Теорія оптимальних рішень

Подано графи-обструкції для тора на 8-ми вершинах із однією видаленою довільною вершиною та всіма інцидентними їй ребрами. Наведені всі неізоморфні 7-ми вершинні тороїдальні графи, мінімальні відносно заданої множини точок, з числом досяжності 2 при видаленні довільного ребра. УДК 519.1

В.І. ПЕТРЕНЮК, Д.А. ПЕТРЕНЮК, І.Е. ШУЛІНОК

СТРУКТУРА 7-МИ ВЕРШИННИХ ПІДГРАФІВ 8-МИ ВЕРШИННИХ ГРАФІВ-ОБСТРУКЦІЙ ТОРА

Вступ. Основні позначення взяті з [1, 2]. Нехай G – неорієнтований скінчений граф без петель та кратних ребер ейлеревого роду $\gamma(G)$, а S – замкнутий 2-многовид роду $\gamma(S)$, де $\gamma(G) = \gamma(S) + 1$. Для довільної вершини v 8-ми вершинного графа G – обструкції для тору дослідимо структуру графу G шляхом розкладу на підграф H. $H = G \setminus v$, та просту зірку $St_G(v)$ графа G із спільними вершинами, що утворюватимуть підмножину М множини точок графа G, подану як результат ототожнення пар точок (a_{1i}, a_{2i}) в точку a_i , де $M_i = \{a_{ii}\}_{i=1}^{|M|},$ i = 1, 2, j = 1, 2, ..., |M|, та яку називатимемо множиною точок приєднання підграфа Н. $M_1 \subseteq H^0$, до зірки St(v), $M_2 \subseteq St_G(v)^0 \setminus v$.

В роботах [3, 4] доведено, що існує три граф-обструкції для тору серед підграфів графа K₈, а саме:

$$B_{1} = \left(K_{8}^{0}, K_{8}^{1} \setminus K_{3}^{1}\right), B_{2} = \left(K_{8}^{0}, K_{8}^{1} \setminus \left(K_{1,2}^{1} \cup 2K_{2}^{1}\right)\right), \\B_{3} = \left(K_{8}^{0}, K_{8}^{1} \setminus K_{2,3}^{1}\right).$$

Наведений в [5] повний список 63-х 2-неприведених графів із 9-ма вершинами; 51 із них (48 мінорів) подано в [6]. Спочатку в [7], а потім у [8], виписані 2-неприведені для тору графи без підграфів гомеоморфних $K_{3,3}$. Більше наведено в [9, 10] та інших статтях, де розбудовують та використовують ідею *К*-мостів заданого графа.

[©] В.І. Петренюк, Д.А. Петренюк, І.Е. Шулінок, 2017

Визначення 1[1]. Число досяжності підмножини M множини точок графа G роду γ , $\gamma = \gamma(G)$ є найменшою кількістю кліток з підмножини Δ множини $S \setminus f(G)$, де S – поверхня роду γ , а f, $f: G \to S$ – довільне мінімальне вкладення, при якому елементи f(M) розташовуються на границях кліток із підмножини Δ . Крім числа досяжності, потрібні ще деякі характеристики підмножини M множини точок графа G, наведені в [11, 12], для оцінки роду φ -образу деякого графа та простої зірки; у випадку заміни зірки на квазізірку доповнимо наступними визначеннями, які враховують наявність на границі недвоклітки кількох копій вершин графа.

Визначення 2. Позначимо $krt_G(M)$, $kr = krt_G(M)$, kr -кратність доступу до елементів підмножини M множини точок графа G, як найбільшу кількість варіантів вибору різних підмножини $S_G(M, S_{\gamma})$ множини кліток $S_{\gamma} \setminus f(G)$ на границях яких розміщуються всі точки з підмножини M, узята по всіх мінімальних вкладеннях $f, f: G \to S_{\gamma}$, графа G в поверхню S_{γ} . Іншими словами, це найбільша кількість зірок, які приєднані кінцевими вершинами до кожного елемента підмножини M та вкладені до різних kr кліток із множини $S_{\gamma} \setminus f(G)$.

