УДК 611.145.11:618.29 © П.В. Кульбаба, 2013

ОСОБЕННОСТИ СТРОЕНИЯ СОСЦЕВИДНОГО И МЫЩЕЛКОВОГО ЭМИССАРИЕВ У ПЛОДОВ

П.В. Кульбаба

Кафедра топографической анатомии и оперативной хирургии (зав.— проф., д.мед.н. Фоминых Т.А.), ДУ «Крымский государственный медицинский университет имени С.И. Георгиевского». 95006 Украина, г. Симферополь, ул. А. Невского, 27а.

PECULIARITY OF DEVELOPMENR OF MASTOID AND CONDYLAR EMISSARY VEIN AT FETASES P.V. Kulbaba

SUMMARY

The study is devoted to investigations of morphological peculiarities of the interrelations between the intra- and extracranial venous structures at the base of the skull, at fetases and newborn. Strukture of mastoid and condylar emissary vein was discribed. As a whole, due to the connections between the extracranial and intracranial venous systems through the emissary veins, the vascular system of the head is provided with a higher adaptational and compensatory ability.

ОСОБЛИВОСТІ БУДОВИ СОСКОПОДІБНИХ ТА ВИРОСТКОВИХ ВИПУСКНИХ ВЕН У ПЛОДІВ П.В. Кульбаба

РЕЗЮМЕ

Це дослідження присвячено вивченню морфологічних особливостей взаємовідношення інтрата єкстракраніальних венозних утворень в ділянці основи черепа у плодів та новонароджених. Розглянуті варіанти будови соскоподібних та виросткових випускних вен, які мають велике функціональне значення у венозному відтоку від голови в пренатальному періоді розвитку та забезпечують з'єднання випускних вен з екстракраніальним руслом.

Ключевые слова: череп, эмиссарные вены, пренатальное развитие.

Эмиссарные вены значительно повышают адаптивные возможности венозного оттока от головы и способствуют улучшению дренирования крови при изменении положения плода во время внутриутробного развития [4, 8, 10, 11, 13]. В отдельных случаях было обнаружено, что эмиссарные вены имеют более постоянное расположение на той стороне, где более развиты синусы и яремные вены [7]. Также некоторыми авторами рассматривается в прямой зависимости количество эмиссарных вен и диаметр внутренних яремных вен [13, 16]. В целом закономерно, что общая площадь поперечного сечения эмиссариев сопоставима с площадью яремных отверстий [2], что говорит о значительной роли венозных эмиссариев.

В патологических состояниях эмиссарии берут на себя еще большую функцию. Они обеспечивают регуляцию внутричерепного давления за счет увеличения тока крови по ним, а в случаях краниостеноза и атрезии внутренних яремных вен берут на себя функцию основного оттока крови, значительно увеличиваясь в размерах и образуя дополнительные анастомозы [3, 7, 10, 15].

МАТЕРИАЛЫ И МЕТОДЫ

Исследование было проведено на 120 плодах и новорожденных обоих полов. Для изучения особенностей строения эмиссариев нами использовались следующие методы: инъекция сосудистого русла отвердевающими пластмассами (типа «Редонт» и «Этакрил») с последующей коррозией в соляной кислоте, морфометрия препаратов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате проведенного нами исследования установлено, что в пренатальном периоде развития эмиссарии хорошо развиты и выполняют значительную роль в оттоке крови от головы. У плодов и новорожденных на всех препаратах найдены лобные, теменные, височные, затылочные, сосцевидные и мыщелковые выпускники. Установлено, что наибольшая степень изменчивости относится к самым крупным и функционально значимым сосцевидным и мыщелковым эмиссариям.

У новорожденных сосцевидный выпускник может достигать в размере значительных размеров — до 3,4 мм в диаметре, что соответствует половине диаметра сигмовидного синуса, 3,5 мм в длину, и присутствует практически всегда (был обнаружен на всех изученных нами коррозионных препаратах).

Диаметр и длина сосцевидного эмиссария постоянно увеличиваются в зависимости от периода внутриутробного развития. Так на 20 неделе диаметр выпускника составляет 0,—0,9 мм, а длина до 2,2 мм. На 32 неделе диаметр уже составляет 1,—1,8 мм, длина 2,—2,8 мм. К 38 неделе диаметр сосцевидного эмиссария достигает 2–2,4 мм, длина – 3,4 мм.

Сосцевидная эмиссарная вена соединяет сигмовидный синус с внечерепной венозной сетью (затылочными венами и подзатылочным венозным сплетением, позвоночными сплетениями, внутренней яремной веной) посредством соединительной

вены, которая продолжается от места выхода сосцевидного эмиссария из черепа. В ряде случаев выявлена достаточно большая соединительная вена (у новорожденных – до 2 мм в диаметре), которая имеет извитой ход и соединяет сосцевидный выпускник с указанными образованиями.

Мыщелковый выпускник у новорожденных всегда хорошо развит и может достигать 3,6 мм в диаметре. Размеры и протяженность эмиссарной вены также зависят от периода внутриутробного развития. На 20 неделе ее диаметр составляет 1–1,3 мм, длина – до 2 мм. На 32 неделе мыщелковая эмиссарная вена в среднем 1,—2,2 мм в диаметре и 2,—2,6 мм в длину. На 38 неделе показатели практически одинаковы (диаметр и длина) – около 3,5 мм.

