
Р.Н. Шевченко

Запорожский государственный медицинский университет

Оценка кардио- и гемодинамики по данным прямых методов исследования у клинически излеченных от туберкулеза легких больньх

Abstract

Цель работь - установить состояние легочного и внутрисердечного кровообращения у клинически излеченных от туберкулеза легких лиц.

Материалы и методы. У 11 клинически излеченных от туберкулеза легких больных с метатуберкулезным пневмосклерозом и клиническими признаками легочно-сердечной недостаточности IIA стадии изучение кардио- и гемодинамики малого круга кровообращения проведено с помощью метода зондирования системы легочной артерии и полостей правой половины сердца.

Результаты и обсуждение. У этих больных имеется достоверное повышение как систолического, так и диастолического давления в легочной артерии, правых желудочке и предсердии. Легочная гипертензия у этих больных носит преимущественно легочно-сосудистый генез. Установленные изменения при пробе Вальсальви и после физической нагрузки указывают на значительные нарушения кардио- и гемодинамики малого круга кровообращения и снижение компенсаторных резервов.

Выводы. Существует необходимость ранней диагностики легочной гипертензии и своевременного ее лечения у клинически излеченных от туберкулеза легких лиц с целью профилактики преждевременной легочно-сердечной недостаточности.

Ключевые слова

Кардиогемодинамика, гемодинамика малого круга кровообращения, клинически излеченный туберкулез легких.

BУкраине за период 2000-2010 гг. в 1,3 раза увеличилась смертность от туберкулеза [6]. Нарушения кардио- и гемодинамики в малом круге кровообращения у больных туберкулезом легких являются одной из сложных проблем фтизиатрии [3, 4]. Легочно-сердечная недостаточность у таких больных - проявление полиорганной недостаточности и основная причина инвалидизации и смертности [2]. Клиническое излечение туберкулеза легких в 96,0 (98,0 \%) случаев заканчивается развитием метатуберкулезного пневмосклероза, на фоне которого закономерно формируется эмфизема легких [5]. Можно предположить, что у таких больных вследствие нарушения альвеолярной вентиляции и снижения парциального давления кислорода (O_{2}) в альвеолах развивается легочная

гипертензия, лежащая в основе гиперфункции и недостаточности миокарда преимущественно правого желудочка. Патофизиологическим механизмам нарушения легочного кровообращения при туберкулезе посвящены многочисленные работы [2-4], но исследования сердечнососудистой системы у больных с остаточными изменениями в легких после туберкулеза единичны [5, 8]. По данным Н.И. Кобахинидзе [8], хроническое легочное сердце диагностируют у 42,8 \% больных с посттуберкулезными изменениями, и в большинстве случаев оно имеет компенсированный характер.

Цель работы - установить истинное состояние легочного и внутрисердечного кровообращения у больных, клинически излеченных от туберкулеза легких.

[^0]Таблица 1. Показатели давления в стволе легочной артерии, ее разветвлениях, правом желудочке и правом предсердии у клинически излеченных от туберкулеза легких больных

Показатель	Давление, мм рт. ст.			
	$\mathbf{P}_{\text {сис. }}$	$\mathbf{P}_{\text {диаст. }}$	$\mathbf{P}_{\text {ср. }}$	
В стволе легочной артерии	$30,4 \pm 0,7^{*}$	$17,0 \pm 0,3^{*}$	$19,0 \pm 0,4^{*}$	
Норма	$21,8 \pm 0,6$	$9,0 \pm 0,2$	$14,4 \pm 0,2$	
В разветвлениях легочной артерии	$14 \pm 0,3^{*}$	$9,0 \pm 0,2^{*}$	$10,0 \pm 0,2^{*}$	
Норма	$6,0 \pm 0,2$	$2,0 \pm 0,2$	$4,0 \pm 0,2$	
В правом желудочке	$32,6 \pm 1,7^{*}$	$16,6 \pm 2,5^{*}$	$18,9 \pm 0,3^{*}$	
Норма	$23,6 \pm 0,4$	0	$13,3 \pm 0,4$	
В правом предсердии	$8,4 \pm 0,4^{*}$	$4,5 \pm 0,3^{*}$	$5,4 \pm 0,2^{*}$	
Норма	$5,0 \pm 0,3$	0	$2,5 \pm 0,2$	
Примечание.*Достоверное отличие (р $<0,05)$ по отношению к норме.				