Визначення З. Позначимо $ms_G(M, s, f)$, $k = ms_G(M, s, f)$, k – сторонність доступу із довільної внутрішньої точки замкнутої клітки \bar{s} до кожної точки заданої підмножини M множини точок графа G, де |M| > 2, що полягатиме у наявності такої клітки $s, s \in S_{f(G)}(M, S_{\gamma}, s)$, де f – задане мінімальне вкладення $f: G \to S_{\gamma}$ графа G в поверхню S_{γ} , яка на своїй границі ∂s містить kкопій підмножини M, а найбільшу кількість копій підмножини M на ∂s серед усіх кліток s заданого мінімального вкладення $f, f: G \to S_{\gamma}$, графа G в поверхню S_{γ} , позначимо $ms_G(M, f)$.

Визначення 4. Будемо називати $(ms_G(M, f_1), ms_G(M, f_2), ...ms_G(M, f_N))$ вектором l, l = l(s) -стороннього доступу до множини M точок графа G із довільної внутрішньої точки замкнутої клітки $\bar{s}, s \in S_{\gamma} \setminus f_k(G), l = l(s),$ до кожної точки заданої підмножини M, де l > 0, |M| > 2, $\{f_k\}_{k=1}^N$ – множина всіх неізоморфних мінімальних вкладень $f_k, f_k: G \to S_{\gamma}$ графа G в S_{γ} . Найбільше l, l = l(s) серед чисел $ms_G(M, f_k)$ узяте по всім s та всім f_k , називатимемо характеристикою l -стороннього доступу до множини M точок графа G.

Твердження 1. Видалення довільної вершини v графа B_j , j = 1, 3, $B_1 = (K_8^0, K_8^1 \setminus K_3^1)$, $B_3 = (K_8^0, K_8^1 \setminus K_{2,3}^1)$, призводить до одного з наступних наслідків (у залежності від deg v та підмножини M, яка складена з вершин, інцидентних v, та має число досяжності 2).

0. Множина вершин графа B_1 розбивається на два класи еквівалентності, а множина вершин графа B_3 розбивається на три класи еквівалентності щодо перестановки вершин.

1. Для графа В1 маємо два випадки:

а) якщо deg v = 5, то $B_1 \setminus v = K_7 \setminus e$ i $M = K_5^0$;

6) якщо deg v = 7, то $B_1 \setminus v = K_7 \setminus K_3^1$ і $M = (K_7 \setminus K_3^1)^0$; причому в обох випадках множина M вершин графа $B_1 \setminus v$ матиме число досяжності 2 та розміщуватиметься на границях двох кліток s_1, s_2 так, що тільки одна з них не належить до границі іншої клітки, а для кожного ребра e із кінцевими вершинами, що належать до множини M графа $B_1 \setminus v$, виконується співвідношення $e \in B_1^1 \cap (\partial s_1 \cap \partial s_2)$ або зменшується на 1 рід графа $B_1 \setminus v$. На рис. 1 показано твердження 1 щодо графа $B_1 \setminus v$ та його вкладень в тор, де виділені вершини належать множині M (в першому ряду три різні вкладення одного й того графа).

РИС. 1. Граф B_1 v та його вкладення в тор

2. Для графа B_3 маємо три випадки, в кожному з них існуватиме таке вкладення в тор графа $B_3 \setminus v$, при якому виконується рівність $t_{G\setminus v}(M) = 2$ і вершини з M розміщуються на границях двох кліток s_1, s_2 так, що тільки одна не належить до границі іншої клітки, а для кожного ребра e із кінцевими вершинами, що належать до множини M графа $B_3 \setminus v$, виконується співвідношення $e \in B_3^1 \cap (\partial s_1 \cap \partial s_2)$ або $\gamma((B_3 \setminus v) \setminus e) = 0$ (див. рис. 2):

а) якщо deg v = 7, то це склеєні по ребрам $e_i = (a_i, b_i)$ графи K₅, K₄, відповідно, тобто задаємо φ -перетворення вигляду:

$$\varphi(K_5 + K_4, (a_1 + a_2, b_1 + b_2)) \rightarrow (B_3 \setminus v, (a, b)),$$

де e = (a,b), $e \in B_3^1 \setminus St^1(v)$, $M = B_3^0 = St^0(v) \setminus \{v\}$ причому виконується рівність $t_{G \setminus v}(M) = 2$;

б) якщо deg v = 4, то це графи K_5 , K_4 , відповідно, склеєні по ребрам $e_i = (a_i, b_i), i = 1, 2$, із додатковими трьома ребрами з спільною вершиною w графа K_4 , $w \in K_4^0 \setminus \{a_2, b_2\}$, $M = K_4^0 = St^0(v) \setminus \{v\}$, причому виконується рівність $t_{G \setminus v}(M) = 2$;