Мыщелковый эмиссарий соединяет конечный отдел сигмовидного синуса и начальный отдел внутренней яремной вены с позвоночным сплетением. Нередко мыщелковая выпускная вена имеет извитой ход.

Нередко на препаратах наблюдались анастомозы между мыщелковыми и сосцевидными выпускниками. Соединительная вена достигала 1,3 мм в диаметре и имела извитой ход. Соединяя оба эмиссария, она впадала в позвоночное сплетение (рис. 1).

выводы

По данным нашего исследования можно судить о высокой значимости сосцевидного и мыщелкового эмиссариев в оттоке венозной крови от головы в пренатальном периоде развития. Наличие анастомозов между описанными эмиссариями позволяет говорить о высоких компенсаторных свойствах венозной системы и возможности регуляции оттока крови из разных отделов сигмовидного синуса.

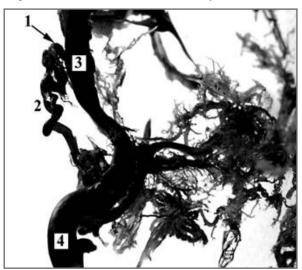


Рис. 1. Соединительная вена между сосцевидным эмиссарием с позвоночным сплетением и мыщелковым эмиссарием: 1 – правый сосцевидный выпускник; 2 – соединительная вена; 3 – правая сигмовидный синус; 4 – правая внутренняя яремная вена. Коррозионный препарат, инъекция пластмассой «Этакрил». Новорожденный, муж., брахицефал

ЛИТЕРАТУРА

- 1. Беков Д.Б. Атлас венозной системы головного мозга человека.— М.: Медицина, 1965.— 359 с.
- 2. Герасимов Е. М. Соотношения размеров площадей поперечного сечения эмиссариев задней черепной ямки и внутренней яремной вены // Материалы науч. конф., посв. 100-летию со дня рожд. В. Н. Тонкова.— Л., 1971.— С. 150.
- 3. Герасимов Е. М. Пути венозного оттока от головы и из полости черепа // Анатомия и патология мозгового кровообращения / Тр. Оренбургского мед. института, вып. 27.— Оренбург, 1973.— С. 37–47.
- 4. Сресели М. А., Большаков О. П. Клиникофизиологические аспекты морфологии синусов твёрдой мозговой оболочки.— Л.: Медицина, 1977.— 176 с.
- 5. Фоміних Т.А. Морфофункціональні особливості емісарних отворів черепу людини // Український медичний альманах. 2001. Т. 4, № 2. С. 71—73.
- 6. Фоминых Т.А. Диплоические вены свода черепа в онтогенезе / Актуальні проблеми акушерства і гінекології, клінічної імунології та медичної генетики.— Київ-Луганськ, 2002.— С. 188–191.
- 7. Холоденко М. И. Расстройства венозного кровообращения в мозгу.— М.: Гос. изд-во мед. лит-ры, 1963.— С. 5–26, 166–176.
- 8. Шиянов А. Д. К хирургической анатомии эмиссариев и синусов в области задней черепной ямы // Учёные записки Астраханского обл. общ-ва хирургов.— Астрахань, 1968.— С. 253—256.
- 9. Cabanac M., Brinnel H. Blood flow in the emissary veins of the human head during hyperthermia // Eur. J. Appl. Physiol.– 1985.– V. 54, N $\!\!$ 2.– P. 172–176.
- 10. Carriero A., Cuonzo G., Iezzi A., Tartaro A., Sicuro A., Bonomo L. Magnetic resonance venogram of the intracranial circulation. Technique, anatomy, indications // Radiol Med (Torino). 1992. V. 83, № 3. P. 182–191.
- 11. Choudhry R., Raheja S., Gaur U., Choudhry S., Anand C. Mastoid canals in adult human skulls // J. Anat.—1996.— V. 188, № 1.— P. 217–219.
- 12. Ginsberg L. E. The posterior condylar canal // Am. J. Neuroradiol. 1994. V. 15, № 5. P. 969–972.
- 13. Katsuta T., Rhoton A. L. Jr., Matsushima T. The jugular foramen: microsurgical anatomy and operative approaches // Neurosurgery. 1997. V. 41, № 1. P. 149–201.
- 14. Lambert P.R., Cantrell R.W. Objective tinnitus in association with an abnormal posterior condylar emissary vein // Am. J. Otol.–1986.– V. 7, № 3.–204–207.
- 15. Robson C. D., Mulliken J. B., Robertson R. L., Proctor M. R., Steinberger D., Barnes P. D., McFarren A., Muller U., Zurakowski D. Prominent basal emissary foramina in syndromic craniosynostosis: correlation with phenotypic and molecular diagnoses // AJNR Am. J. Neuroradiol. 2000. V. 21, № 9. P. 1707–1717.
- 16. Schelling F. The emissaries of the human skull // Anat. Anz. 1978 V. 143, $N_2 4 P$. 340- 382.