Материалы и методы

Кардио- и гемодинамику малого круга кровообращения исследовали с помощью прямого метода (зондирование системы легочной артерии и полостей правой половины сердца) у 11 больных в возрасте от 31 до 50 лет. По клинической оценке функции внешнего дыхания и сердечно-сосудистой системы они вошли в группу больных с клинически выраженными признаками легочно-сердечной недостаточности IIA стадии [7]. Зондировали обычным способом с предварительной премедикацией. Исследование проводили в состоянии покоя и с применением функциональных проб Вальсальви (натуживания) и физической нагрузки (на $2-3$-й секунде, через 5,10 и 15 мин после нагрузки) [1]. Параллельно с кривыми давления записывали ки-нето- и реокардиограмму [9, 10]. Электрическую активность миокарда изучали с помощью количественной пространственной велоэлектрокардиографии, гемодинамику - по методу разведения индикатора Т-1824. Таким образом, сопоставляли результаты прямых и косвенных методов исследования кардиогемодинамики. Результаты обработаны с помощью методов анализа на персональном компьютере с использованием статистического пакета лицензионной программы Statistica ${ }^{\circledR}$ for Windows 6.0 (Stat Soft Inc., № AXXR712 D833214FAN5).

Результаты и обсуждение

Проведенная работа показала (табл. 1), что у клинически излеченных от туберкулеза легких пациентов уже в состоянии покоя достоверно повышено ($\mathrm{p}<0,01$) систолическое ($\mathrm{P}_{\text {сист. }}$), диастолическое ($\mathrm{P}_{\text {диаст. }}$) и среднее ($\mathrm{P}_{\text {ср. }}$) давление: в стволе легочной артерии до (30,4/17/19 мм рт. ст.),

Рисунок. Показатели легочного сопротивления у клинически излеченных от туберкулеза больных, дин • с \cdot cm $^{-5}$

ее разветвлениях до ($14 / 9 / 10$ мм рт. ст.), правом желудочке до ($32,6 / 16,6 / 18,9$ мм рт. ст.) и правом предсердии до (8,4/4,5/5,4 мм рт. ст.). Диастолическое же давление в правом желудочке сохранялось в пределах нормы только у 2 больных (18,2 \%), у остальных 9 (81,8 \%) оно было повышенным. В правом предсердии $\mathrm{P}_{\text {сист. и }} \mathrm{P}_{\text {диаст. }}$ сохранялись в пределах нормы только у одного больного (9,1 \%).

Легочная гипертензия имела преимущественно легочно-сосудистый генез (рисунок). Подтверждением этому послужило достоверное повышение в 2 раза легочно-сосудистого сопротивления: ($160 \pm 1,7$) по сравнению с (77 $\pm 0,4$), дин • с • см ${ }^{-5}$ в норме ($\mathrm{p}<0,01$). Общее легочное сопротивление (ОЛС) было достоверно выше в 1,3 раза: $(212 \pm 0,6)$ по сравнению с $(160 \pm 0,9)$ дин • с • см $^{-5}$ в норме ($\mathrm{p}<0,001$).

Со стороны кардиогемодинамики установлены следующие изменения. Так, минутный объем сердца (МОС) был достоверно выше у клинически излеченных от туберкулеза легких больных, чем у здоровых: $(6,8 \pm 0,1)$ по сравнению с ($5,4 \pm 0,1$) л/мин соответственно ($\mathrm{p}<0,01$). Увеличились показатели работы $(0,948 \pm 0,001)$ кгм/мин $/$ м 2) и мощности сокращений ($0,8 \pm$ $\pm 0,01)$ вт $/ с$) правого желудочка, поглощение O_{2} $(277 \pm 1,8)$ мл/мин). На выраженную артериальную гипоксемию у клинически излеченных от туберкулеза легких больных указывало достоверное (р $<0,05$) снижение содержания O_{2} (\%) в артериальной крови и насыщения ее O_{2} по отношению к норме: соответственно $(16,9 \pm 0,1) \%$, $(20,1 \pm 0,1) \%$ и $(92,4 \pm 0,2) \%$ по сравнению с $(96,9 \pm 0,2) \%$.

