ТЕОРІЯ ОПТИМАЛЬНИХ РІШЕНЬ

Рассматриваются процессы игрового взаимодействия группы преследователей и одного убегающего. Целью является многократная поимка убегающего Получены достаточные условия решения задачи за некоторое гарантированное время.

© А.В. Чикрий, 2009

УДК 518.9

А.В. ЧИКРИЙ

О МНОГОКРАТНОЙ ПОИМКЕ УБЕГАЮЩЕГО

Введение. Для квазилинейных игровых задач с дискретным временем и группой преследователей в задаче многократной поимки получены достаточные условия завершения игры за конечное гарантированное время. При этом базовым является метод разрешающих функций [1].

Движение конфликтно управляемого объекта $z = u(z_1,...,z_v)$ в конечномерном евклидовом пространстве R^n описывается системой квазилинейных разностных уравнений

$$z_i(t+1) = A_i(t)z_i(t) + \varphi_i(t,u_i(t),v(t))$$
,

$$t = t_0, t_0 + 1, ..., z_i(t) \in \mathbb{R}^{n_i}, i = 1, ..., v,$$
 (1)

где t — номер шага, $t_0 \ge 0$, $A_i(t)$ — квадратные матрицы порядка n_i с ограниченными элементами, $\phi_i(t,u_i,v)$ — ограниченные по t и непрерывные по u_i , v вектор-функции, $U_i(t)$ и V(t) — непустые компакты при каждом $t \ge t_0$, i = 1, 2, ..., v.

Терминальное множество состоит из множеств $M_1^*,...,M_{\nu}^*$, каждое из которых имеет вид $M_i^* = M_i^0 + M_i$, где M_i^0 — линейные подпространства из R^{n_i} , а M_i — выпуклые компакты, принадлежащие ортогональным дополнениям L_i к M_i^0 в пространстве R^{n_i} .

Считаем, что преследователю известно мгновенное значение управления убегающего в момент t вместе с его предысторией и начальное состояние $z^0 = (z_1^0,...,z_\nu^0)$, т. е.

$$u_i(t) = u_i(z_i^0, v_i(\cdot)), \quad v_i(\cdot) = \{v(s), s = t_0, ..., t\}.$$
 (2)

Рассмотрим задачу преследования группой объектов (1). При этом, если траектория $z_i(t)$ выходит на множество M_i^* , то выигрыш преследователей составляет $q_i \geq 0$. Выход на множества M_j^* , $j \neq i$, в последующие моменты траектории $z_j(t)$ добавляет в копилку преследователей выигрыш q_j . Для окончания игры (1) суммарный выигрыш преследователей должен быть не меньше некоторой фиксированной величины $Q \geq 0$. Подобные задачи рассматривались в [1, 2].

Будем считать, что дискретная игра (1) может быть закончена из начального положения $z_0=(z_1^0,...,z_v^0)$ за время, $T-t_0$, $T=T(z_0)$, если существует отображение, ставящее в соответствие $(z_0,v_t(\cdot))$ функции $u_i(t)=u_i(z_0,v_t(\cdot))\in U_i(t)$ такие, что сумма коэффициентов q_i , соответствующих траекториям $z_i(t)$, которые попадают на терминальные множества M_i^* не позже, чем в момент времени T, должна быть не меньше Q при любых управлениях $v(t)=v(t,z^0)\in V(t)$, $t=t_0$, $t_0+1,...,T-1$.

Пусть π_i — операторы ортогонального проектирования из R^{n_i} на L_i , $i=1,...,\nu$.

Тогда

$$F_{i}(t,k,U_{i}(k),v) = \pi_{i}\Phi_{i}(t,k+1)\Phi_{i}(k,U_{i}(k),v)$$

где $k=t_0,...,t-1$, $t=t_0+1,...$, $\Phi_i(t,k)=\mathbf{A}_i(t-1)$... $\mathbf{A}_i(k)$, $\mathbf{A}_i(t,t)$ — единичная матрица порядка n_i , $i=1,...,\mathsf{V}$.

$$F_i(t,k) = \bigcap_{v \in V(k)} F_i(t,k,U_i(k),v).$$

Условие 1 [3]. Множества значений многозначных отображений $F_i(t,k)$ — непусты для всех t,k , $t>t_0$, $t_0\leq k\leq t-1$, $i=1,...,\nu$.

