ТЕОРІЯ ОПТИМАЛЬНИХ РІШЕНЬ

Для негладких задач выпуклого программирования рассматриваются детерминированные и стохастические обобщения субградиентного метода, допускающие на каждой итерации определенный порог толерантности относительно выполнения ограниченийнеравенств.

УДК 519.6

А.Ф. ГОДОНОГА, Б.М. ЧУМАКОВ

ДЕТЕРМИНИРОВАННЫЕ И СТОХАСТИЧЕСКИЕ СХЕМЫ МЕТОДА ПРОЕКЦИИ СУБГРАДИЕНТА

В работе рассматриваются негладкие задачи выпуклого программирования. Предлагаются детерминированные и стохастические схемы субградиентного метода которые, на каждой итерации, допускают определенный порог толерантности относительно ограничений-неравенств. Основные результаты сформулированы в виде теорем сходимости соответствующих алгоритмов. Для стохастических схем сходимость установлена с вероятностью единица.

Пусть задана задача выпуклого программирования

$$F(x) \to \min, \Phi(x) \le 0, x \in X.$$
 (1)

Без ограничения общности, в дальнейшем будем считать, что множество X обладает достаточно простой структурой с точки зрения проектирования на нем. Если, к примеру, в модели присутствует m>1 ограничений вида $\Phi_i(x) \le 0, i=1,2,...,m$, то формально можно считать, что имеется одно единственное ограничение:

$$\Phi(x) \le 0, \tag{2}$$

где функция $\Phi(x)$ определяется как максимум из конечного числа функций: $\Phi(x) = \max \{\Phi_1(x), \Phi_2(x), ..., \Phi_m(x)\}$. Рассматриваются две задачи P_0 и $P_r(\tau > 0)$:

$$P_0: F(x) \to \min, \Phi(x) \le 0, x \in X,$$

$$P_{\tau}: F(x) \to \min, \Phi(x) \le \tau, x \in X.$$

Функции F(x) и $\Phi(x)$, кроме того, предполагаются также и непрерывными на выпуклом компакте X.

[©] А.Ф. Годонога, Б.М. Чумаков, 2015

Пусть число $\tau > 0$ задано apriori. Строится последовательность векторов

$$x^{k+1} = \prod_{x} \left(x^k - h_k \cdot \eta^k \right), \tag{3}$$

где $\prod_x (\tilde{x})$ – проекция точки \tilde{x} на множество X. Относительно величины шага h_k считаются выполненными классические условия:

$$h_k \ge 0, \lim_{k \to \infty} h_k = 0, \sum_{k=0}^{\infty} h_k = \infty.$$
 (4)

Вектор η^k , задающий направление движения на k-ой итерации, вычисляется по правилу:

$$\eta^{k} = \begin{cases} g_{F}\left(x^{k}\right) \middle/ \middle\| g_{F}\left(x^{k}\right) \middle\|, & \text{для } \Phi\left(x^{k}\right) \leq \tau, g_{F}\left(x^{k}\right) \neq 0, \\ g_{\Phi}\left(x^{k}\right) \middle/ \middle\| g_{\Phi}\left(x^{k}\right) \middle\|, & \text{для } \Phi\left(x^{k}\right) > \tau, g_{\Phi}\left(x^{k}\right) \neq 0, \\ 0, & \text{в остальных случаях.} \end{cases}$$
 (5)

Векторы $g_F(x^k)$ и $g_\Phi(x^k)$ – субградиенты функций F(x) и $\Phi(x)$, соответственно, при $x=x^k$. Если, на некоторой итерации k, $\eta^k=0$, итерационный процесс (3) останавливается. И тогда, для точки x^k , возможны два случая:

- 1) либо $\Phi(x^k) \le \tau$, и $g_F(x^k) = 0$, и значит, для задачи P_τ выполняется достаточное условие оптимальности и, таким образом, точка x^k одно из оптимальных решений задачи P_τ ;
- 2) либо $\Phi(x^k) > \tau$ и $g_{\Phi}(x^k) = 0$. Поскольку $\Phi(x)$ выпуклая функция на X, следует, что x^k ее точка минимума в данной области. Следовательно, на X функция $\Phi(x)$ не примет значений $\leq \tau$. Другими словами, задача P_{τ} не имеет решений.