в) якщо $\deg v = 5$, то це склеєні по ребрам $e_i = (a_i, b_i)$ графи K₅ та K₄, відповідно, тобто

$$\varphi(K_5 + K_4, (a_1 + a_2, b_1 + b_2)) \rightarrow (B_3 \setminus v, (a, b)),$$

де e = (a,b), $e \in B_3^1 \setminus St^1(v)$, із додатковими двома ребрами (w, w_1) , (w, w_2) з спільною вершиною w графа K_5 , $w \in K_5^0 \setminus \{a_2, b_2\}$ та $M = \{w\} \cup K_5^0 \setminus \{v\}$, причому виконується рівність $t_{G \setminus v}(M) = 2$.

На рис. 2 показано твердження 1 щодо графа $B_3 \setminus v$ та його вкладень в тор, де виділені вершини належать до множини M; різним є вкладення одного й того графа на другій та третій тороїдальних картах нижнього ряду.

Доведення. Множини вершин та ребер графа $B_j \setminus v$ $B_j, j = 1, 3, B_1 = (K_8^0, K_8^1 \setminus K_3^1), B_3 = (K_8^0, K_8^1 \setminus K_{2,3}^1)$, розіб'ємо на класи еквівалентності та впевнимося у виконанні наведених тверджень згідно рис. 1, а саме п. 0, для множини вершин графа B_1 та п. 1 для множини ребер графа B_1 . Для графа B_{21} виконується п. 2 згідно рис. 2.

РИС. 2. Графа В₃\v та його вкладення в тор

Теорема 1. Видалення довільної вершини v графа $B_j, j = 1, 3, B_1 = (K_8^0, K_8^1 \setminus K_3^1), B_3 = (K_8^0, K_8^1 \setminus K_{2,3}^1),$ призводить до одного з графів $B_j \setminus v$, у яких кожне видалене ребро зменшує число досяжності $t_{B_j \setminus v} M$ підмножини M, де $t_{B_j \setminus v} M = 2$, складеної з вершин, інцидентних v, та розміщується на границях двох кліток s_1, s_2 так, що тільки одна з вершин приєднання не належить до границі іншої клітки, а для кожного ребра e із кінцевими вершинами, що належать до множини M графа $B_j \setminus v$ виконується співвідношення $e \in B_j^1 \cap (\partial s_1 \cap \partial s_2)$ або зменшується на 1 рід графа $B_j \setminus v$, тобто кожне ребро графа $B_j, j = 1, 3$ є суттєвим щодо роду при операції видалення ребра.

Доведення теореми 1 випливатиме із твердження 1.

Твердження 2. Видалення довільної вершини v графа B_2 , $B_2 = = (K_8^0, K_8^1 \setminus (K_{1,2}^1 \cup 2K_2^1))$, призводить до одного з графів, виписаних в наступних співвідношеннях (в залежності від degv та структури на підмножині M, складеної з вершин, інцидентних v, яка має число досяжності більше 1).

0. Множина вершин графа B_2 розбивається на 8-м класів еквівалентності щодо відношення транзитивності, тобто $B_2^0 = \bigcup_{i=1}^8 A_i$, де $A_i = \{i\}, i = 1, 2, 3, ..., 8$, (рис. 3, *i*).

1. Для графа $G \setminus v$, де $G, G = B_2$, маємо з точністю до перенумерації вершин наступні вісім випадків:

а) якщо v = 8, deg v = 6, то це склесні по парі трикутників $\Lambda_i = (a_i, b_i, c_i)$ графи К₅, К₅\e, відповідно, тобто маємо φ -перетворення вигляду:

$$(K_5 + K_5 \setminus e, (a_1 + a_2, b_1 + b_2, c_1 + c_2)) \rightarrow (B_3 \setminus v, (a, b, c)),$$

де $M = St_G^0(v) \setminus \{v\}$ на рис. 3, *a*, та рівність $t_{G \setminus v}(M) = 2$;

б) якщо v = 8, deg v = 7, то це склеєні по парі простих ланцюгів довжини 2 $\Lambda_i = (a_i, b_i, c_i)$ графи K₅, K₅\e, відповідно $\Lambda_1 \subset K_5$, $\Lambda_2 \subset K_5 \setminus e$, та двох несуміжних додаткових ребер із кінцевими вершинами відмінними від a_i, b_i, c_i , тобто маємо φ -перетворення вигляду:

$$\varphi(K_5 + K_5 \setminus e, (a_1 + a_2, b_1 + b_2, c_1 + c_2)) \to (B_3 \setminus v, (a, b, c)),$$