Рассмотрим функции $f_i(t,k)$ такие, что $f_i(t,k) \in F_i(t,k)$ для всех $t > t_0$, $t_0 \le k \le t-1$, и обозначим

$$\xi_i(t,t_0,z_i^0) = \pi_i \Phi_i(t,t_0) z_i^0 + \sum_{k=t_0}^{t-1} f_i(t,k), \ i = 1,...,v.$$

Образуем многозначные отображения

$$P_{i}(t,t_{0},k,z_{i}^{0},v(k)) = \{\rho_{i} \geq 0 : \rho_{i}(M_{i} - \xi_{i}(t,t_{0},z_{i}^{0})) \cap \{F_{i}(t,k,U_{i}(k),v(k)) - f_{i}(t,k)\} \neq \emptyset\},$$

$$\xi_{i}(t,t_{0},z_{i}^{0}) \notin M_{i}, i = 1,...,v.$$
(3)

Условие 2. Множества значений многозначных отображений $P_i(t,t_0,k,z_i^0,\nu(k))$ — выпуклы при любых $t>t_0$, $t_0\leq k\leq t-1$, $\nu(k)\in V(k)$, $i=1,...,\nu$.

Введем функции

$$\rho_{i}(t,t_{0},k,z_{i}^{0},v(k)) = \max\{\rho_{i}: \rho_{i} \in P_{i}(t,t_{0},k,z_{i}^{0},v(k))\},
\rho_{i}(t,t_{0},k,z_{i}^{0},v(k)) = (t-t_{0})^{-1}, \ \xi_{i}(t,t_{0},z_{i}^{0}) \in M_{i},
\rho_{i}(t,t_{0},k,z_{i}^{0},v(\cdot)) = \sum_{k=t_{0}}^{t-1} \rho_{i}(t,t_{0},k,z_{i}^{0},v(k)).$$

Пусть D_j — некоторое подмножество множества $I = \{1,...,v\}$, состоящее из разных элементов, $0 < j \le 2^v$.

Обозначим

$$D(Q) = \{D_j : \sum_{i \in D_j} q_i \ge Q\}.$$

Рассмотрим функции

$$\mu(t,t_0,z^0) = 1 - \inf_{v(\cdot)} \max_{D_j \in D(Q)} \min_{i \in D_j} \rho_i(t,t_0,z_i^0,v(\cdot)),$$

$$T = T(z^0) = \min\{t : \mu(t,t_0,z^0) \le 0\}.$$

Теорема 1. Пусть в игре (1) выполнены условия 1, 2 и существуют функции $f_i(t,k),\ f_i(t,k)\in F_i(t,k),\ i=1,...,v,\ t>t_0,\ t_0\le k\le t-1$ такие, что $T=T(z^0)<+\infty$.

Тогда игра может быть закончена из начального состояния z^0 за время $T(z^0) - t_0$.

Доказательство. Пусть $v(\cdot) = (v(t_0),...,v(T-1))$ – произвольное управление убегающего. Рассмотрим функции

$$h(T, t, z_0, v(\cdot)) = 1 - \max_{D_j \in D(Q)} \min_{i \in D_j} \sum_{k=t_0}^{t-1} \rho_i(T, t_0, k, z_i^0, v),$$
(4)

$$h_i(T, t, z_0, v(\cdot)) = 1 - \sum_{k=t_0}^{t-1} \rho_i(T, t_0, k, z_i^0, v(k)),$$
(5)

где i принадлежит множеству \tilde{D}_j , доставляющему максимум сумме в выражении (4). И пусть $\xi_i(T,t_0,z_i^0)\not\in M_i$. При $t=t_0+1$, функции (4) и (5) равны единице. Так как $T=T(z_0)<+\infty$, то существует такой первый момент t_* , $t_0\leq t_*\leq T-1$, что $h(T,t_*+1,z^0,v(\cdot))\leq +\infty$, а значит для любого $i\in \tilde{D}_j$ найдутся такие моменты времени t_i^* , $t_0\leq t_i^*\leq t_*\leq T-1$, что $h_i(T,t_i^*-1,z_i^0,v(\cdot))\leq 0$.