Допустим теперь, что задача P_0 имеет решение, а X^*- ее область оптимальных решений. Справедливо следующее утверждение.

Теорема 1 [4]. Пусть x^0 – произвольная точка множества X, субградиенты $g_F(x^k)$ и $g_\Phi(x^k)$ существуют и равномерно ограничены на множестве X. Тогда для произвольного $\varepsilon > 0$ существует число $\tau > 0$, при котором все x^k определенные согласно (3) – (5), кроме, быть может, конечного их числа, содержатся в множестве $V(X^*, 2\varepsilon)$.

Замечание 1. Сложность решения задачи P_0 с определенной точностью, в рамках задачи P_{τ} , очевидна. Это объясняется тем, что нет определенного механизма для оценивания числа $\tau > 0$ при заданном числе ϵ . Истинно только существование такого значения τ , при котором задачу P_0 можно было бы решить с заданной точностью 2ϵ .

В дальнейшем рассмотрим последовательность задач вида

$$P_{\tau_k}: F(x) \to \min, \Phi(x) \le \tau_k, x \in X.$$

Пусть задача P_0 имеет решение. Строится итеративный процесс (3), (4) в котором вектор η^k вычисляется по правилу:

$$\eta^{k} = \begin{cases}
g_{F}\left(x^{k}\right) \middle/ \middle\| g_{F}\left(x^{k}\right) \middle\|, & \text{для } \Phi\left(x^{k}\right) \leq \tau_{k}, g_{F}\left(x^{k}\right) \neq 0, \\
g_{\Phi}\left(x^{k}\right) \middle/ \middle\| g_{\Phi}\left(x^{k}\right) \middle\|, & \text{для } \Phi\left(x^{k}\right) > \tau_{k}, g_{\Phi}\left(x^{k}\right) \neq 0, \\
0, & \text{в остальных случаях.}
\end{cases} (6)$$

Теорема 2 [4]. Пусть, при реализации алгоритма (3), (4), (5), числовые последовательности $\{h_k\}$ и $\{\tau_k\}$ выбраны следующим образом:

$$h_k > 0$$
, $\lim_{k \to \infty} h_k = 0$, $\tau_k > 0$, $\lim_{k \to \infty} \tau_k = 0$, $\lim_{k \to \infty} \frac{h_k}{\tau_k} = 0$, $\sum_{k=0}^{\infty} h_k \tau_k = \infty$. (7)

Тогда, для произвольной точки $x^0 \in X$, $\lim_{k \to \infty} \min_{x^* \in X^*} ||x^k - x^*|| = 0$.

Замечание 2. Если задача P_0 не имеет решения, т. е. для $\forall x \in X$: $\Phi(x) \ge \tau > 0$, то алгоритм (3), (6), (7), генерирует на X процесс минимизации функции $\Phi(x)$.

Таким образом, соответствующий алгоритм способен решить исходную задачу P_0 . Следует отметить, что в разных аспектах метод субградиента исследован и обоснован, в смысле сходимости, в работах [1-4].

Рассмотрим дискретную минимаксную задачу вида

$$F(x) = \max_{y \in Y} f(x, y) \to \min, \quad \Phi(x) = \max_{z \in Z} \varphi(x, z) \le 0, \quad x \in X.$$
 (8)

Предположим что множество оптимальных решений $X^* \neq \emptyset$. Множества $Y = \{y_1, \dots, y_m\}, \quad Z = \{z_1, \dots, z_n\}$ считаются конечными, функции f(x, y) и $\phi(x, z)$ — выпуклыми и непрерывными для $\forall y \in Y$ и $\forall z \in Z$, соответственно. Пусть данные множества Y, Z представлены подмножествами Y_1, \dots, Y_M , и, соответственно, Z_1, \dots, Z_N , следующим образом:

$$\begin{cases} \bigcup_{i=1}^{M} Y_i = Y \\ Y_{i_1} \bigcap Y_{i_2} = \varnothing, \text{ если } i_1 \neq i_2 \\ Y_i \neq \varnothing, \ i = \overline{1,M} \end{cases} \begin{cases} \bigcup_{j=1}^{N} Z_j = Z \\ Z_{j_1} \bigcap Z_{j_2} = \varnothing, \text{ если } j_1 \neq j_2. \\ Z_j \neq \varnothing, \ j = \overline{1,N} \end{cases}$$

