n = 500, in Figure 2
for n = 1000, and for n ∈ {500, 100} with c = 2 in Figure 3. In all cases we set κ = 1/n.
Finally, k = 750 is chosen for n = 500 and k ∈ {750, 990} for n = 1000. For c = 2,
k = 1200 is chosen for n = 500 and k = 2100 for n = 1000. Furthermore, several
values of r are considered such that c = {0.1, 0.5, 0.8, 0.95} in Figures 1 and 2, while
c = 2 in Figure 3. The finite sample distributions are shown as dashed lines, while the
asymptotic distributions are solid lines. All obtained results show a good performance of
the asymptotic approximation which is almost indistinguishable from the corresponding
finite sample density. This result remains true even for the values of c = 0.95 and c = 2.

5. Summary

The Wishart distribution and normal distribution are widely spread in both statistics
and probability theory with numerous and useful applications in finance, economics,
environmental sciences, biology, etc. Different functions involving a Wishart matrix and
a normal vector have been studied in statistical literature recently. However, to the
best of our knowledge, combinations of a singular Wishart matrix and a singular normal
vector have not been investigated up to now.

In this paper we analyse the product of a singular Wishart matrix and a singular
Gaussian vector. A very useful stochastic representation of this product is obtained,
which is later used to derive its characteristic function as well as to provide an efficient
way how to simulate the elements of the product in practice. With the use of the derived
stochastic representation, there is no need in generating a large dimensional Wishart
matrix. Its application speeds up simulation studies where the product of a singular
Wishart matrix and a singular normal vector is present. Furthermore, we prove the
asymptotic normality of the product under the double asymptotic regime. In a numerical
study, a good performance of the obtained asymptotic distribution is documented. It is
also noted that for the values c = 0.95 and c = 2, it produces a very good approximation of
the corresponding finite sample distribution obtained by applying the derived stochastic
representation.
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ÄÎÁÓÒÎÊ ÑÈÍÃÓËßÐÍÎ� ÂÈÏÀÄÊÎÂÎ� ÌÀÒÐÈÖI ÂIØÀÐÒÀ
ÒÀ ÑÈÍÃÓËßÐÍÎÃÎ ÍÎÐÌÀËÜÍÎÃÎ ÂÈÏÀÄÊÎÂÎÃÎ ÂÅÊÒÎÐÀ

Ó ÂÅËÈÊÈÕ ÐÎÇÌIÐÍÎÑÒßÕ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Ñ. ÌÓÕIÍÞÇÀ, Í. ÏÀÐÎËß

Àíîòàöiÿ. Ó ñòàòòi ìè ðîçãëÿäà¹ìî äîáóòîê ñèíãóëÿðíî¨ âèïàäêîâî¨ ìàòðèöi Âiøàðòà òà ñèíãóëÿð-
íîãî íîðìàëüíîãî âèïàäêîâîãî âåêòîðà. Îòðèìàíî äóæå êîðèñíå ñòîõàñòè÷íå ïðåäñòàâëåííÿ öüîãî
äîáóòêó, çà äîïîìîãîþ ÿêîãî âèâîäèòüñÿ éîãî õàðàêòåðèñòè÷íà ôóíêöiÿ òà àñèìïòîòè÷íèé ðîçïîäië
ïðè ïîäâiéíîìó àñèìïòîòè÷íîìó ðåæèìi. Òàêîæ, iç âèêîðèñòàííÿì ìåòîäó Ìîíòå-Êàðëî, ïîêàçàíî
õîðîøi ðåçóëüòàòè àïðîêñèìàöi¨, îòðèìàíi çà äîïîìîãîþ âèâåäåíîãî áàãàòîâèìiðíîãî àñèìïòîòè-
÷íîãî ðîçïîäiëó â óìîâàõ ñêií÷åííî¨ âèáiðêè.

ÏÐÎÈÇÂÅÄÅÍÈÅ ÑÈÍÃÓËßÐÍÎÉ ÑËÓ×ÀÉÍÎÉ ÌÀÒÐÈÖÛ
ÂÈØÀÐÒA È ÑÈÍÃÓËßÐÍÎÃÎ ÍÎÐÌÀËÜÍÎÃÎ ÑËÓ×ÀÉÍÎÃÎ

ÂÅÊÒÎÐÀ Â ÁÎËÜØÎÉ ÐÀÇÌÅÐÍÎÑÒÈ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Ñ. ÌÓÕÈÍÞÇÀ, Í. ÏÀÐÎËß

Àííîòàöèÿ. Â ñòàòüå ìû ðàññìàòðèâàåì ïðîèçâåäåíèå ñèíãóëÿðíîé ñëó÷àéíîé ìàòðèöû Âèøàðòa
è ñèíãóëÿðíîãî íîðìàëüíîãî ñëó÷àéíîãî âåêòîðà. Ïîëó÷åíî î÷åíü ïîëåçíîå ñòîõàñòè÷åñêîå ïðåä-
ñòàâëåíèå ýòîãî ïðîèçâåäåíèÿ, ñ ïîìîùüþ êîòîðîãî âûâîäèòñÿ åãî õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ
è àñèìïòîòè÷åñêîå ðàñïðåäåëåíèå ïðè äâîéíîì àñèìïòîòè÷åñêîì ðåæèìå. Òàêæå, ñ èñïîëüçîâàíè-
åì ìåòîäà Ìîíòå-Êàðëî, ïîêàçàíû õîðîøèå ðåçóëüòàòû àïïðîêñèìàöèè, ïîëó÷åííûå ñ ïîìîùüþ
âûâåäåííîãî ìíîãîìåðíîãî àñèìïòîòè÷åñêîãî ðàñïðåäåëåíèÿ â óñëîâèÿõ êîíå÷íîé âûáîðêè.