де $e = (2,7), M = St_G^0(v) \setminus \{v\}$ на рис. 3, б, та рівність $t_{G \setminus v}(M) = 2;$

в) якщо deg v = 6, то це склеєні по парі простих ланцюгів L довжини 3, де $L_i = (a_i, b_i, c_i, d_i)$, i - 1, 2, графа K_5 та колеса W_5 , відповідно $L_1 \subset K_5$, $l_2 \subset W_5$, тобто маємо φ -перетворення вигляду:

$$\phi(K_5+W_5, (a_1+a_2, b_1+b_2, c_1+c_2, d_1+d_2)) \rightarrow (B_3 \setminus v, (a, b, c, d)),$$

де v = 8 на рис. 3, *в*, причому для множини M, $M = St_G^0(v) \setminus \{v\}$, має місце рівність $t_{G \setminus v}(M) = 2$;

г) якщо deg v = 6, то графи K_5 та колесо W склесні по парі простих циклів z_1 , z_1 довжини 5 та 6 відповідно, де $z_1 = (a_1, b_1, c_1, d_1, f_1)$, $z_2 = (a_2, b_2, c_3, d_4, f_{41}, g_2)$, $L_1 \subset K_5$, $l_2 \subset W_5$, тобто маємо φ -перетворення вигляду:

$$\varphi(K_5 + W, \varphi(K_5 + W, (a_1 + a_2, b_1 + b_2, c_1 + c_2, d_1 + d_2, f_1 + f_2, x + g_2)) \rightarrow (B_3 \setminus v, (a, b, c, d, f)),$$

де v = 2 та x – внутрішня точка ребра (a_1, f_1) на рис. 3, ε , причому граф W склеєний по трьох вершинах, дві з яких суміжні, графів $K_5 \setminus e$ та K_4 , а для множини M, $M = St_G^0(v) \setminus \{v\}$, має місце рівність $t_{G\setminus v}(M) = 2$;

д) якщо deg v = 6, v = 3, то маємо для графів $K_6 \setminus e$ та $St_5(g_0)$ ϕ -перетворення вигляду:

$$\varphi(K_6 \setminus e + St_5(g_0), \sum_{j=1}^5 (a_{1j} + g_{2j})) \to (B_3 \setminus v, \{a_{1j}\}_{j=1}^5),$$

де $e = (a_{11}, a_{13})$, множина вершин $\{a_{1j}\}_{j=1}^5$ не є досяжною на торі та вершина a_{12} має двосторонній доступ, $St_5^0(v) = \{g_{2j}\}_{j=1}^5 \cup \{g_0\}$ і для множини M, $M = St_G^0(v) \setminus \{v\}$, має місце рівність $t_{G \setminus v}(M) = 2$ (рис. 3, ∂);

е) якщо deg v = 6, v = 1, то для графів $K_6 \setminus e$ та $St_4(g_0)$ маємо φ -перетворення вигляду:

$$\varphi(K_6 \setminus e + St_4(g_0), \sum_{j=1}^4 (a_{1j} + g_{2j})) \to (B_3 \setminus v, \{a_j\}_{j=1}^4)$$

де $e = (a_{11}, a_{13})$, множина вершин $\{a_{1j}\}_{j=1}^{4}$ є досяжною на торі, $St_{4}^{0}(v) = \{g_{2j}\}_{j=1}^{4} \cup \{g_{0}\}$ і для множини M, $M = St_{G}^{0}(v) \setminus \{v\}$, має місце рівність $t_{G\setminus v}(M) = 2$ (див. рис. 3, e);

ж) якщо deg v = 6, v = 8, то для графів $K_6 \setminus e$ та $St_4(g_0)$ маємо φ -перетворення вигляду:

$$\varphi(K_6 \setminus e + St_4(g_0), \sum_{j=1}^4 (a_{1j} + g_{2j})) \to (B_3 \setminus v, \{a_j\}_{j=1}^4),$$

де $e = (a_{11}, a_{13})$, множина вершин $\{a_{1j}\}_{j=1}^{4}$ – досяжна на торі та до цих вершин немає двостороннього доступу, $St_{4}^{0}(v) = \{g_{2j}\}_{j=1}^{4} \cup \{g_{0}\}$ і для множини M, $M = St_{G}^{0}(v) \setminus \{v\}$, має місце рівність $t_{G \setminus v}(M) = 2$ (рис. 3, \mathcal{H});

