УДК 616

© 3.3. Темирова, С.В. Коношенко, 2014.

ПОКАЗАТЕЛИ УГЛЕВОДНОГО ОБМЕНА В ЭРИТРОЦИТАХ БОЛЬНЫХ ЭРИТРЕМИЕЙ

3.3. Темирова, С.В. Коношенко

Кафедра биохимии (зав.кафедрой – проф. А.П. Симчук), Таврический национальный университет им. В.И. Вернадского, г. Симферополь.

THE CARBOHYDRATE METABOLISM IN ERYTHROCYTES OF PATIENTS WITH ERITREMIA Z.Z. Temirova, S.V. Konoshenko

SUMMARY

It has been shown, that in the erythrocytes of patients with erythranemia the glycolytic reactions are intensified, as evidenced by the increase in the activity of glucose-6-fosfatdegidrogenaza and hexokinase, increase the content of metabolite of glycolysis - phosphoenolpyruvate and ATP.

ПОКАЗНИКИ ВУГЛЕВОДНОГО ОБМІНУ В ЕРИТРОЦИТАХ ХВОРИХ ЭРИТРЕМИЕЙ 3.3. Темирова, С.В. Коношенко

РЕЗЮМЕ

Встановлено, що в еритроцитах хворих эритремией відбувається інтенсифікація гликолитических реакцій, про що свідчить підвищення активності глюкозо-6-фосфатдегидрогинази й гексокиназы, збільшення зміст метаболіту гліколізу - фосфоенолпирувата та АТФ.

Ключевые слова: эритроциты, гликолиз, глюкозо-6-фосфатдегидрогеназа, гексокиназа, фосфоенолпируват, АТФ, эритремия.

Одной из актуальных проблем современной биологии и медицины является выяснение молекулярных основ различных заболеваний [3, 7, 8, 9]. При эритремии в патологический процесс вовлекаются эритроциты, в которых происходят определенные биохимические изменения [4, 9]. Известно, что для эритроцитов большое значение имеет обмен глюкозы, в особенности гликолитические реакции, которые являются источником восстановительных эквивалентов в форме НАДН · H+, и АТФ[5].

Гликолиз поставляет эритроцитам 1,3-дифосфоглицерат, часть которого претерпевает превращение в 2,3-дифосфоглицерат — аллостерический эффектор гемоглобина, регулирующий сродство дыхательного протеина к кислороду [6]. Реакции гликолиза играют особую роль в поддержании структурно-функционального состояния и метаболизма эритроцитов, поэтому вызвало интерес изучение гликолитического пути утилизации глюкозы в эритроцитах при эритремии. В связи с этим, целью данной работы явилось изучение отдельных показателей интенсивности гликолиза в эритроцитах больных эритремией.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом для исследований служили эритроциты практически здоровых людей (контрольная группа) — 15 доноров станции переливания крови г. Симферополя, а также больных эритремией I степени (9 человек, средний возраст 56 лет). В каждой

обследованной группе соотношение мужчин и женщин было приблизительно одинаковым. Критерием для исключения из исследований были тяжелая артериальная гипертензия, декомпенсация легочносердечной недостаточности, наличие тяжелых форм аритмий. Кровь больных брали на базе Крымского онкологического центра при поступлении в стационар, перед началом лечения. Эритроциты гемолизировали по методу Драбкина [11]. В гемолизатах эритроцитов определяли содержание макроэргического метаболита гликолиза - фосфоенолпирувата $(\Phi E\Pi)[1]$ и AT $\Phi[1]$, а также активность гексокиназы, катализирующую первую «пусковую» реакцию гликолиза и глюкозо-6-фосфатдегидрогеназы, энзим который катализирует «пусковую» реакцию пентозофосфатного пути [5]. В работе использовались колориметрические и спектрофотометрические методы биохимического анализа. Полученные данные обрабатывали статистически с использованием tкритерия Стьюдента.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показали результаты исследований, в гемолизате эритроцитов больных эритремией достоверно повышается активность глюкозо-6-фосфатдегидрогеназы и гексокиназы: в 1,8 и 2,2 раза по сравнению с контрольной группой (таблица 1). Полученные представляют большой интерес так как, гексокиназа катализирует первую «пусковую» реакцию гликолиза и глюкозо-6-фосфатдегидрогеназы катализирует

2014, том 17, №1 (65)

«пусковую» реакцию пентозофосфатного пути, по данным исследования можно предположить, что про-

исходит активация гликолитических реакций в эритроцитах в условиях соответствующей патологии [2,6].