Согласно результатам пробы Вальсальви и на $2-3$-й секунде после физической нагрузки (табл. 2),

Таблица 2. Показатели давления в стволе легочной артерии, правом желудочке и правом предсердии у клинически излеченных от туберкулеза легких больных до и после пробы Вальсальви

Показатель	До пробы Вальсальви		После пробы Вальсальви	
	$\mathbf{P}_{\text {сит. }}$	$\mathbf{P}_{\text {диас. }}$	$\mathbf{P}_{\text {сист. }}$	$\mathbf{P}_{\text {диаст. }}$
В легочной артерии	$30,4 \pm 0,7$	$17,0 \pm 0,3$	$46,2 \pm 1,0^{*}$	$34,5 \pm 0,8^{*}$
В правом жедудочке	$32,6 \pm 1,7$	$16,6 \pm 2,5$	$48,8 \pm 2,6^{*}$	$32,7 \pm 4,9^{*}$
В правом предсердии	$8,4 \pm 0,4$	$4,5 \pm 0,3$	$12,1 \pm 0,6^{*}$	$8,7 \pm 0,6^{*}$

Примечание. * Достоверное отличие ($\mathrm{p}<0,05$) после пробы Вальсальви.

параллельно с увеличением в 1,5 раза $\mathrm{P}_{\text {сисг. и в }}$ 2 раза $\mathrm{P}_{\text {диаст. в легочной артерии наблюдалось ана- }}$ логичное повышение $\mathrm{P}_{\text {сист. }}$ и $\mathrm{P}_{\text {диаст. в правом желу- }}$ дочке и предсердии, что свидетельствовало об их перегрузке как в систолу, так и диастолу.

После физической нагрузки достоверно ($p<0,001$) увеличилось общее периферическое сопротивление (ОПС) в 2,3 раза: с (1101 $\pm 14,2$) дин • с • см ${ }^{-5}$ до ($2486 \pm 33,2$) дин • с • см $^{-5}$, что являлось неблагоприятным условием изометрической гиперфункции левого желудочка. При этом отмечалось достоверно резкое падение МОС в 1,7 раза: с $(6,8 \pm 0,1)$ до $(3,8 \pm 0,06)$ л/мин ($\mathrm{p}<0,001$). После физической нагрузки достоверно ($\mathrm{p}<0,001$) уменьшились показатели работы миокарда с $(0,948 \pm 0,001)$ до $(0,588 \pm 0,002)$ кгм/мин/ \mathbf{m}^{2}) и мощности сокращений (с $(0,8 \pm$ $\pm 0,01$) до ($0,50 \pm 0,01$) вт $/ с)$.

В плечевой артерии $\mathrm{P}_{\text {сист. }}$ у всех клинически излеченных от туберкулеза легких больных, а $\mathrm{P}_{\text {диаст. в }} 81,8$ \% случаев увеличивались тотчас после физической нагрузки, но ни в одном наблюдении не снижались, как это происходит у здоровых людей.

Полного восстановления давления в легочной артерии и правых отделах сердца (желудочке и предсердии), ОЛС и содержания O_{2} в крови к исходному уровню не произошло ни на 5 -й, ни на 10 -й и ни на 15-й минутах отдыха после физической нагрузки, в то время как давление в плечевой артерии нормализовалось у всех пациентов.