Пусть точка x^k – уже определена. Для нахождения точки x^{k+1} выполняются следующие действия:

(A1). Определяются элементы $\tilde{y}^k \in Y_{i_k}, \ \tilde{z}^k \in Z_{j_k}$:

$$f(x^{k}, \tilde{y}^{k}) = \max_{y \in Y_{i_{k}}} f(x^{k}, y), \text{ где } i_{k} = k - M \left[\frac{k}{M}\right] + 1$$

$$\phi(x^{k}, \tilde{z}^{k}) = \max_{z \in Z_{j_{k}}} \phi(x^{k}, z), \text{ где } j_{k} = k - N \left[\frac{k}{N}\right] + 1.$$
(9)

(A2). Находятся $y^k \in \{y^{k-1}, \tilde{y}^k\}, z^k \in \{z^{k-1}, \tilde{z}^k\}$ для которых:

$$f(x^{k}, y^{k}) = \max \{f(x^{k}, y^{k-1}), f(x^{k}, \tilde{y}^{k})\}, \text{ где } y^{0} = \tilde{y}^{0},$$

$$\varphi(x^{k}, z^{k}) = \max \{\varphi(x^{k}, z^{k-1}), \varphi(x^{k}, \tilde{z}^{k})\}, \text{ где } z^{0} = \tilde{z}^{0}.$$
(10)

Значения $f(x^k, y^k)$, $\varphi(x^k, z^k)$ назовем оценками функций F(x) и $\Phi(x)$, соответственно, при $x = x^k$.

(А3). Строится вектор

$$\eta^{k} = \begin{cases}
g_{f}(x^{k}, y^{k}) / \|g_{f}(x^{k}, y^{k})\|, & \text{для } \phi(x^{k}, y^{k}) \leq \tau_{k}, g_{f}(x^{k}, y^{k}) \neq 0, \\
g_{\phi}(x^{k}, z^{k}) / \|g_{\phi}(x^{k}, z^{k})\|, & \text{для } \phi(x^{k}, z^{k}) > \tau_{k}, g_{\phi}(x^{k}, z^{k}) \neq 0, \\
0, & \text{в остальных случаях.}
\end{cases} (11)$$

(A4). Теперь новая точка x^{k+1} определяется согласно (3), (7), (9) – (11). Можно доказать следующее утверждение.

Теорема 3 [7]. Если выполняются условия (3), (7), (9) - (11), то имеет место:

$$\lim_{k \to \infty} \left(F(x^k) - f(x^k, y^k) \right) = 0.$$

Субградиентный метод с последовательным выбором функций для задачи вида

$$F(x) = \max_{y \in Y} f(x, y) \to \min; \ x \in X$$

реализован и обоснован в работе [4]. Субградиентный метод с последовательным выбором функций в форме (3), (7) - (11) можно применить для решения минимаксной задачи вида (8).

Теорема 4 [7]. Последовательность $\{x^k\}$, построенная в соответствии с предыдущей схемой, сходится к множеству оптимальных решений X^* задачи (8).

Замечание 3. В случае, когда $X^* = \emptyset$ применение текущей схемы приводит, собственно говоря, к решению задачи:

$$\Phi(x) = \max_{z \in Z} \varphi(x, z) \to \min; \quad x \in X.$$

Минимаксная задача. Стохастический метод. Рассматривается теперь задача

$$F(x) = \max_{y \in Y} f(x, y) \to \min, \quad \Phi(x) = \max_{z \in Z} \varphi(x, z) \le 0, \quad x \in X, \tag{12}$$