з) якщо deg v = 5, v = 7, то для графів $K_6 \setminus e$ та $St_5(g_0)$ маємо φ -перетворення вигляду:

$$\varphi(K_6 \setminus e + St_5(g_0), \sum_{j=1}^5 (a_{1j} + g_{2j})) \to (B_3 \setminus v, \{a_{1j}^*\}_{j=1}^5),$$

де $e = (a_{11}, a_{13})$, множина вершин $\{a_{1j}\}_{j=1}^5$ – досяжна на торі та до цих вершин немає двостороннього доступу, $St_4^0(v) = \{g_{2j}\}_{j=1}^4 \cup \{g_0\}$ і для множини M, $M = St_G^0(v) \setminus \{v\}$, має місце рівність $t_{G \setminus v}(M) = 2$ (див. рис. 3, 3).

На рис. З показано твердження 2 щодо графа $B_2 \setminus v$ та його вкладень в тор, де виділені вершини належать до множини M, показано попарно (зліва-направо, окрім останнього ряду) граф та його вкладення в тор.

Доведення. Множини вершин та ребер графа $B_j \setminus v$ $B_j, j = 1, 3, B_1 = (K_8^0, K_8^1 \setminus K_3^1), B_3 = (K_8^0, K_8^1 \setminus K_{2,3}^1),$ розіб'ємо на класи еквівалентності та впевнимося у виконанні наведених тверджень згідно рис. 1 та 2. Перестановка пари вершин призводить до того, що граф у випадку *з* є ізоморфний графу з випадку *d*, граф з випадку *e* ізоморфний графу з випадку *ж*, граф у випадку *a* є ізоморфним графу з випадку *ж*.

Теорема 2. Видалення довільної вершини v графа B_2 , $B_2 = (K_8^0, K_8^1 \setminus (K_{1,2}^1 \cup 2K_2^1))$, призводить до одного з графів $B_2 \setminus v$, у яких кожне видалене ребро зменшує число досяжності множини M, складеної з вершин інцидентних v, яка має $t_{B_2 \setminus v} M$ – число досяжності 2 та розміщується на границях двох кліток s_1, s_2 так, що тільки одна з вершин приєднання не належить до границі іншої

клітки, а для кожного ребра e із кінцевими вершинами, що належать до множини M графа $B_2 \setminus v$ виконується співвідношення $e \in B_2^1 \cap \cap (\partial s_1 \cap \partial s_2)$ або зменшується на 1 рід графа $B_2 \setminus v$, тобто кожне ребро графа є суттєвим відносно числа досяжності множини M чи роду при операції видалення ребра.

РИС. 3. Граф $B_2 \setminus v$ та його вкладення в тор

Доведення. Доведення теореми 1 випливатиме із твердження 2. Перестановка пари вершин призводить до того, що граф у випадку з є ізоморфним графу з випадку ∂ , граф з випадку e ізоморфний графу з випадку \mathcal{K} , граф у випадку a є ізоморфним графу з випадку \mathcal{K} , а графи у випадках δ і e ізоморфні графу з випадку \mathcal{K} випадку \mathcal{K} , а графи у випадках δ і e ізоморфні графу з випадку \mathcal{K} с рис. 3). В показаних на рис. З тороїдальних картах неізоморфних

графів з випадків ж, ∂ , c для кожного ребра простої зірки з 4-ма чи 5-ма променями, які приклеєно до вершин графа K_6 чи $K_6 \setminus e$, можливо вибрати пару двох кліток на границях яких лежатимуть всі вершини та їх перетин містить висяче ребро зірки.

Наслідок 1. Мінімальні тороїдальні 7-ми вершинні графи ізоморфні наступним графам із заданими множинам точок приєднання, позначеними *M* (рис. 4).

 $\varphi(K_5 + K_5, ((a_1 + a_2), (b_1 + b_2), (c_1 + c_2))) \rightarrow (H_3, (a, b, c))$

РИС. 4. Графи до наслідку 1: $a - K_7 \setminus 2K_2^1$; $\delta - K_7 \setminus (K_{1,2}^1 + K_2^1)$; $e - K_7 \setminus 3K_2^1$); $z - H_3$