Выводы

У клинически излеченных от туберкулеза легких больных повышение давления в легочной артерии и правом желудочке свидетельствовало о изометрической и изотонической гиперфункции правого желудочка, а увеличение после физической нагрузки общего периферического сопротивления в 2,3 раза являлось неблагоприятным условием изометрической гиперфункции левого желудочка. Полученные данные позволяют говорить о снижении сократительной функции миокарда правого желудочка (нарастание объема остаточной крови) и реакции его на увеличенный

венозный приток крови в связи с увеличением объема циркулирующей крови, что в значительной мере ухудшает условия функционирования измененного вследствие туберкулезного процесса миокарда всех отделов сердца.

Причину повышения давления в легочной артерии мы видим в увеличении в 2,5 раза общего легочно-сосудистого сопротивления, а падение МОС - прежде всего в снижении сократительной функции миокарда. Увеличение $\mathrm{P}_{\text {диаст. и }}$ снижение МОС свидетельствовали о нарастании недостаточности миокарда правых желудочка и предсердия. Легочная гипертензия приводила в первую очередь к развитию изометрической гипертензии правого желудочка и нарастанию ее при физической нагрузке.

Снижение компенсаторных резервов миокарда влечет за собой его слабость, проявляющуюся увеличением $\mathrm{P}_{\text {диаст., снижением величин его ра- }}$ боты и мощности сокращений вместо ожидаемого их повышения в ответ на физическую нагрузку. Повышение $\mathrm{P}_{\text {диаст. в плечевой артерии и даже }}$ его стабильность являются патологической реакцией, обусловленной, в частности, нарастанием ОПС. По-видимому, это связано с нарушением тканевого метаболизма в ответ на нарастающую тканевую гипоксию. Отсутствие восстановления величин давления в легочной артерии и правых отделах сердца, ОЛС и содержания O_{2} в крови к исходному уровню после физической нагрузки свидетельствовало о значительном снижении компенсаторных резервов малого круга кровообращения.

Таким образом, легочная гипертензия у клинически излеченных от туберкулеза легких больных является причиной сложных нарушений гемодинамики, вызывающих перегрузку миокарда, преимущественно правых отделов, ухудшение кровоснабжения сердца в целом, особенно при пробе Вальсальви и физической нагрузке, снижении его сократительной функции, приводящей к преждевременной сердечной недостаточности. Поэтому возникает необходимость в ранней диагностике легочной гипертензии и своевременной ее терапии у клинически изле-

ченных от туберкулеза легких больных в целях профилактики преждевременной легочно-сердечной недостаточности. Совпадение основных параметров кардиогемодинамики (давления в легочной артерии, ОЛС, признаков снижения

Список литературы

1. Аронов Д.М., Лупанов В.П. Функциональные пробы в кар-диологии.- М.: МЕДпресс-информ, 2003.-2-е изд.- 296 с.
2. Афонин Д.Н., Иванова Т.Н. Особенности центральной и периферической гемодинамики при полиорганном туберкулезе // Пробл. туб.- 2002.- № 2.- С. 15-17.
3. Базелина З.Н., Григорьев Ю.Г., Акользина Л.И. Функция легких и сердца у больных туберкулезом легких // Пробл. туб.- 2000.- № 1.- С. 24-27.
4. Брунова А.В., Эргешов А. Состояние центральной гемодинамики у больных с остро прогрессирующими и распространенными формами туберкулеза легких // Пробл. туб.2002. - № 2.- С. 13-14.
5. Дитятков А.Е. и др. Особенности гемодинамики у лиц с посттуберкулезными изменениями в легких // Пробл. туб. и болезней легких.-2007.- № 9.- С. 24-27.
6. За рівнем захворюваності на туберкульоз Україна сьома в

сократительной функции миокарда), полученных с помощью прямого и косвенных методов исследования, позволяет использовать последние для диагностики указанных состояний в широкой клинической практике.