где Y и Z компактные множества в E^{m_1} и E^{m_2} соответственно. Предположим, что множество оптимальных решений $X^* \neq \emptyset$. Функции f(x,y) и $\phi(x,z)$ выпуклые на $V(X,\epsilon^*)$, при некотором $\epsilon^* > 0$, и непрерывны на $V(X,\epsilon^*) \times Y$ и $V(X,\epsilon^*) \times Z$, соответственно. Также предполагается, что на Y и Z можно определить вероятностные меры $P_f(\bullet)$, $P_{\phi}(\bullet)$, соответственно, для которых

$$\int_{Y} P_f(dy) = 1, \quad \int_{Z} P_{\phi}(dz) = 1, \tag{13}$$

и при $\forall r > 0 \exists \gamma > 0$:

$$\int_{W_{Y}(y,r)} P_{f}(dy) \geq \gamma, \ \forall y \in Y_{f} \ \mathsf{u} \quad \int_{W_{Z}(z,r)} P_{\varphi}(dz) \geq \gamma, \ \forall z \in Z.$$
 (14)

При произвольно заданной точке $x^0 \in X$, строится случайная последовательность $\left\{x^k\right\}_{k\geq 1}$. В предположении, что приближенное решение x^k уже известно, следующее за ним решение x^{k+1} определятся в порядке выполнения следующих операций.

(В1). В серии из $m_k \ge 1$, $l_k \ge 1$ независимых испытаний наблюдаются случайные вектора $\xi \in Y$, $\psi \in Z$ в соответствии с законами распределения вероятностей P_f и P_ϕ , соответственно. Другими словами, на каждой k -ой итерации генерируются множества наблюдений $M_k = \left\{\xi_1, \xi_2, \ldots, \xi_{m_k}\right\}$, $L_k = \left\{\psi_1, \psi_2, \ldots, \psi_{l_k}\right\}$, которые содержат соответствующие наборы независимых реализаций случайных векторов ξ и ψ .

(B2). Определяются элементы $\tilde{y}^k=\xi_i\in M_k$, $1\leq i\leq m_k$ и $\tilde{z}^k=\psi_j\in L_k$, $1\leq j\leq l_k$ таким образом, что

$$f\left(x^{k}, \tilde{y}^{k}\right) = \max_{\xi \in M_{k}} f\left(x^{k}, \xi\right), \quad \varphi\left(x^{k}, \tilde{z}^{k}\right) = \max_{\psi \in L_{k}} \varphi\left(x^{k}, \psi\right). \tag{15}$$

(В3). Выбирается $y^k \in \{y^{k-1}, \tilde{y}^k\}$, для которых:

$$f(x^{k}, y^{k}) = \max\{f(x^{k}, y^{k-1}), f(x^{k}, \tilde{y}^{k})\}, \text{ здесь } y^{0} = \tilde{y}^{0},$$

$$\phi(x^{k}, z^{k}) = \max\{\phi(x^{k}, z^{k-1}), \phi(x^{k}, \tilde{z}^{k})\}, u z^{0} = \tilde{z}^{0}.$$
(16)

(В4). Новая точка x^{k+1} теперь определяется согласно общему правилу (3). Последовательность векторов $\left\{\eta^k\right\}$ строится, следуя (11). Порог толерантности τ_k и числовая последовательность $\left\{h_k\right\}$ соблюдают условия (7), но кроме того, дополнительно потребуется, чтобы для произвольного числа $\mathbf{v} \in (0,1)$ существовала последовательность $\left\{\overline{\epsilon}_k\right\}$ для которой имеют место соотношения:

$$\lim_{k \to \infty} \overline{\varepsilon}_k = 0, \quad \lim_{k \to \infty} \frac{\overline{\varepsilon}_k}{h_k} = \infty, \tag{17}$$

и таким образом чтобы для $\forall r_k \in \left[\frac{\overline{\varepsilon}_k}{2}, \overline{\varepsilon}_k\right]$ сходился бы ряд:

$$\sum_{k=0}^{\infty} \mathbf{v}^{L(k,r_k)} < \infty, \ L(k,r_k) = \begin{cases} 0, \text{ если } h_k \ge r_k & \text{или } k = 0, \\ s_k, \text{ если } \sum_{l=k-s_k}^k h_l < r_k & \text{и } \sum_{l=k-s_k-1}^k h_l \ge r_k. \end{cases}$$
(18)

To есть s_k — максимальное целое число из всех чисел $j \geq 0$, для которых $\sum_{l=k-j}^k h_l < r_k.$