1. $K_7 \setminus e, M = K_7^0 \setminus \{a, b\}, e = (a, b); 2. K_7 \setminus K_3^1, M = K_7^0;$ 3. H₁, $\varphi(K_5 + K_4, ((a_1 + a_2), (b_1 + b_2)))) \rightarrow (H_1, (a, b)), M = H_1^0;$ 4. H₂, $H_2 = K_7 \setminus K_{1,3}^1, M = K_4^0;$ 5. $\varphi(K_5 + K_5, ((a_1 + a_2), (b_1 + b_2), (c_1 + c_2))) \rightarrow (H_3, (a, b, c)),$ $M = K_5^0, \{a, b, c\} \subset M;$ 6. $K_7 \setminus 2K_2^1, M = K_7^0 \setminus \{v, u\};$ 7. $K_7 \setminus (K_{1,2}^1 + K_2^1), M = K_7^0 \setminus v; 8. K_7 \setminus 3K_2^1), M = K_7^0 \setminus v,$ де $H_1 \epsilon \varphi$ -образом графів K_5, K_4 із ототожненою парою ребер $(a_1, b_1), (a_2, b_2)$

де $H_1 \in \varphi$ -ооразом графів K_5 , K_4 із ототожненою парою реоер $(a_1, b_1), (a_2, b_2)$ (склеєними по ребру), граф $H_2 \in \varphi$ -образом графів K_6, K_4 при ототожненні пари простих циклів довжини 3, а граф $H_3 \in \varphi$ -образом двох графів K_5, K_5 при

ототожненні пари циклів C_1, C_2 довжини 3, (цикл C_i матиме вершини a_{ij}, b_{ij}, c_{ij} , які попарно ототожнюються і утворюють цикл з вершинами a, b, c,

j = 1, 2, 3, i = 1, 2), з іншого боку граф $H_3 \in K_7 \setminus C_4^1$.

В.И. Петренюк, Д.А. Петренюк, И.Э. Шулинок

СТРУКТУРА 7-МИ ВЕРШИННЫХ ПОДГРАФОВ 8-МИ ВЕРШИННЫХ ГРАФОВ-ОБСТРУКЦИЙ ТОРА

Поданы графы-обструкции для тора на 8-ми вершинах с одной удаленной произвольной вершиной и всеми инцидентными ей ребрами. Приведены все неизоморфные 7-ми вершинные тороидальные графы, минимальные относительно заданного множества точек, с числом достижимости 2 при удалении произвольного ребра.

V.I. Petrenjuk, D.A. Petreniuk, I.E. Shulinok

STRUCTURE 7-VERTECSES SUBGRAPHS 8-VERTICES GRAPH-OBSTRUCTIONS FOR TORUS

Obstruction graphs for 8-vertice toroid with one arbitrary vertex and all the incident edges removed are given. All non-isomorphic minimal 7-vertices toroidal subgraphs minimal in regard to the given set of vertices with graph attainability of 2 after removing of an arbitrary egde.

- 1. Хоменко М.П. ф-перетворення графів. Київ, 1971. (Препринт. ІМ НАНУ; 71).
- 2. *Хоменко М.П.* Топологические аспекты теории графов. Киев, 1970. (Препринт. ИМ НАН; 70).
- Brown T., Duke R. An irreducible graph consisting a single block. J. Math.and Mech. 1966. 15, N 1. P. 129 – 135.
- 4. Duke R.A. Haggard G. The genus subgraphs K₈. Israel J. Math. 11 (1972) P. 452 455.
- 5. *Huneke J.P., Johns G., Hlavachek A.* 9-Vertex Irreducible Graphs on the Torus. Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida, 2006.
- 6. Hur Suhjin. The Kuratowski covering conjecture for graphs of order less than 10. 2008.
- Gagarin A., William K. Embedding graphs containing K₅-subdivisions. Ars Combinatoria, 64:33– 50. 2002.
- 8. *Gagarin A., Myrvold W., Chambers J.* The obstructions for toroidal graphs with no K_{3,3}'s. Discrete Math., 2008.
- Mochar B., Kawarabayashi K. Some Recent Progress and Applications in Graph Minor Theory. Graphs and Combinatorics. February 2007. Vol. 23, N. 1. P. 1 – 46.
- Mohar B. Face covers and the genus problem for apex graphs. J. Combin. Theory, B. 2001. Vol. 82. P. 102 – 117.
- 11. *Петренюк В.І.* Об оценке рода специальных графов. Деп. рукоп вУкрНИИТИ № 2259-Ук86 22.09.1986.
- 12. Петренюк В.І. Узагальнена оцінка роду простого графа. Искусственный интеллект. 2004. Т. 4. С. 34 – 45.

Одержано 21.03.2017