Таблица 1 Активность глюкозо-6-фосфатдегидрогеназы и гексокиназы в эритроцитах больных эритремией

Обследованные группы	Активность глюкозо-6- фосфатдегидрогеназы, нмоль мин ⁻¹ ?мл ⁻¹	Активность гексокиназы, нмоль·мин ⁻¹ ?мл ⁻¹
Контрольная группа	0,047±0,002	0,66±0,03
Больные эритремией	0,085±0,008*	1,45±0,09*

Примечание: *- достоверность различия показателя по сравнению с контрольной группой (р<0,05).

Подтверждением этого является также увеличение содержания в эритроцитах больных фосфоенолпирувата и АТФ. В эритроцитах больных эритремией содержание макроэргического метаболита гликолиза фосфоенолпирувата было

выше в 4,2 раза. Достаточно выраженными показаны изменения содержания АТФ. В эритроцитах больных эритремией содержание АТФ было в 3,2 раза больше по сравнению с контрольной группой (таблица 2).

Таблица 2 Содержание фосфоенолпирувата (ФЕП) и АТФ в эритроцитах больных эритремией

Обследованные группы	ФЕП, мг%Фн	АТФ, мг%Фн
Контрольная группа	0,43±0,02	0,48±0,01
Больные эритремией	1,8±0,23*	1,53±0,5*

Примечание: *- достоверность различия показателя по сравнению с контрольной группой (р<0,05).

Полученные данные свидетельствуют о том, что при эритремии, в эритроцитах осуществляется интенсификация гликолитического пути утилизации глюкозы, что может иметь определенное компенсаторно-адаптивное значение. Компенсаторно-адаптивное значение интенсификации гликолитического пути утилизации глюкозы можно объяснить тем, что при эритремии наблюдается увеличение селезенки и по мере увеличения селезенки продолжительность жизни эритроцитов укорачивается[10].

Компенсаторно-адаптивная реакция может способствовать интенсификации энергообмена и активному образованию НАДН·Н+, 2,3-дифосфоглицерата, снижающего сродство гемоглобина к кислороду [6] и, тем самым, способствующего более эффективной диссоциации оксигемоглобина и передачи кислорода тканям.

выводы

- 1. Показано, что при эритремии, интенсифицируются гликолитические реакции, о чем свидетельствует повышение активности глюкоза-6-фосфатдегидрогеназы и гексокиназы, содержания фосфоенол-пирувата и АТФ.
- 2. Хорошо прослеживается выраженная согласованность в изменениях показателей обмена глюкозы в эритроцитах больных эритремией, гематологическим заболеванием онкологического характера.

ЛИТЕРАТУРА

- 1. Алейникова Т.Л., Рубцова Г.В. Руководство к практическим занятиям по биологической химии. М.: Высшая школа, 1988. 239 с.
- 2. Атауллаханов Ф.И. Энергозависимые процессы и метаболизм аденилатов в эритроцитах человека / Ф.И. Атауллаханов, В.М. Витвицкий, С.В. Комарова и др. // Биохимия. -1996. Т. 61, № 2. С. 266-274.
- 3. Владимиров Ю.А. Активные формы кислорода и азота: значение для диагностики, профилактикии терапии // Биохимия. 2004. Т. 69, вып. 1. С. 5-7.
- 4. Ёлкина Н.М., Казакова В.В., Коношенко С.В. Энзиматическая активность эритроцитов человека при ишемической болезни сердца в условиях развития окислительного стресса // Ученые записки Таврического национального университета им.В.И. Вернадского, серия: «Биология, химия». 2004. Т. 24 (63), № 2. С. 124-128.
- 5. Кочетов Г.А. Практическое руководство по энзимологии. М.: Высшая школа, 1980. 271 с.
- 6. Мак-Мюррей У. Обмен веществ у человека. М.: Мир, 1980. 368 с.
- 7. Меньщиков Е.Б., Зенков Н.К. Окислительный стресс при воспалении// Усп. совр. биол. 1997. Т.117, № 2. С. 155-169.

ОРИГИНАЛЬНЫЕ СТАТЬИ

- 8. Мещишен І.Ф., Григор'єва Н.П. Глутатіонова система організму за норми та патології // Укр. біохім.журн. 2002. T. 74, № 4a. C. 103.
- 9. Новицкий В.В., Гольберг В.Е., Колосова М.В. и др. Белковый спектр мембран эритроцитов у больных раком легкого и с опухолями головы и шеи // Бюл. эксперим. биол. и медиц. 1999. Прил. 1. С. 18-20.

	10. Сахибов Я. Д., Сагдиева Н. Ш., Новокщено)-																		
ва	ва Л. В. К вопросу о выживаемости тромбоцитов															B	,																	
при некоторых заболеваниях крови // Тер. Арх														-																				
1992. – T. 12, 48—51c.																																		
																			,															
												-											-											