Несложно доказать существование $\{h_k\}$ и $\{\overline{\epsilon}_k\}$, для которых все условия (17), (18) выполняются. Сказанное подтверждает

Лемма. Произвольные последовательности вида

$$h_{\boldsymbol{k}} = \frac{c}{\boldsymbol{k}^{\alpha} + d}, \, c > 0, \, d \geq 0, \, \alpha \in \left(0,1\right] \quad \text{if} \quad \overline{\boldsymbol{\epsilon}}_{\boldsymbol{k}} = \frac{p}{\boldsymbol{k}^{\beta} + q}, \, p > 0, \, q \geq 0, \beta \in \left(0,\alpha\right)$$

удовлетворяют всем условиям, (17), (18). При реализации вероятностной схемы, подставим $\tau_k = \overline{\epsilon}_k$. Имеет место

Теорема 5 [5]. Для произвольного числа $\varepsilon > 0$, все элементы случайной последовательности векторов $\left\{ x^k \right\}_{k \geq 0}$, построенной согласно правилам (B1) – (B4), кроме быть может конечного их числа, почти наверное принадлежат множеству $V\left(X^*, 2\varepsilon\right)$, или более строго: $P\left\{ \lim_{k \to \infty} \min_{x^* \in X^*} \left\| x^k - x^* \right\| = 0 \right\} = 1$.

Выводы.

- 1. При использовании порога толерантности относительно ограничений можно решить перечисленные задачи даже в тех случаях, когда условие Слейтера не обязательно выполняется, но без которого нельзя воспользоваться функцией Лагранжа.
- 2. Вероятностный подход позволяет решить минимаксные задачи довольно общего вида, даже в том случае, когда число участвующих функций бесконечно. Сходимость стохастических схем, при этом, гарантирована с вероятностью единица.
- 3. Предложенные схемы основаны на идее метода обобщенного градиента с программной регулировкой шага и, по всей видимости, их можно было бы классифицировать как прямые методы решения рассмотренных задач.
- 4. Дальнейшие исследования планируется проводить в направлении разработки аналогичных алгоритмов для решения минимаксных задач со связанными переменными.

А.Ф. Годонога, Б.М. Чумаков

ДЕТЕРМІНОВАНІ ТА СТОХАСТИЧНІ СХЕМИ МЕТОДУ ПРОЕКЦІЇ СУБГРАДІЕНТА

Для негладких задач опуклого програмування розглядаються детерміновані та стохастичні узагальнення субградієнтного методу, які на кожній ітерації допускають певний поріг толерантності щодо обмежень нерівностей.

A.F. Godonoga, B.M. Chumakov

DETERMINISTIC AND STOCHASTIC SCHEMES METHOD OF PROJECTION SUBGRADIENT

For non-smooth convex programming problems regarded deterministic and stochastic generalizations subgradient method, admitting at each iteration a certain threshold of tolerance on the implementation of inegality-constraints.

- 1. *Шор Н.З.* Методы минимизации недифференцируемых функций и их приложения. Киев: Наук. думка. 1979. –199 с.
- 2. *Ермольев Ю.М., Гайворонский А.А.* Стохастический метод решения минимаксных задач // Кибернетика. − 1983. № 4. С. 92 97.
- 3. *Поляк Б.Т.* Один общий метод решения экстремальных задач // Докл. АН СССР. -1967. -174, № 1. C. 33 36.
- 4. *Godonoagă A., Baractari A.* Modele economice nediferențiabile. Aspecte decizionale. Chișinău: Editura ASEM, 2011. 275 c.
- 5. *Godonoaga A., Balan P.* A probabilistic method for solving minimax problems with general constraints // Buletinul ASRM, Matematica. 2010. 62, N 1. P. 33 46. (http://www.math.md/en/publications/basm/issues/y2010-n1/10198/)
- 6. *Годонога А.Ф., Чумаков Б.М.* Вероятностно-градиентный метод решения некоторых задач выпуклой оптимизации // Теорія оптимальних рішень. 2014. С. 132 138.
- 7. *Godonoagă A., Balan P.* O generalizare a metodei subgradientului cu selecție consecutivă pentru probleme minmax, Analele ATIC. 2007 2008. P. 66 77.

Получено 14.02.2015