Європі.- Режим доступу: http://provolyn.com/news_2011-11-16/12659-za-rivnem-zahvoryuvanosti-na-tuberkulozukrayina-soma-v-ievropi.html.
7. Зелинский Я. Оценка функции легких при заболеваниях дыхательной системы / Под ред. Я. Ковальского, Л. Рад-вана.- Варшава, 2008.- С. 231-264.
8. Кобахидзе Н.И., Аршинова О.В., Дитятков А.Е., Радзевич А.Э. Гемодинамика левого желудочка сердца у больных туберкулезом легких // Сб. трудов науч.-практ. конф. молодых ученых, посвященной Всемирному дню борьбы с туберкулезом, «Новые технологии в эпидемиологии, диагностике и лечении туберкулеза взрослых и детей» ЦНИИТ PAMH.- M., 2009.- C. 54-55.
9. Окороков А.Н. Диагностика болезней внутренних орга-нов.- М.: Медицинская литература, 2004.- Т. 8.- 432 с.
10. Ратобыльский Г.В., Паша С.П. Роль лучевых и функциональных методов в выявлении патофизиологических механизмов сердечной недостаточности у больных туберкулезом органов дыхания.- М., 2001.- С. 202-204.
Р.М. Шевченко

Запорізький державний медичний університет

Оцінка кардіо- та гемодинаміки за даними прямих методів дослідження у клінічно вилікуваних від туберкульозу легень хворих

Мета роботи - встановити стан легеневого та внутрішньосерцевого кровообігу в клінічно вилікуваних від туберкульозу легень осіб.

Матеріали та методи. У 11 клінічно вилікуваних від туберкульозу легень хворих з метатуберкульозним пневмосклерозом і клінічними ознаками легенево-серцевої недостатності IIA стадії вивчення кардіо- і гемодинаміки малого кола кровообігу проведене за допомогою методу зондування системи легеневої артерії та порожнин правої половини серця.

Результати та обговорення. У цих хворих є вірогідне підвищення як систолічного, так і діастолічного тиску в легеневій артерії, правих шлуночку і передсерді. Легенева гіпертензія у цих хворих має переважно легенево-судинний генез. Встановлені зміни при пробі Вальсальві та після фізичного навантаження вказують на значні порушення кардіо- і гемодинаміки малого кола кровообігу та зниження компенсаторних резервів.

Висновки. Існує необхідність ранньої діагностики легеневої гіпертензії та своєчасного її лікування у клінічно вилікуваних від туберкульозу легень осіб з метою профілактики передчасної легеневосерцевої недостатності.

Ключові слова: кардіогемодинаміка, гемодинаміка малого кола кровообігу, клінічно вилікуваний туберкульоз легень.

R.N. Shevchenko
Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine

The evaluation of cardio- and haemodynamics according to direct methods of investigation in clinically cured pulmonary tuberculosis patients

Objective - to study the condition of cardiovascular haemodynamics and pulmonary circulation in clinically cured pulmonary tuberculosis patients.

Materials and methods. The investigation of cardiovascular haemodynamics and pulmonary circulation was conducted using the method of probing the pulmonary artery and right heart cavities in 11 clinically cured patients from MDR-TB with metatuberculosis pulmonary fibrosis and pulmonary clinical signs of heart failure A phase II.

Results and discussion. The investigation showed a significant increase in both systolic and diastolic blood pressure in the pulmonary artery, the right ventricle and atrium in these patients. Pulmonary hypertension in these patients has predominantly pulmonary-vascular genesis. The established changes at the Valsalva probe and after physical activity indicate to significant disorder of cardio- and haemodynamics of the pulmonary circulation and reduction of its compensatory reserves.

Conclusions. There is a need for early diagnosis of pulmonary hypertension and its timely treatment in clinically cured multidrug-resistant pulmonary tuberculosis patients in order to prevent the early cardiopulmonary diseases.
Key words: cardiohemodynamics, hemodynamics of the pulmonary circulation, clinically cured pulmonary tuberculosis.

Контактна інформація:

Шевченко Радій Миколайович, д. мед. н., проф. кафедри фтизіатрії та пульмонологіі
69035 , м. Запоріжжя, вул. Перспективна, 2
Тел. (0612) 35-65-44
E-mail: raznatovskaya.zp@rambler.ru

Стаття надійшла до редакції 27 квітня 2013 р.

[^0]: © Р.М. Шевченко, 2013