Тогда для k , $t_0 \le k < t_i^*$ управления $u_i(k)$, $u_i(k) \in U_i(k)$, и функции $m_i(k) \in M_i$, $i \in \tilde{D}_i$ будем выбирать из системы уравнений

$$\pi_{i}\Phi_{i}(T,k+1)\phi_{i}(k,u_{i}(k),v(k))) - f_{i}(T,k) =$$

$$= \rho_{i}(T,t_{0},k,z_{0}^{i},v(k))(m_{i}(k) - \xi_{i}(T,t_{0},z_{0}^{i})).$$
(6)

Этот выбор возможен в силу условия 1.

Для t_i^* разрешающие функции $\rho_i(T, t_0, t_i^*, z_i^0, v(t_i^*))$ находим из условия

$$1 - \sum_{k=t_0}^{t_i^*} \rho_i(T, t_0, k, z_i^0, \nu(k)) = 0.$$
 (7)

Это можем сделать в силу условия 2. Управления $u_i(t_i^*)$, $u_i(t_i^*) \in U_i(t_i^*)$ и $m_i(t_i^*) \in M_i$ для $i \in \tilde{D}_j$ выбираем из системы (6) с учетом (7). Для всех остальных $k = t_i^* + 1, \ldots, T-1$ положим $\rho_i(T, t_0, k, z_i^0, \nu(k)) = 0$ и управления $u_i(k) = U_i(k)$ находим из полученной системы (6) с нулевой правой частью, которая разрешима в силу условия 1.

Если для некоторого $i\in \tilde{D}_j$ $\xi_i(T,t_0,z_i^0)\in M_i$, то управления $u_i(k)=U_i(k)$ найдем из соотношения (6), в котором положим $m_i(k)=\xi_i(T,t_0,z_i^0)$, а разрешающие функции $\rho_i(T,t_0,k,z_i^0,v(k))==\frac{1}{(T-t_0)},\ k=t_0,...,T-1.$

Прибавив и вычтя $\sum_{k=t_0}^{T-1} f_i(T,k)\,,$ $i\in \tilde{D}_j$ из выражения $\pi_i z_i(T)=$

 $=\pi_i\Phi_i(T,t_0)z_i^0+\sum_{k=t_0}^{\tau-1}\pi_i\Phi_i(T,k+1)\phi_i(k,u_i(k),\nu(k))\,,\,\mathrm{в}\,\,\mathrm{силу}\,(6)\,\,\mathrm{u}\,\,(7)\,\,\mathrm{получаем}$

$$\begin{split} \pi_i z_i(T) &= \xi_i(T, t_0, z_i^0) + (1 - \sum_{k=t_0}^{T-1} \rho_i(T, t_0, k, z_i^0, v(k))) + \\ &+ \sum_{k=t_0}^{T-1} \rho_i(T, t_0, k, z_i^0, v(k)) m_i(k) \,. \end{split}$$

Так как для всех $i\in \tilde{D}_j$ $h_i(T,T,z_i^0,\nu(\cdot))=0$, согласно способу выбора управлений, то

$$\pi_i z_i(T) = \sum_{k=t_0}^{T-1} \rho_i(T, t_0, k, z_i^0, v(k)) m_i(k) , i \in \tilde{D}_j ,$$

откуда из выпуклости множеств M_i получаем $\pi_i z_i(T) \in M_i$, для всех $i \in \tilde{D}_j$. Из принадлежности \tilde{D}_j множеству D(Q) следует $\sum_{i \in \tilde{D}} q_i \geq Q$.

Теорема доказана.

Г.В. Чикрій

ПРО БАГАТОКРАТНУ ПОЇМКУ ВТІКАЧА

Розглядаються конфліктно керовані процеси з групою переслідувачів і одним втікачем. Отримані достатні умови багатократної поїмки за скінченний гарантований час. A.V. Chikrii

ON MULTIPLE CAPTURE OF THE EVADER

Conflict-controlled processes with group of pursuers and single evader are studied. Sufficient conditions for multiple capture in a finite quaranteed time are obtained.

- 1. Чикрий А.А. Конфликтно управляемые процессы. Киев: Наук. думка, 1992. 384 с.
- 2. *Григоренко Н.Л.* Математические методы управления несколькими динамическими процессами. М.: Изд-во МГУ, 1990. 198 с.
- 3. *Понтрягин Л.С.* Избранные научные труды. М.: Наука, 1988. **2**. 576 с.

Получено 31.03.2009